We should try the generated matchers before the manual selection. This
means the patterns are now handling the common cases, but the manual
selection code is not yet dead. It's still handling the non-s32/s64
cases (like v2s16 and v2s32). Currently tablegen doesn't have a nice
way to have a single pattern that covers multiple types.
We have patterns for s_pack* selection, but they assume the inputs are
a build_vector with 16-bit inputs, not a truncating build
vector. Since there's still outstanding work for how to handle
mismatched result and source element vector operations, and since I'm
trying a different packed vector strategy than SelectionDAG, just
manually select this for now.
This looked through copies to find the source modifiers, which may
have been SGPR->VGPR copies added to avoid potential constant bus
violations. Re-insert a copy to a VGPR if this happens.
Vector indexing with a constant index should be folded out in the
legalizer, but this was accidentally falling through. This would
produce the indexing operation with $noreg. Handle this case as a
dynamic index just in case a bug like this happens again in the
future.
I believe this also fixes bugs with CI 32-bit handling, which was
incorrectly skipping offsets that look like signed 32-bit values. Also
validate the offsets are dword aligned before folding.
This should be no problem to support with a pattern, but it turns out
there are just too many yaks to shave. The main problem is in the DAG
emitter, which I have no desire to sink effort into fixing.
If we had a bit to disable patterns in the DAG importer, fixing the
GlobalISelEmitter is more manageable.
Trivial type predicates should be moved into the tablegen pattern
itself, and not checked inside complex patterns. This eliminates a
redundant complex pattern, and fixes select source modifiers for
GlobalISel.
I have further patches which fully handle select in tablegen and
remove all of the C++ selection, although it requires the ugliness to
support the entire range of legal register types.
Use intermediate instructions, unlike with buffer stores. This is
necessary because of the need to have an internal way to distinguish
between signed and unsigned extloads. This introduces some duplication
and near duplication with the buffer store selection path. The store
handling should maybe be moved into legalization to match and
eliminate the duplication.
The pattern is also mishandled by the generated matcher, so workaround
this as in the DAG path.
The existing DAG tests aren't particularly targeted to just this one
intrinsic. These also end up differing in scheduling from SGPR->VGPR
operand constraint copies.
Handle dynamic vector extracts that use an index that's an add of a
constant offset into moving the base subregister of the indexing
operation.
Force the add into the loop in regbankselect, which will be recognized
when selected.
This does produce slightly different code. Now a unique IMPLICIT_DEF
is emitted for each of the implicit_def operands, rather than reusing
the same one.
The current implementation assumes there is an instruction associated
with the transform, but this is not the case for
timm/TargetConstant/immarg values. These transforms should directly
operate on a specific MachineOperand in the source
instruction. TableGen would assert if you attempted to define an
equivalent GISDNodeXFormEquiv using timm when it failed to find the
instruction matcher.
Specially recognize SDNodeXForms on timm, and pass the operand index
to the render function.
Ideally this would be a separate render function type that looks like
void renderFoo(MachineInstrBuilder, const MachineOperand&), but this
proved to be somewhat mechanically painful. Add an optional operand
index which will only be passed if the transform should only look at
the one source operand.
Theoretically it would also be possible to only ever pass the
MachineOperand, and the existing renderers would check the parent. I
think that would be somewhat ugly for the standard usage which may
want to inspect other operands, and I also think MachineOperand should
eventually not carry a pointer to the parent instruction.
Use it in one sample pattern. This isn't a great example, since the
transform exists to satisfy DAG type constraints. This could also be
avoided by just changing the MachineInstr's arbitrary choice of
operand type from i16 to i32. Other patterns have nontrivial uses, but
this serves as the simplest example.
One flaw this still has is if you try to use an SDNodeXForm defined
for imm, but the source pattern uses timm, you still see the "Failed
to lookup instruction" assert. However, there is now a way to avoid
it.
This doesn't enable any new imports yet, but moves the fmed patterns
from failing on this to hitting the "complex suboperand referenced
more than once" limitation in tablegen.