Only common symbol on MachO and COFF have a size.
For COFF we already had a custom format.
For MachO, there is no native objdump and we were printing it as ELF. Now
we only print the sizes for symbols that actually have them.
llvm-svn: 240422
The reason we need to search by name rather than by Triple::ArchType
is to handle subarchitecture correclty. There is no different ArchType
for the x86_64h architecture (it identifies itself as x86_64), or for
the various ARM subarches. The only way to get to the subarch slice
in an universal binary is to search by name.
This issue led to hard to debug and transient symbolication failures
in Asan tests (it mostly works, because the files are very similar).
This also affects the Profiling infrastucture as it is the other user
of that API.
Reviewers: samsonov, bogner
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D10604
llvm-svn: 240339
In a relocation target can take 3 basic forms
* A r_value in scattered relocations.
* A symbol in external relocations.
* A section is non-external relocations.
Have the dump reflect that. With this change we go from
CHECK-NEXT: Extern: 0
CHECK-NEXT: Type: X86_64_RELOC_SUBTRACTOR (5)
CHECK-NEXT: Symbol: 0x2
CHECK-NEXT: Scattered: 0
To just
// CHECK-NEXT: Type: X86_64_RELOC_SUBTRACTOR (5)
// CHECK-NEXT: Section: __data (2)
Since the relocation is with a section, we print the seciton name and don't
need to say that it is not scattered or external.
Someone motivated can add further special cases for things like
ARM64_RELOC_ADDEND and ARM_RELOC_PAIR.
llvm-svn: 240073
Linking the debug frame section is actually very easy as we just have to
patch the start address in the FDE header and then copy the rest of the
FDE without even looking at it. The only small complexity comes from the
handling of the CIEs that we should unique across object file. This is
also really easy by using a StringMap keyed on the raw contents of the
CIE.
llvm-svn: 239198
The main use of the YAML debug map format is for testing inside LLVM. If we have IR
files in the tests used to generate object files, then we obviously don't know the
addresses of the symbols inside the object files beforehand.
This change lets the YAML import lookup the addresses in the object files and rewrite
them. This will allow to have test that really don't need any binary input.
llvm-svn: 239189
* If the input file is missing;
* If the type of input object file can't be recognized;
* If the object file can't be parsed correctly.
llvm-svn: 239065
With a couple more constructors that GCC thinks are necessary.
Original commit message:
[dsymutil] Accept a YAML debug map as input instead of a binary.
To do this, the user needs to pass the new -y flag.
As it wasn't tested before, the debug map YAML deserialization was
completely buggy (mainly because the DebugMapObject has a dual
mapping that allows to search by name and by address, but only the
StringMap got populated). It's fixed and tested in this commit by
augmenting some test with a 2 stage dwarf link: a frist llvm-dsymutil
reads the debug map and pipes it in a second instance that does the
actual link without touching the initial binary.
llvm-svn: 238959
To do this, the user needs to pass the new -y flag.
As it wasn't tested before, the debug map YAML deserialization was
completely buggy (mainly because the DebugMapObject has a dual
mapping that allows to search by name and by address, but only the
StringMap got populated). It's fixed and tested in this commit by
augmenting some test with a 2 stage dwarf link: a frist llvm-dsymutil
reads the debug map and pipes it in a second instance that does the
actual link without touching the initial binary.
llvm-svn: 238941
As the serialized debug map is becoming a first class citizen, a way
to cleanly dump it is required. We used -parse-only combined with
-v for that purpose before, but it dumps a lot of unrelated debug
stuff. Dumping the debug map was the only use of the -parse-only flag
anyway, so replace it with a more useful option.
llvm-svn: 238940
The ELF spec is very clear:
-----------------------------------------------------------------------------
If the value is non-zero, it represents a string table index that gives the
symbol name. Otherwise, the symbol table entry has no name.
--------------------------------------------------------------------------
In particular, a st_name of 0 most certainly doesn't mean that the symbol has
the same name as the section.
llvm-svn: 238899
Doing so will allow us to also accept a YAML debug map in input as using
YAMLIO gives us the parsing for free. Being able to have textual debug
maps will in turn allow much more control over the tests, because 1/
no need to check-in a binary containing the debug map and 2/ it will allow
to use the same objects/IR files with made-up debug-maps to test
different scenari.
llvm-svn: 238781
MachO and COFF quite reasonably only define the size for common symbols.
We used to try to figure out the "size" by computing the gap from one symbol to
the next.
This would not be correct in general, since a part of a section can belong to no
visible symbol (padding, private globals).
It was also really expensive, since we would walk every symbol to find the size
of one.
If a caller really wants this, it can sort all the symbols once and get all the
gaps ("size") in O(n log n) instead of O(n^2).
On MachO this also has the advantage of centralizing all the checks for an
invalid n_sect.
llvm-svn: 238028
llvm-cov was truncating numbers that were larger than a particular
fixed width, which is as confusing as it is useless. Instead, we use
engineering notation with SI prefix for magnitude.
llvm-svn: 237307
Since the coverage mapping reader and the instrprof reader were
emitting a shared set of error codes, the error messages you'd get
back from llvm-cov were ambiguous about what was actually wrong. Add
another error category to fix this.
I've also improved the wording on a couple of the instrprof errors,
for consistency.
llvm-svn: 236665
Specifically, this patch correctly respects the -demangle option,
and additionally adds a hidden --relative-address option allows
input addresses to be relative to the module load address instead
of absolute addresses into the image.
llvm-svn: 236653
This patch adds the --load-address command line option to
llvm-pdbdump, which dumps all addresses assuming the module has
loaded at the specified address.
Additionally, this patch adds an option to llvm-pdbdump to support
dumping of public symbols (i.e. symbols with external linkage).
llvm-svn: 236342
option to print the archive headers using raw numeric values. Also add the -archive-member-offsets
for use with these to also trigger printing of the offset of the archive member from the start
of the archive.
llvm-svn: 236252
print the Objective-C runtime meta data for Mach-O files.
There are three types of Objective-C runtime meta data, Objc2 64-bit,
Objc2 32-bit and Objc1 32-bit. This prints the first of these types. The
changes to print the others will follow next.
llvm-svn: 233840
A while ago llvm-cov gained support for clang's instrumentation based
profiling in addition to its gcov support, and subcommands were added
to choose which behaviour to use. When no subcommand was specified, we
fell back to gcov compatibility with a warning that a subcommand would
be required in the future. Now, we require the subcommand.
Note that if the basename of llvm-cov is gcov (via symlink or
hardlink, for example), we still use the gcov compatible behaviour
with no subcommand required.
llvm-svn: 233132
It seems one windows bot fails since I added ilne table linking to
llvm-dsymutil (see r232333 commit thread).
Disable the affected tests until I can figure out what's happening.
llvm-svn: 233130
This works in a similar way to the gold plugin tests. We search for a compatible
linker on $PATH and use it to run tests against our just-built libLTO. To start
with, test the just added opt level functionality.
Differential Revision: http://reviews.llvm.org/D8472
llvm-svn: 232785
This change also introduces a link-time optimization level of 1. This
optimization level runs only the globaldce pass as well as cleanup passes for
passes that run at -O0, specifically simplifycfg which cleans up lowerbitsets.
http://lists.cs.uiuc.edu/pipermail/llvm-commits/Week-of-Mon-20150316/266951.html
llvm-svn: 232769