199 Commits

Author SHA1 Message Date
Duncan P. N. Exon Smith
a136fd65ad Reapply "LTO: Disable extra verify runs in release builds"
This reverts commit r247730, effectively reapplying r247729.  This time
I have an lld commit ready to follow.

llvm-svn: 247735
2015-09-15 23:05:59 +00:00
Duncan P. N. Exon Smith
af74674cca Revert "LTO: Disable extra verify runs in release builds"
This temporarily reverts commit r247729, as it caused lld build
failures.  I'll recommit once I have an lld patch ready-to-go.

llvm-svn: 247730
2015-09-15 22:47:38 +00:00
Duncan P. N. Exon Smith
c2011f0a8c LTO: Disable extra verify runs in release builds
The verifier currently runs three times in LTO: (1) after parsing, (2)
at the beginning of the optimization pipeline, and (3) at the end of it.

The first run is important, since we're not sure where the bitcode comes
from and it's nice to validate it, but in release builds the extra runs
aren't appropriate.

This commit:
  - Allows these runs to be disabled in LTOCodeGenerator.
  - Adds command-line options to llvm-lto.
  - Adds command-line options to libLTO.dylib, and disables the verifier
    by default in release builds (based on NDEBUG).

This shaves about 3.5% off the runtime of ld64 when linking
verify-uselistorder with -flto -g.

rdar://22509081

llvm-svn: 247729
2015-09-15 22:26:11 +00:00
Chandler Carruth
fac09e6d0b [PM] Port SROA to the new pass manager.
In some ways this is a very boring port to the new pass manager as there
are no interesting analyses or dependencies or other oddities.

However, this does introduce the first good example of a transformation
pass with non-trivial state porting to the new pass manager. I've tried
to carve out patterns here to replicate elsewhere, and would appreciate
comments on whether folks like these patterns:

- A common need in the new pass manager is to effectively lift the pass
  class and some of its state into a public header file. Prior to this,
  LLVM used anonymous namespaces to provide "module private" types and
  utilities, but that doesn't scale to cases where a public header file
  is needed and the new pass manager will exacerbate that. The pattern
  I've adopted here is to use the namespace-cased-name of the core pass
  (what would be a module if we had them) as a module-private namespace.
  Then utility and other code can be declared and defined in this
  namespace. At some point in the future, we could even have
  (conditionally compiled) code that used modules features when
  available to do the same basic thing.

- I've split the actual pass run method in two in order to expose
  a private method usable by the old pass manager to wrap the new class
  with a minimum of duplicated code. I actually looked at a bunch of
  ways to automate or generate these, but they are all quite terrible
  IMO. The fundamental need is to extract the set of analyses which need
  to cross this interface boundary, and that will end up being too
  unpredictable to effectively encapsulate IMO. This is also
  a relatively small amount of boiler plate that will live a relatively
  short time, so I'm not too worried about the fact that it is boiler
  plate.

The rest of the patch is totally boring but results in a massive diff
(sorry). It just moves code around and removes or adds qualifiers to
reflect the new name and nesting structure.

Differential Revision: http://reviews.llvm.org/D12773

llvm-svn: 247501
2015-09-12 09:09:14 +00:00
Yunzhong Gao
15919ad6d1 Add a non-exiting diagnostic handler for LTO.
This is in order to give LTO clients a chance to do some clean-up before
terminating the process.

llvm-svn: 247461
2015-09-11 20:01:53 +00:00
Chandler Carruth
d7003090ac [PM/AA] Rebuild LLVM's alias analysis infrastructure in a way compatible
with the new pass manager, and no longer relying on analysis groups.

This builds essentially a ground-up new AA infrastructure stack for
LLVM. The core ideas are the same that are used throughout the new pass
manager: type erased polymorphism and direct composition. The design is
as follows:

- FunctionAAResults is a type-erasing alias analysis results aggregation
  interface to walk a single query across a range of results from
  different alias analyses. Currently this is function-specific as we
  always assume that aliasing queries are *within* a function.

- AAResultBase is a CRTP utility providing stub implementations of
  various parts of the alias analysis result concept, notably in several
  cases in terms of other more general parts of the interface. This can
  be used to implement only a narrow part of the interface rather than
  the entire interface. This isn't really ideal, this logic should be
  hoisted into FunctionAAResults as currently it will cause
  a significant amount of redundant work, but it faithfully models the
  behavior of the prior infrastructure.

- All the alias analysis passes are ported to be wrapper passes for the
  legacy PM and new-style analysis passes for the new PM with a shared
  result object. In some cases (most notably CFL), this is an extremely
  naive approach that we should revisit when we can specialize for the
  new pass manager.

- BasicAA has been restructured to reflect that it is much more
  fundamentally a function analysis because it uses dominator trees and
  loop info that need to be constructed for each function.

All of the references to getting alias analysis results have been
updated to use the new aggregation interface. All the preservation and
other pass management code has been updated accordingly.

The way the FunctionAAResultsWrapperPass works is to detect the
available alias analyses when run, and add them to the results object.
This means that we should be able to continue to respect when various
passes are added to the pipeline, for example adding CFL or adding TBAA
passes should just cause their results to be available and to get folded
into this. The exception to this rule is BasicAA which really needs to
be a function pass due to using dominator trees and loop info. As
a consequence, the FunctionAAResultsWrapperPass directly depends on
BasicAA and always includes it in the aggregation.

This has significant implications for preserving analyses. Generally,
most passes shouldn't bother preserving FunctionAAResultsWrapperPass
because rebuilding the results just updates the set of known AA passes.
The exception to this rule are LoopPass instances which need to preserve
all the function analyses that the loop pass manager will end up
needing. This means preserving both BasicAAWrapperPass and the
aggregating FunctionAAResultsWrapperPass.

Now, when preserving an alias analysis, you do so by directly preserving
that analysis. This is only necessary for non-immutable-pass-provided
alias analyses though, and there are only three of interest: BasicAA,
GlobalsAA (formerly GlobalsModRef), and SCEVAA. Usually BasicAA is
preserved when needed because it (like DominatorTree and LoopInfo) is
marked as a CFG-only pass. I've expanded GlobalsAA into the preserved
set everywhere we previously were preserving all of AliasAnalysis, and
I've added SCEVAA in the intersection of that with where we preserve
SCEV itself.

One significant challenge to all of this is that the CGSCC passes were
actually using the alias analysis implementations by taking advantage of
a pretty amazing set of loop holes in the old pass manager's analysis
management code which allowed analysis groups to slide through in many
cases. Moving away from analysis groups makes this problem much more
obvious. To fix it, I've leveraged the flexibility the design of the new
PM components provides to just directly construct the relevant alias
analyses for the relevant functions in the IPO passes that need them.
This is a bit hacky, but should go away with the new pass manager, and
is already in many ways cleaner than the prior state.

Another significant challenge is that various facilities of the old
alias analysis infrastructure just don't fit any more. The most
significant of these is the alias analysis 'counter' pass. That pass
relied on the ability to snoop on AA queries at different points in the
analysis group chain. Instead, I'm planning to build printing
functionality directly into the aggregation layer. I've not included
that in this patch merely to keep it smaller.

Note that all of this needs a nearly complete rewrite of the AA
documentation. I'm planning to do that, but I'd like to make sure the
new design settles, and to flesh out a bit more of what it looks like in
the new pass manager first.

Differential Revision: http://reviews.llvm.org/D12080

llvm-svn: 247167
2015-09-09 17:55:00 +00:00
Yaron Keren
4114fb28f8 Fix typo.
llvm-svn: 246538
2015-09-01 10:13:49 +00:00
Duncan P. N. Exon Smith
54c273cc35 LTO: Cleanup parameter names and header docs, NFC
Follow LLVM style for the parameter names (`CamelCase` not `camelCase`),
and surface the header docs in doxygen.  No functionality change
intended.

llvm-svn: 246509
2015-08-31 23:44:06 +00:00
Peter Collingbourne
b346721555 CodeGen: Introduce splitCodeGen and teach LTOCodeGenerator to use it.
llvm::splitCodeGen is a function that implements the core of parallel LTO
code generation. It uses llvm::SplitModule to split the module into linkable
partitions and spawning one code generation thread per partition. The function
produces multiple object files which can be linked in the usual way.

This has been threaded through to LTOCodeGenerator (and llvm-lto for testing
purposes). Separate patches will add parallel LTO support to the gold plugin
and lld.

Differential Revision: http://reviews.llvm.org/D12260

llvm-svn: 246236
2015-08-27 23:37:36 +00:00
Peter Collingbourne
1d5cde4afc LTO: Simplify merged module ownership.
This change moves LTOCodeGenerator's ownership of the merged module to a
field of type std::unique_ptr<Module>. This helps simplify parts of the code
and clears the way for the module to be consumed by LLVM CodeGen (see D12132
review comments).

Differential Revision: http://reviews.llvm.org/D12205

llvm-svn: 245891
2015-08-24 22:22:53 +00:00
Peter Collingbourne
f90f508eae LTO: Rename mergedModule variables to MergedModule to prepare for ownership change.
Also convert a few loops to range-for loops and correct a comment.

llvm-svn: 245874
2015-08-24 21:15:35 +00:00
Peter Collingbourne
772d0abe3e LTO: Maintain target triple, FeatureStr and CGOptLevel in the module or LTOCodeGenerator.
This makes it easier to create new TargetMachines on demand.

llvm-svn: 245781
2015-08-22 02:25:53 +00:00
Peter Collingbourne
db573c5328 LTO: Change signature of LTOCodeGenerator::setCodePICModel() to take a Reloc::Model.
This allows us to remove a bunch of code in LTOCodeGenerator and llvm-lto
and has the side effect of improving error handling in the libLTO C API.

llvm-svn: 245756
2015-08-21 22:57:17 +00:00
Peter Collingbourne
e7628d5684 LTO: Simplify ownership of LTOCodeGenerator::TargetMach.
llvm-svn: 245671
2015-08-21 04:45:57 +00:00
Peter Collingbourne
1a4134b22f LTO: Simplify ownership of LTOCodeGenerator::CodegenOptions.
llvm-svn: 245670
2015-08-21 04:45:55 +00:00
Chandler Carruth
bf271cc4e6 [PM/AA] Remove the last relics of the separate IPA library from LLVM,
folding the code into the main Analysis library.

There already wasn't much of a distinction between Analysis and IPA.
A number of the passes in Analysis are actually IPA passes, and there
doesn't seem to be any advantage to separating them.

Moreover, it makes it hard to have interactions between analyses that
are both local and interprocedural. In trying to make the Alias Analysis
infrastructure work with the new pass manager, it becomes particularly
awkward to navigate this split.

I've tried to find all the places where we referenced this, but I may
have missed some. I have also adjusted the C API to continue to be
equivalently functional after this change.

Differential Revision: http://reviews.llvm.org/D12075

llvm-svn: 245318
2015-08-18 17:51:53 +00:00
Mehdi Amini
9f0c09e5bf Remove access to the DataLayout in the TargetMachine
Summary:
Replace getDataLayout() with a createDataLayout() method to make
explicit that it is intended to create a DataLayout only and not
accessing it for other purpose.

This change is the last of a series of commits dedicated to have a
single DataLayout during compilation by using always the one owned
by the module.

Reviewers: echristo

Subscribers: jholewinski, llvm-commits, rafael, yaron.keren

Differential Revision: http://reviews.llvm.org/D11103

(cherry picked from commit 5609fc56bca971e5a7efeaa6ca4676638eaec5ea)

From: Mehdi Amini <mehdi.amini@apple.com>
llvm-svn: 243114
2015-07-24 16:04:22 +00:00
Mehdi Amini
3a4451076e Revert "Remove access to the DataLayout in the TargetMachine"
This reverts commit 0f720d984f419c747709462f7476dff962c0bc41.

It breaks clang too badly, I need to prepare a proper patch for clang
first.

From: Mehdi Amini <mehdi.amini@apple.com>
llvm-svn: 243089
2015-07-24 03:36:55 +00:00
Mehdi Amini
30b6ee8541 Remove access to the DataLayout in the TargetMachine
Summary:
Replace getDataLayout() with a createDataLayout() method to make
explicit that it is intended to create a DataLayout only and not
accessing it for other purpose.

This change is the last of a series of commits dedicated to have a
single DataLayout during compilation by using always the one owned
by the module.

Reviewers: echristo

Subscribers: jholewinski, llvm-commits, rafael, yaron.keren

Differential Revision: http://reviews.llvm.org/D11103

(cherry picked from commit 5609fc56bca971e5a7efeaa6ca4676638eaec5ea)

From: Mehdi Amini <mehdi.amini@apple.com>
llvm-svn: 243083
2015-07-24 01:44:39 +00:00
Peter Collingbourne
4022d17865 LTO: expose LTO_SYMBOL_ALIAS, which indicates that the symbol is an alias.
This is needed for COFF linkers to distinguish between weak external aliases
and regular symbols with LLVM weak linkage, which are represented as strong
symbols in COFF.

llvm-svn: 241389
2015-07-04 03:42:35 +00:00
Peter Collingbourne
d3c303721f Teach LTOModule to emit linker flags for dllexported symbols, plus interface cleanup.
This change unifies how LTOModule and the backend obtain linker flags
for globals: via a new TargetLoweringObjectFile member function named
emitLinkerFlagsForGlobal. A new function LTOModule::getLinkerOpts() returns
the list of linker flags as a single concatenated string.

This change affects the C libLTO API: the function lto_module_get_*deplibs now
exposes an empty list, and lto_module_get_*linkeropts exposes a single element
which combines the contents of all observed flags. libLTO should never have
tried to parse the linker flags; it is the linker's job to do so. Because
linkers will need to be able to parse flags in regular object files, it
makes little sense for libLTO to have a redundant mechanism for doing so.

The new API is compatible with the old one. It is valid for a user to specify
multiple linker flags in a single pragma directive like this:

 #pragma comment(linker, "/defaultlib:foo /defaultlib:bar")

The previous implementation would not have exposed
either flag via lto_module_get_*deplibs (as the test in
TargetLoweringObjectFileCOFF::getDepLibFromLinkerOpt was case sensitive)
and would have exposed "/defaultlib:foo /defaultlib:bar" as a single flag via
lto_module_get_*linkeropts. This may have been a bug in the implementation,
but it does give us a chance to fix the interface.

Differential Revision: http://reviews.llvm.org/D10548

llvm-svn: 241010
2015-06-29 22:04:09 +00:00
Rafael Espindola
72dc307fa0 Simplify the Mangler interface now that DataLayout is mandatory.
We only need to pass in a DataLayout when mangling a raw string, not when
constructing the mangler.

llvm-svn: 240405
2015-06-23 13:59:29 +00:00
Rafael Espindola
980b007510 Return a unique_ptr from getLazyBitcodeModule and parseBitcodeFile. NFC.
llvm-svn: 239858
2015-06-16 22:27:55 +00:00
Douglas Katzman
5eb858225c Wrap some long lines in LLVMBuild files. NFC
As suggested by jroelofs in a prior review (D9752),
it makes sense to generally prefer multi-line format.

llvm-svn: 239632
2015-06-12 18:44:57 +00:00
Peter Collingbourne
3148fd7add LTO: expose LTO_SYMBOL_COMDAT flag, which indicates that the definition is part of a comdat group.
Reviewers: rafael

Subscribers: llvm-commits, ruiu

Differential Revision: http://reviews.llvm.org/D10330

llvm-svn: 239559
2015-06-11 21:41:27 +00:00
Peter Collingbourne
7f6337343d Make the C++ LTO API easier to use from C++ clients.
Start using C++ types such as StringRef and MemoryBuffer in the C++ LTO
API. In doing so, clarify the ownership of the native object file: the caller
now owns it, not the LTOCodeGenerator. The C libLTO library has been modified
to use a derived class of LTOCodeGenerator that owns the object file.

Differential Revision: http://reviews.llvm.org/D10114

llvm-svn: 238776
2015-06-01 20:08:30 +00:00
Duncan P. N. Exon Smith
697f734b82 LTO: Add API to choose whether to embed uselists
Reverse libLTO's default behaviour for preserving use-list order in
bitcode, and add API for controlling it.  The default setting is now
`false` (don't preserve them), which is consistent with `clang`'s
default behaviour.

Users of libLTO should call `lto_codegen_should_embed_uselists(CG,true)`
prior to calling `lto_codegen_write_merged_modules()` whenever the
output file isn't part of the production workflow in order to reproduce
results with subsequent calls to `llc`.

(I haven't added tests since `llvm-lto` (the test tool for LTO) doesn't
support bitcode output, and even if it did: there isn't actually a good
way to test whether a tool has passed the flag.  If the order is already
"natural" (if the order will already round-trip) then no use-list
directives are emitted at all.  At some point I'll circle back to add
tests to `llvm-as` (etc.) that they actually respect the flag, at which
point I can somehow add a test here as well.)

llvm-svn: 235943
2015-04-27 23:38:54 +00:00
Duncan P. N. Exon Smith
a9647df35e LTO: Simplify code generator initialization
Simplify `LTOCodeGenerator` initialization by initializing simple fields
at their definition.

llvm-svn: 235939
2015-04-27 23:19:26 +00:00
Manman Ren
b67a75becd [LTO API] add lto_codegen_set_should_internalize.
When debugging LTO issues with ld64, we use -save-temps to save the merged
optimized bitcode file, then invoke ld64 again on the single bitcode file.
The saved bitcode file is already internalized, so we can call
lto_codegen_set_should_internalize and skip running internalization again.

rdar://20227235

llvm-svn: 235211
2015-04-17 17:10:09 +00:00
Duncan P. N. Exon Smith
8654474680 uselistorder: Remove the global bits
Remove all the global bits to do with preserving use-list order by
moving the `cl::opt`s to the individual tools that want them.  There's a
minor functionality change to `libLTO`, in that you can't send in
`-preserve-bc-uselistorder=false`, but making that bit settable (if it's
worth doing) should be through explicit LTO API.

As a drive-by fix, I removed some includes of `UseListOrder.h` that were
made unnecessary by recent commits.

llvm-svn: 234973
2015-04-15 03:14:06 +00:00
Duncan P. N. Exon Smith
b222408637 uselistorder: Pull the bit through WriteToBitcodFile()
Change the callers of `WriteToBitcodeFile()` to pass `true` or
`shouldPreserveBitcodeUseListOrder()` explicitly.  I left the callers
that want to send `false` alone.

I'll keep pushing the bit higher until hopefully I can delete the global
`cl::opt` entirely.

llvm-svn: 234957
2015-04-15 00:10:50 +00:00
Rafael Espindola
aeb03deb16 Use raw_pwrite_stream in the object writer/streamer.
The ELF object writer will take advantage of that in the next commit.

llvm-svn: 234950
2015-04-14 22:14:34 +00:00
Duncan P. N. Exon Smith
a8fd793406 IR: Set -preserve-bc-uselistorder=false by default
But keep it on by default in `llvm-as`, `opt`, `bugpoint`, `llvm-link`,
`llvm-extract`, and `LTOCodeGenerator`.  Part of PR5680.

llvm-svn: 234921
2015-04-14 18:33:00 +00:00
Rafael Espindola
a7ececf04c Simplify use of formatted_raw_ostream.
formatted_raw_ostream is a wrapper over another stream to add column and line
number tracking.

It is used only for asm printing.

This patch moves the its creation down to where we know we are printing
assembly. This has the following advantages:

* Simpler lifetime management: std::unique_ptr
* We don't compute column and line number of object files :-)

llvm-svn: 234535
2015-04-09 21:06:08 +00:00
Rafael Espindola
edd11eb538 This reverts commit r234460 and r234461.
Revert "Add classof implementations to the raw_ostream classes."
Revert "Use the cast machinery to remove dummy uses of formatted_raw_ostream."

The underlying issue can be fixed without classof.

llvm-svn: 234495
2015-04-09 15:54:59 +00:00
Rafael Espindola
4b3ef31279 Use the cast machinery to remove dummy uses of formatted_raw_ostream.
If we know we are producing an object, we don't need to wrap the stream
in a formatted_raw_ostream anymore.

llvm-svn: 234461
2015-04-09 02:28:12 +00:00
Manman Ren
7ff426c139 [LTO] do not run internalize pass from compileOptimized.
The input to compileOptimized is already optimized and internalized, so remove
internalize pass from compileOptimized.

rdar://20227235

llvm-svn: 234446
2015-04-08 22:02:11 +00:00
Yaron Keren
5d3d22628b Remove more superfluous .str() and replace std::string concatenation with Twine.
Following r233392, http://llvm.org/viewvc/llvm-project?rev=233392&view=rev.

llvm-svn: 233555
2015-03-30 15:42:36 +00:00
Duncan P. N. Exon Smith
57ccff4630 Verifier: Remove the separate -verify-di pass
Remove `DebugInfoVerifierLegacyPass` and the `-verify-di` pass.
Instead, call into the `DebugInfoVerifier` from inside
`VerifierLegacyPass::finalizeModule()`.  This better matches the logic
in `verifyModule()` (used by the new PassManager), avoids requiring two
separate passes to verify the IR, and makes the API for "add a pass to
verify the IR" simple.

Note: the `-verify-debug-info` flag still works (for now, at least;
eventually it might make sense to just remove it).

llvm-svn: 232772
2015-03-19 22:24:17 +00:00
Peter Collingbourne
3bdbf14413 libLTO, llvm-lto, gold: Introduce flag for controlling optimization level.
This change also introduces a link-time optimization level of 1. This
optimization level runs only the globaldce pass as well as cleanup passes for
passes that run at -O0, specifically simplifycfg which cleans up lowerbitsets.

http://lists.cs.uiuc.edu/pipermail/llvm-commits/Week-of-Mon-20150316/266951.html

llvm-svn: 232769
2015-03-19 22:01:00 +00:00
Manman Ren
3b5ee180c5 Add a parameter for getLazyBitcodeModule to lazily load Metadata.
We only defer loading metadata inside ParseModule when ShouldLazyLoadMetadata
is true and we have not loaded any Metadata block yet.

This commit implements all-or-nothing loading of Metadata. If there is a
request to load any metadata block, we will load all deferred metadata blocks.

We make sure the deferred metadata blocks are loaded before we materialize any
function or a module.

The default value of the added parameter ShouldLazyLoadMetadata for
getLazyBitcodeModule is false, so the default behavior stays the same.

We only set the parameter to true when creating LTOModule in local contexts.
These can only really be used for parsing symbols, so it's unnecessary to ever
load the metadata blocks.

If we are going to enable lazy-loading of Metadata for other usages of
getLazyBitcodeModule, where deferred metadata blocks need to be loaded, we can
expose BitcodeReader::materializeMetadata to Module, similar to
Module::materialize.

rdar://19804575

llvm-svn: 232198
2015-03-13 19:24:30 +00:00
Mehdi Amini
29ebc2d39f Make DataLayout Non-Optional in the Module
Summary:
DataLayout keeps the string used for its creation.

As a side effect it is no longer needed in the Module.
This is "almost" NFC, the string is no longer
canonicalized, you can't rely on two "equals" DataLayout
having the same string returned by getStringRepresentation().

Get rid of DataLayoutPass: the DataLayout is in the Module

The DataLayout is "per-module", let's enforce this by not
duplicating it more than necessary.
One more step toward non-optionality of the DataLayout in the
module.

Make DataLayout Non-Optional in the Module

Module->getDataLayout() will never returns nullptr anymore.

Reviewers: echristo

Subscribers: resistor, llvm-commits, jholewinski

Differential Revision: http://reviews.llvm.org/D7992

From: Mehdi Amini <mehdi.amini@apple.com>
llvm-svn: 231270
2015-03-04 18:43:29 +00:00
Manman Ren
0fc198ef3f [LTO API] fix memory leakage introduced at r230290.
r230290 released the LLVM module but not the LTOModule.

rdar://19024554

llvm-svn: 230544
2015-02-25 21:20:53 +00:00
Manman Ren
87a073ae1a [LTO API] add lto_codegen_set_module to set the destination module.
When debugging LTO issues with ld64, we use -save-temps to save the merged
optimized bitcode file, then invoke ld64 again on the single bitcode file to
speed up debugging code generation passes and ld64 stuff after code generation.

llvm linking a single bitcode file via lto_codegen_add_module will generate a
different bitcode file from the single input. With the newly-added
lto_codegen_set_module, we can make sure the destination module is the same as
the input.

lto_codegen_set_module will transfer the ownship of the module to code
generator.

rdar://19024554

llvm-svn: 230290
2015-02-24 00:45:56 +00:00
Chandler Carruth
18e8c62883 [PM] Remove the old 'PassManager.h' header file at the top level of
LLVM's include tree and the use of using declarations to hide the
'legacy' namespace for the old pass manager.

This undoes the primary modules-hostile change I made to keep
out-of-tree targets building. I sent an email inquiring about whether
this would be reasonable to do at this phase and people seemed fine with
it, so making it a reality. This should allow us to start bootstrapping
with modules to a certain extent along with making it easier to mix and
match headers in general.

The updates to any code for users of LLVM are very mechanical. Switch
from including "llvm/PassManager.h" to "llvm/IR/LegacyPassManager.h".
Qualify the types which now produce compile errors with "legacy::". The
most common ones are "PassManager", "PassManagerBase", and
"FunctionPassManager".

llvm-svn: 229094
2015-02-13 10:01:29 +00:00
Zachary Turner
76143c865c Use ADDITIONAL_HEADER_DIRS in all LLVM CMake projects.
This allows IDEs to recognize the entire set of header files for
each of the core LLVM projects.

Differential Revision: http://reviews.llvm.org/D7526
Reviewed By: Chris Bieneman

llvm-svn: 228798
2015-02-11 03:28:02 +00:00
Manman Ren
ecc02c6b0a [LTO API] split lto_codegen_compile to lto_codegen_optimize and
lto_codegen_compile_optimized. Also add lto_api_version.

Before this commit, we can only dump the optimized bitcode after running
lto_codegen_compile, but it includes some impacts of running codegen passes,
one example is StackProtector pass. We will get assertion failure when running
llc on the optimized bitcode, because StackProtector is effectively run twice.

After splitting lto_codegen_compile, the linker can choose to dump the bitcode
before running lto_codegen_compile_optimized.

lto_api_version is added so ld64 can check for runtime-availability of the new
API.

rdar://19565500

llvm-svn: 228000
2015-02-03 18:39:15 +00:00
Eric Christopher
cc62f1ae1b Only access TLOF via the TargetMachine, not TargetLowering.
llvm-svn: 227949
2015-02-03 07:22:52 +00:00
Chandler Carruth
46a63acccc [multiversion] Implement the old pass manager's TTI wrapper pass in
terms of the new pass manager's TargetIRAnalysis.

Yep, this is one of the nicer bits of the new pass manager's design.
Passes can in many cases operate in a vacuum and so we can just nest
things when convenient. This is particularly convenient here as I can
now consolidate all of the TargetMachine logic on this analysis.

The most important change here is that this pushes the function we need
TTI for all the way into the TargetMachine, and re-creates the TTI
object for each function rather than re-using it for each function.
We're now prepared to teach the targets to produce function-specific TTI
objects with specific subtargets cached, etc.

One piece of feedback I'd love here is whether its worth renaming any of
this stuff. None of the names really seem that awesome to me at this
point, but TargetTransformInfoWrapperPass is particularly ... odd.
TargetIRAnalysisWrapper might make more sense. I would want to do that
rename separately anyways, but let me know what you think.

llvm-svn: 227731
2015-02-01 12:26:09 +00:00
NAKAMURA Takumi
a15c4c3172 [CMake] LLVMLTO requires Intrinsics.gen since r227685 introduced llvm/Analysis/TargetTransformInfo.h.
llvm-svn: 227700
2015-02-01 00:55:43 +00:00