PR24469 resulted because DeleteDeadInstruction in handleNonLocalStoreDeletion was
deleting the next basic block iterator. Fixed the same by resetting the basic block iterator
post call to DeleteDeadInstruction.
llvm-svn: 245195
This change makes ScalarEvolution a stand-alone object and just produces
one from a pass as needed. Making this work well requires making the
object movable, using references instead of overwritten pointers in
a number of places, and other refactorings.
I've also wired it up to the new pass manager and added a RUN line to
a test to exercise it under the new pass manager. This includes basic
printing support much like with other analyses.
But there is a big and somewhat scary change here. Prior to this patch
ScalarEvolution was never *actually* invalidated!!! Re-running the pass
just re-wired up the various other analyses and didn't remove any of the
existing entries in the SCEV caches or clear out anything at all. This
might seem OK as everything in SCEV that can uses ValueHandles to track
updates to the values that serve as SCEV keys. However, this still means
that as we ran SCEV over each function in the module, we kept
accumulating more and more SCEVs into the cache. At the end, we would
have a SCEV cache with every value that we ever needed a SCEV for in the
entire module!!! Yowzers. The releaseMemory routine would dump all of
this, but that isn't realy called during normal runs of the pipeline as
far as I can see.
To make matters worse, there *is* actually a key that we don't update
with value handles -- there is a map keyed off of Loop*s. Because
LoopInfo *does* release its memory from run to run, it is entirely
possible to run SCEV over one function, then over another function, and
then lookup a Loop* from the second function but find an entry inserted
for the first function! Ouch.
To make matters still worse, there are plenty of updates that *don't*
trip a value handle. It seems incredibly unlikely that today GVN or
another pass that invalidates SCEV can update values in *just* such
a way that a subsequent run of SCEV will incorrectly find lookups in
a cache, but it is theoretically possible and would be a nightmare to
debug.
With this refactoring, I've fixed all this by actually destroying and
recreating the ScalarEvolution object from run to run. Technically, this
could increase the amount of malloc traffic we see, but then again it is
also technically correct. ;] I don't actually think we're suffering from
tons of malloc traffic from SCEV because if we were, the fact that we
never clear the memory would seem more likely to have come up as an
actual problem before now. So, I've made the simple fix here. If in fact
there are serious issues with too much allocation and deallocation,
I can work on a clever fix that preserves the allocations (while
clearing the data) between each run, but I'd prefer to do that kind of
optimization with a test case / benchmark that shows why we need such
cleverness (and that can test that we actually make it faster). It's
possible that this will make some things faster by making the SCEV
caches have higher locality (due to being significantly smaller) so
until there is a clear benchmark, I think the simple change is best.
Differential Revision: http://reviews.llvm.org/D12063
llvm-svn: 245193
This is a very minimal move support - it leaves the moved-from object in
a zombie state that is only valid for destruction and move assignment.
This seems fine to me, and leaving it in the default constructed state
would require adding more state to the object and potentially allocating
memory (!!!) and so seems like a Bad Idea.
llvm-svn: 245192
If we can ignore NaNs, fmin/fmax libcalls can become compare and select
(this is what we turn std::min / std::max into).
This IR should then be optimized in the backend to whatever is best for
any given target. Eg, x86 can use minss/maxss instructions.
This should solve PR24314:
https://llvm.org/bugs/show_bug.cgi?id=24314
Differential Revision: http://reviews.llvm.org/D11866
llvm-svn: 245187
Bitwise arithmetic can obscure a simple sign-test. If replacing the
mask with a truncate is preferable if the type is legal because it
permits us to rephrase the comparison more explicitly.
llvm-svn: 245171
analysis ...
It turns out that we *do* need the old CallGraph ported to the new pass
manager. There are times where this model of a call graph is really
superior to the one provided by the LazyCallGraph. For example,
GlobalsModRef very specifically needs the model provided by CallGraph.
While here, I've tried to make the move semantics actually work. =]
llvm-svn: 245170
We can set additional bits in a mask given that we know the other
operand of an AND already has some bits set to zero. This can be more
efficient if doing so allows us to use an instruction which implicitly
sign extends the immediate.
This fixes PR24085.
Differential Revision: http://reviews.llvm.org/D11289
llvm-svn: 245169
ByteSize and BitSize should not be size_t but unsigned, considering
1) They are at most 2^16 and 2^19, respectively.
2) BitSize is an argument to Type::getIntNTy which takes unsigned.
Also, use the correct utostr instead itostr and cache the string result.
Thanks to James Touton for reporting this!
llvm-svn: 245167
For cases where we TRUNCATE and then ZERO_EXTEND to a larger size (often from vector legalization), see if we can mask the source data and then ZERO_EXTEND (instead of after a ANY_EXTEND). This can help avoid having to generate a larger mask, and possibly applying it to several sub-vectors.
(zext (truncate x)) -> (zext (and(x, m))
Includes a minor patch to SystemZ to better recognise 8/16-bit zero extension patterns from RISBG bit-extraction code.
This is the first of a number of minor patches to help improve the conversion of byte masks to clear mask shuffles.
Differential Revision: http://reviews.llvm.org/D11764
llvm-svn: 245160
infrastructure.
This AA was never used in tree. It's infrastructure also completely
overlaps that of TargetLibraryInfo which is used heavily by BasicAA to
achieve similar goals to those stated for this analysis.
As has come up in several discussions, the use case here is still really
important, but this code isn't helping move toward that use case. Any
progress on better supporting rich AA information for runtime library
environments would likely be better off starting from scratch or
starting from TargetLibraryInfo than from this base.
Differential Revision: http://reviews.llvm.org/D12028
llvm-svn: 245155
When trying to fix SGPR live ranges, skip defs that are
killed in the same block as the def. I don't think
we need to worry about these cases as long as the
live ranges of the SGPRs in dominating blocks are
correct.
This reduces the number of elements the second
loop over the function needs to look at, and makes
it generally easier to understand. The second loop
also only considers if the live range is live
in to a block, which logically means it
must have been live out from another.
llvm-svn: 245150
Some personality routines require funclet exit points to be clearly
marked, this is done by producing a token at the funclet pad and
consuming it at the corresponding ret instruction. CleanupReturnInst
already had a spot for this operand but CatchReturnInst did not.
Other personality routines don't need to use this which is why it has
been made optional.
llvm-svn: 245149
function.
This was the same as getFrameIndexReference, but without the FrameReg
output.
Differential Revision: http://reviews.llvm.org/D12042
llvm-svn: 245148
This is just an initial checkin of an implementation of the Relooper algorithm, in preparation for WebAssembly codegen to utilize. It doesn't do anything yet by itself.
The Relooper algorithm takes an arbitrary control flow graph and generates structured control flow from that, utilizing a helper variable when necessary to handle irreducibility. The WebAssembly backend will be able to use this in order to generate an AST for its binary format.
Author: azakai
Reviewers: jfb, sunfish
Subscribers: jevinskie, arsenm, jroelofs, llvm-commits
Differential revision: http://reviews.llvm.org/D11691
llvm-svn: 245142
This patch makes the Merge Functions pass faster by calculating and comparing
a hash value which captures the essential structure of a function before
performing a full function comparison.
The hash is calculated by hashing the function signature, then walking the basic
blocks of the function in the same order as the main comparison function. The
opcode of each instruction is hashed in sequence, which means that different
functions according to the existing total order cannot have the same hash, as
the comparison requires the opcodes of the two functions to be the same order.
The hash function is a static member of the FunctionComparator class because it
is tightly coupled to the exact comparison function used. For example, functions
which are equivalent modulo a single variant callsite might be merged by a more
aggressive MergeFunctions, and the hash function would need to be insensitive to
these differences in order to exploit this.
The hashing function uses a utility class which accumulates the values into an
internal state using a standard bit-mixing function. Note that this is a different interface
than a regular hashing routine, because the values to be hashed are scattered
amongst the properties of a llvm::Function, not linear in memory. This scheme is
fast because only one word of state needs to be kept, and the mixing function is
a few instructions.
The main runOnModule function first computes the hash of each function, and only
further processes functions which do not have a unique function hash. The hash
is also used to order the sorted function set. If the hashes differ, their
values are used to order the functions, otherwise the full comparison is done.
Both of these are helpful in speeding up MergeFunctions. Together they result in
speedups of 9% for mysqld (a mostly C application with little redundancy), 46%
for libxul in Firefox, and 117% for Chromium. (These are all LTO builds.) In all
three cases, the new speed of MergeFunctions is about half that of the module
verifier, making it relatively inexpensive even for large LTO builds with
hundreds of thousands of functions. The same functions are merged, so this
change is free performance.
Author: jrkoenig
Reviewers: nlewycky, dschuff, jfb
Subscribers: llvm-commits, aemerson
Differential revision: http://reviews.llvm.org/D11923
llvm-svn: 245140
This seems to only work some of the time. In some situations,
this seems to use a nonsensical type and isn't actually aware of the
memory being accessed. e.g. if branch condition is an icmp of a pointer,
it checks the addressing mode of i1.
llvm-svn: 245137
True branch instructions do behave as expected with liveness.
Avoid the phrasing "branch decision is based on a value in an SGPR"
because this could be misleading. A VALU compare instruction's
result is still based on an SGPR, even though that condition
may be divergent.
llvm-svn: 245131
Summary:
http://reviews.llvm.org/D11212 made Scalar Evolution able to propagate NSW and NUW flags from instructions to SCEVs for add instructions. This patch expands that to sub, mul and shl instructions.
This change makes LSR able to generate pointer induction variables for loops like these, where the index is 32 bit and the pointer is 64 bit:
for (int i = 0; i < numIterations; ++i)
sum += ptr[i - offset];
for (int i = 0; i < numIterations; ++i)
sum += ptr[i * stride];
for (int i = 0; i < numIterations; ++i)
sum += ptr[3 * (i << 7)];
Reviewers: atrick, sanjoy
Subscribers: sanjoy, majnemer, hfinkel, llvm-commits, meheff, jingyue, eliben
Differential Revision: http://reviews.llvm.org/D11860
llvm-svn: 245118
Although targeting CoreCLR is similar to targeting MSVC, there are
certain important differences that the backend must be aware of
(e.g. differences in stack probes, EH, and library calls).
Differential Revision: http://reviews.llvm.org/D11012
llvm-svn: 245115
We canonicalize V64 vectors to V128 through insert_subvector: the other
FMLA/FMLS/FMUL/FMULX patterns match that already, but this one doesn't,
so we'd fail to match fmls and generate fneg+fmla instead.
The vector equivalents are already tested and functional.
llvm-svn: 245107