When demangling string literals, Microsoft's undname
simply prints 'string'. This patch implements string
literal demangling while doing a bit better than this
by decoding as much of the string as possible and
trying to faithfully reproduce the original string
literal definition.
This is a bit tricky because the different character
types char, char16_t, and char32_t are not uniquely
identified by the mangling, so we have to use a
heuristic to try to guess the character type. But
it works pretty well, and many tests are added to
illustrate the behavior.
Differential Revision: https://reviews.llvm.org/D50806
llvm-svn: 339892
When we have an MD5 mangled name, we shouldn't choke and say
that it's an invalid name. Even though it's impossible to demangle,
we should just output the original name.
llvm-svn: 339891
1) We print __restrict twice on member pointers. This is fixed
and relevant tests are re-enabled.
2) Several tests were disabled because of printing slightly
different output than undname. These were confirmed to be
bugs in undname, so we just re-enable the tests.
3) The test for printing reference temporaries is re-enabled. This
is a clang mangling extension, so we have some flexibility with
how we demangle it. The output currently looks fine, so we just
re-enable the test with no fixes.
llvm-svn: 339708
This function calls a callback whenever a <type> is parsed.
This is necessary to implement FindAlternateFunctionManglings in LLDB, which
uses a similar hack in FastDemangle. Once that function has been updated to use
this version, FastDemangle can finally be removed.
Differential revision: https://reviews.llvm.org/D50586
llvm-svn: 339580
There are two cases we need to support with extern "C"
functions. The first is the case of a '9' indicating that
the function has no prototype. This occurs when we mangle
a symbol inside of an extern "C" function, but not the
function itself.
The second case is when we have an overloaded extern "C"
functions. In this case we emit $$J0 to indicate this.
This patch adds support for both of these cases.
llvm-svn: 339471
Before we wouldn't properly demangle something like
Foo<const int>. Template args have a special escape sequence
'$$C' that is optional, but if it is present contains
qualifiers. So we need to check for this and only if it
present, demangle qualifiers before demangling the type.
With this fix, we re-enable some tests that were previously
marked FIXME.
llvm-svn: 339465
These were uncovered when porting the mangling tests in
ms-templates.cpp from clang/CodeGenCXX over to demangling
tests. The main issues fixed here are surrounding integer
literal signed and unsignedness, empty array dimensions,
and pointer and reference non-type template parameters.
Differential Revision: https://reviews.llvm.org/D50512
llvm-svn: 339434
Template manglings use a fresh back-referencing context, so we
need to do the same. This fixes several existing tests which are
marked as FIXME, so those are now actually run.
llvm-svn: 339275
Function template names are not stored in the backref table,
but non-template function names are. The general pattern seems
to be that when you are demangling a symbol name, if the name
starts with '?' it does not go into the backreference table,
otherwise it does. Note that this even handles the general case
of operator names (template or otherwise) not going into the
back-reference table, anonymous namespaces not going into the
backreference table, etc.
It's important that we apply this check *only* for the
unqualified portion of a name, and only for symbol names.
For example, this does not apply to type names (such as class
templates) and we need to make sure that these still do go
into the backref table.
Differential Revision: https://reviews.llvm.org/D50394
llvm-svn: 339211
We need to both record and resolve back-references lazily due to
not being able to know until a demangling is complete whether or
not a name should go into the back-reference table.. This patch
implements lazy resolution of back-references, but we still have
eager recording of back-references. This will be fixed in a
subsequent patch.
llvm-svn: 338736
It seems like perhaps because cstdio isn't directly included, the
compiler is accidentally picking up wprintf from somewhere else
and trying to call that. Hopefully this fixes it.
llvm-svn: 338614
This is useful for understanding how our demangler processes
back references and for investigating issues related to
back references. But it's a feature only useful for debugging
the demangling process itself, so I'm marking it hidden.
llvm-svn: 338609
After we detected the presence of a template via ?$ we would proceed by
only demangling a simple unqualified name. This means we would fail on
templated operators (and perhaps other yet-to-be-determined things)
This was discovered while doing some refactoring to store richer
semantic information about the demangled types to pave the way for
overhauling the way we handle backreferences. (Specifically, we need to
defer recording or resolving back-references until a symbol has been
completely demangled, because we need to use information that only
occurs later in the mangled string to decide whether a back-reference
should be recorded.)
Differential Revision: https://reviews.llvm.org/D50145
llvm-svn: 338608
This patch fixes demangling of template aliases as template-template
arguments, and also fixes function pointers and references as
not type template parameters. All of these can be properly
demangled now, so I've ported over the test
clang/test/CodeGenCXX/ms-template-callbacks.cpp. All of these
tests pass
llvm-svn: 338340
This patch adds support for demangling r-value references, new
operators such as the ""_foo operator, lambdas, alias types,
nullptr_t, and various other C++11'isms.
There is 1 failing test remaining in this file, which appears to
be related to back-referencing. This type of problem has the
potential to get ugly so I'd rather fix it in a separate patch.
Differential Revision: https://reviews.llvm.org/D50013
llvm-svn: 338324
There are a couple of issues you run into when you start getting into
more complex names, especially with regards to function local statics.
When you've got something like:
int x() {
static int n = 0;
return n;
}
Then this needs to demangle to something like
int `int __cdecl x()'::`1'::n
The nested mangled symbols (e.g. `int __cdecl x()` in the above
example) also share state with regards to back-referencing, so
we need to be able to re-use the demangler in the middle of
demangling a symbol while sharing back-ref state.
To make matters more complicated, there are a lot of ambiguities
when demangling a symbol's qualified name, because a function local
scope pattern (usually something like `?1??name?`) looks suspiciously
like many other possible things that can occur, such as `?1` meaning
the second back-ref and disambiguating these cases is rather
interesting. The `?1?` in a local scope pattern is actually a special
case of the more general pattern of `? + <encoded number> + ?`, where
"encoded number" can itself have embedded `@` symbols, which is a
common delimeter in mangled names. So we have to take care during the
disambiguation, which is the reason for the overly complicated
`isLocalScopePattern` function in this patch.
I've added some pretty obnoxious tests to exercise all of this, which
exposed several other problems related to back-referencing, so those
are fixed here as well. Finally, I've uncommented some tests that were
previously marked as `FIXME`, since now these work.
Differential Revision: https://reviews.llvm.org/D49965
llvm-svn: 338226
We need to be able to initiate a nested demangling from inside
of an "outer" demangling. These need to be able to share some
state, such as back-references. As a result, we can't store
things like the output stream or the mangled name in the Demangler
class, since each demangling will have different values. So
remove this state and pass it through the necessary methods.
llvm-svn: 338219
There are some very subtle differences between how one should
parse symbol names and type names. They differ with respect
to back-referencing, the set of legal values that can appear
as the unqualified portion, and various other aspects.
By separating the parsing code into separate paths, we can
remove a lot of ambiguity during the demangling process, which
is necessary for demangling more complicated things like
function local statics, nested classes, and lambdas.
llvm-svn: 338207
Stack overflow on invalid. While collapsing references, we were skipping over a
cycle check in ForwardTemplateReference leading to a stack overflow. This commit
fixes the problem by duplicating the cycle check in ReferenceType.
llvm-svn: 338190
Properly demangle function parameter back-references.
Previously we treated lists of function parameters and template
parameters the same. There are some important differences with regards
to back-references, and some less important differences regarding which
characters can appear before or after the name.
The important differences are that with a given type T, all instances of
a function parameter list share the same global back-ref table.
Specifically, if X and Y are function pointers, then there are 3
entities in the declaration X func(Y) which all affect and are affected
by the master parameter back-ref table:
1) The parameter list of X's function type
2) the parameter list of func itself
3) The parameter list of Y's function type.
The previous code would create a back-reference table that was local to
a single parameter list, so it would not be shared across parameter
lists.
This was discovered when porting ms-back-references.test from clang's
mangling tests. All of these tests should now pass with the new changes.
In doing so, I split the function for parsing template and function
parameters into two separate functions. This makes the template
parameter list parsing code in particular very small and easy to
understand now.
Differential Revision: https://reviews.llvm.org/D49875
llvm-svn: 338075
For function pointers, we would print something like
int __cdecl (*)(int)
We need to move the calling convention inside, and print
int (__cdecl *)(int)
This patch implements this change for regular function pointers as
well as member function pointers.
llvm-svn: 338068
This converts the arg qualifier mangling tests from
clang/CodeGenCXX/mangle-ms-arg-qualifiers.cpp to demangling tests.
Most tests already pass, so this patch doesn't come with any
functional change, just the addition of new tests. The few tests
that don't pass are left in with a FIXME label so that they don't
run but serve as documentation about what still doesn't work.
llvm-svn: 338067
After this patch, we can now properly demangle pointers to member
functions. The calling convention is located in the wrong place,
but this will be fixed in a followup since it also affects non
member function pointers.
Differential Revision: https://reviews.llvm.org/D49639
llvm-svn: 338065
We really should set *status to memory_alloc_failure, but we need to refactor
the demangler a bit to properly propagate the failure up the stack. Until then,
its better to explicitly terminate then rely on a null dereference crash.
rdar://31240372
llvm-svn: 337759
Incidentally all allocations that we currently perform were
properly aligned, but this was only an accident.
Thanks to Erik Pilkington for catching this.
llvm-svn: 337596
This adds initial support for a demangling library (LLVMDemangle)
and tool (llvm-undname) for demangling Microsoft names. This
doesn't cover 100% of cases and there are some known limitations
which I intend to address in followup patches, at least until such
time that we have (near) 100% test coverage matching up with all
of the test cases in clang/test/CodeGenCXX/mangle-ms-*.
Differential Revision: https://reviews.llvm.org/D49552
llvm-svn: 337584
These are all methods that, while not currently used in the
Itanium demangler, are generally useful enough that it's
likely the itanium demangler could find a use for them. More
importantly, they are all necessary for the Microsoft demangler
which is up and coming in a subsequent patch. Rather than
combine these into a single monolithic patch, I think it makes
sense to commit this utility code first since it is very simple,
this way it won't detract from the substance of the MS demangler
patch.
llvm-svn: 337316
In a followup I'm looking to add a Microsoft demangler. Doing
so needs a lot of the same utility classes and feature test
macros which are already implemented in ItaniumDemangle.cpp.
So move all of these things into header files so that they
can be re-used by a new demangler.
Differential Revision: https://reviews.llvm.org/D49399
llvm-svn: 337217
The alignment specified by a constant for the field
`BumpPointerAllocator::InitialBuffer` exceeded the alignment
guaranteed by `malloc` and `new` on Windows. This change set
the alignment value to that of `long double`, which is defined
by the used platform.
It fixes https://bugs.llvm.org/show_bug.cgi?id=37944.
Differential Revision: https://reviews.llvm.org/D48889
llvm-svn: 336311