Move the dynamic linking functionality of the llvm-rtdyld program into an
ExecutionEngine support library. Update llvm-rtdyld to just load an object
file into memory, use the library to process it, then run the _main()
function, if one is found.
llvm-svn: 128031
the alias of an InstAlias instead of the thing being aliased. Because we need to
know the features that are valid for an InstAlias.
This is part of a work-in-progress.
llvm-svn: 127986
to have single return block (at least getting there) for optimizations. This
is general goodness but it would prevent some tailcall optimizations.
One specific case is code like this:
int f1(void);
int f2(void);
int f3(void);
int f4(void);
int f5(void);
int f6(void);
int foo(int x) {
switch(x) {
case 1: return f1();
case 2: return f2();
case 3: return f3();
case 4: return f4();
case 5: return f5();
case 6: return f6();
}
}
=>
LBB0_2: ## %sw.bb
callq _f1
popq %rbp
ret
LBB0_3: ## %sw.bb1
callq _f2
popq %rbp
ret
LBB0_4: ## %sw.bb3
callq _f3
popq %rbp
ret
This patch teaches codegenprep to duplicate returns when the return value
is a phi and where the phi operands are produced by tail calls followed by
an unconditional branch:
sw.bb7: ; preds = %entry
%call8 = tail call i32 @f5() nounwind
br label %return
sw.bb9: ; preds = %entry
%call10 = tail call i32 @f6() nounwind
br label %return
return:
%retval.0 = phi i32 [ %call10, %sw.bb9 ], [ %call8, %sw.bb7 ], ... [ 0, %entry ]
ret i32 %retval.0
This allows codegen to generate better code like this:
LBB0_2: ## %sw.bb
jmp _f1 ## TAILCALL
LBB0_3: ## %sw.bb1
jmp _f2 ## TAILCALL
LBB0_4: ## %sw.bb3
jmp _f3 ## TAILCALL
rdar://9147433
llvm-svn: 127953
Proof-of-concept code that code-gens a module to an in-memory MachO object.
This will be hooked up to a run-time dynamic linker library (see: llvm-rtdyld
for similarly conceptual work for that part) which will take the compiled
object and link it together with the rest of the system, providing back to the
JIT a table of available symbols which will be used to respond to the
getPointerTo*() queries.
llvm-svn: 127916
For example, on 32-bit architecture, don't promote all uses of the IV
to 64-bits just because one use is a 64-bit cast.
Alternate implementation of the patch by Arnaud de Grandmaison.
llvm-svn: 127884
SCEV may generate expressions composed of multiple pointers, which can
lead to invalid GEP expansion. Until we can teach SCEV to follow strict
pointer rules, make sure no bad GEPs creep into IR.
Fixes rdar://problem/9038671.
llvm-svn: 127839
I have convinced myself that it can only happen when a phi value dies. When it
happens, allocate new virtual registers for the components.
llvm-svn: 127827
rather than an int. Thankfully, this only causes LLVM to miss optimizations, not
generate incorrect code.
This just fixes the zext at the return. We still insert an i32 ZextAssert when
reading a function's arguments, but it is followed by a truncate and another i8
ZextAssert so it is not optimized.
llvm-svn: 127766
doesn't return, so just go back to using the old runtime function instead
of trying to use abort() when __builtin_unreachable (or an equivalent) isn't
supported.
llvm-svn: 127629
properties.
Added the self-wrap flag for SCEV::AddRecExpr.
A slew of temporary FIXMEs indicate the intention of the no-self-wrap flag
without changing behavior in this revision.
llvm-svn: 127590
llvm-gcc-i386-linux-selfhost and llvm-x86_64-linux-checks buildbots.
The original log entry:
Remove optimization emitting a reference insted of label difference, since
it can create more relocations. Removed isBaseAddressKnownZero method,
because it is no longer used.
llvm-svn: 127540