Instead of permanently outputting "MVLL" as the file checksum, clang
will create gcno and gcda checksums by hashing the destination block
numbers of every arc. This allows for llvm-cov to check if the two gcov
files are synchronized.
Regenerated the test files so they contain the checksum. Also added
negative test to ensure error when the checksums don't match.
llvm-svn: 195191
a module-specific interface. This is the first of many steps necessary
to generalize the infrastructure such that we can support both
a Module-to-Function and Module-to-SCC-to-Function pass manager
nestings.
After a *lot* of attempts that never worked and didn't even make it to
a committable state, it became clear that I had gotten the layering
design of analyses flat out wrong. Four days later, I think I have most
of the plan for how to correct this, and I'm starting to reshape the
code into it. This is just a baby step I'm afraid, but starts separating
the fundamentally distinct concepts of function analysis passes and
module analysis passes so that in subsequent steps we can effectively
layer them, and have a consistent design for the eventual SCC layer.
As part of this, I've started some interface changes to make passes more
regular. The module pass accepts the module in the run method, and some
of the constructor parameters are gone. I'm still working out exactly
where constructor parameters vs. method parameters will be used, so
I expect this to fluctuate a bit.
This actually makes the invalidation less "correct" at this phase,
because now function passes don't invalidate module analysis passes, but
that was actually somewhat of a misfeature. It will return in a better
factored form which can scale to other units of IR. The documentation
has gotten less verbose and helpful.
llvm-svn: 195189
The object files we support use null terminated strings, so there is no way to
support these.
This patch adds an assert to catch bad API use and an error check in the .ll
parser.
llvm-svn: 195155
This patch removes most of the trivial cases of weak vtables by pinning them to
a single object file. The memory leaks in this version have been fixed. Thanks
Alexey for pointing them out.
Differential Revision: http://llvm-reviews.chandlerc.com/D2068
Reviewed by Andy
llvm-svn: 195064
(except functions marked always_inline).
Functions with 'optnone' must also have 'noinline' so they don't get
inlined into any other function.
Based on work by Andrea Di Biagio.
llvm-svn: 195046
This change is incorrect. If you delete virtual destructor of both a base class
and a subclass, then the following code:
Base *foo = new Child();
delete foo;
will not cause the destructor for members of Child class. As a result, I observe
plently of memory leaks. Notable examples I investigated are:
ObjectBuffer and ObjectBufferStream, AttributeImpl and StringSAttributeImpl.
llvm-svn: 194997
Debug info verifier is part of the verifier which is a Function Pass.
Tot currently tries to pull all reachable debug info MDNodes in each function,
which is too time-consuming. The correct fix seems to be separating debug info
verification to its own module pass.
I will disable the debug info verifier until a correct fix is found.
For Bill's testing case, enabling debug info verifier increase compile
time from 11s to 11m.
llvm-svn: 194986
We used to collect debug info MDNodes in doInitialization and verify them in
doFinalization. That is incorrect since MDNodes can be modified by passes run
between doInitialization and doFinalization.
To fix the problem, we handle debug info MDNodes that can be reached from a
function in runOnFunction (i.e we collect those nodes by calling processDeclare,
processValue and processLocation, and then verify them in runOnFunction).
We handle debug info MDNodes that can be reached from named metadata in
doFinalization. This is in line with how Verifier handles module-level data
(they are verified in doFinalization).
rdar://15472296
llvm-svn: 194974
We used to depend on running processModule before the other public functions
such as processDeclare, processValue and processLocation. We are now relaxing
the constraint by adding a module argument to the three functions and
letting the three functions to initialize the type map. This will be used in
a follow-on patch that collects nodes reachable from a Function.
llvm-svn: 194973
This patch removes most of the trivial cases of weak vtables by pinning them to
a single object file.
Differential Revision: http://llvm-reviews.chandlerc.com/D2068
Reviewed by Andy
llvm-svn: 194865
- readInt() should check all 4 bytes can be read, not just 1.
- In the event of false data in the gcno file, it was possible to index
into a non-existent index of SmallVector, causing assertion error.
llvm-svn: 194639
According to the hazy gcov documentation, it appeared to be technically
possible for lines within a block to belong to different source files.
However, upon further investigation, gcov does not actually support
multiple source files for a single block.
This change removes a level of separation between blocks and lines by
replacing the StringMap of GCOVLines with a SmallVector of ints
representing line numbers. This also means that the GCOVLines class is
no longer needed.
This paves the way for supporting the "-a" option, which will output
block information.
llvm-svn: 194637
Unified the interface for read functions. They all return a boolean
indicating if the read from file succeeded. Functions that previously
returned the read value now store it into a variable that is passed in
by reference instead. Callers will need to check the return value to
detect if an error occurred.
Also added a new test which ensures that no assertions occur when file
contains invalid data. llvm-cov should return with error code 1 upon
failure.
llvm-svn: 194635
verifyFunction needs to call doInitialization to collect metadata and avoid
crashing when verifying debug info in a function.
But it should not call doFinalization since that is where the verifier will
check declarations, variables and aliases, which is not desirable when one
only wants to verify a function.
A possible cleanup would be to split the class into a ModuleVerifier and
FunctionVerifier.
Issue reported by Ilia Filippov. Patch by Michael Kruse.
llvm-svn: 194574
more smarts in it. This is where most of the interesting logic that used
to live in the implicit-scheduling-hackery of the old pass manager will
live.
Like the previous commits, note that this is a very early prototype!
I expect substantial changes before this is ready to use.
The core of the design is the following:
- We have an AnalysisManager which can be used across a series of
passes over a module.
- The code setting up a pass pipeline registers the analyses available
with the manager.
- Individual transform passes can check than an analysis manager
provides the analyses they require in order to fail-fast.
- There is *no* implicit registration or scheduling.
- Analysis passes are different from other passes: they produce an
analysis result that is cached and made available via the analysis
manager.
- Cached results are invalidated automatically by the pass managers.
- When a transform pass requests an analysis result, either the analysis
is run to produce the result or a cached result is provided.
There are a few aspects of this design that I *know* will change in
subsequent commits:
- Currently there is no "preservation" system, that needs to be added.
- All of the analysis management should move up to the analysis library.
- The analysis management needs to support at least SCC passes. Maybe
loop passes. Living in the analysis library will facilitate this.
- Need support for analyses which are *both* module and function passes.
- Need support for pro-actively running module analyses to have cached
results within a function pass manager.
- Need a clear design for "immutable" passes.
- Need support for requesting cached results when available and not
re-running the pass even if that would be necessary.
- Need more thorough testing of all of this infrastructure.
There are other aspects that I view as open questions I'm hoping to
resolve as I iterate a bit on the infrastructure, and especially as
I start writing actual passes against this.
- Should we have separate management layers for function, module, and
SCC analyses? I think "yes", but I'm not yet ready to switch the code.
Adding SCC support will likely resolve this definitively.
- How should the 'require' functionality work? Should *that* be the only
way to request results to ensure that passes always require things?
- How should preservation work?
- Probably some other things I'm forgetting. =]
Look forward to more patches in shorter order now that this is in place.
llvm-svn: 194538
give the files a legacy prefix in the right directory. Use forwarding
headers in the old locations to paper over the name change for most
clients during the transitional period.
No functionality changed here! This is just clearing some space to
reduce renaming churn later on with a new system.
Even when the new stuff starts to go in, it is going to be hidden behind
a flag and off-by-default as it is still WIP and under development.
This patch is specifically designed so that very little out-of-tree code
has to change. I'm going to work as hard as I can to keep that the case.
Only direct forward declarations of the PassManager class are impacted
by this change.
llvm-svn: 194324
Summary:
Consider a GEP of:
i8* getelementptr ({ [2 x i8], i32, i8, [3 x i8] }* @main.c, i32 0, i32 0, i64 0)
If we proceeded to GEP the aforementioned object by 8, would form a GEP of:
i8* getelementptr ({ [2 x i8], i32, i8, [3 x i8] }* @main.c, i32 0, i32 0, i64 8)
Note that we would go through the first array member, causing an
out-of-bounds accesses. This is problematic because we might get fooled
if we are trying to evaluate loads using this GEP, for example, based
off of an object with a constant initializer where the array is zero.
This fixes PR17732.
Reviewers: nicholas, chandlerc, void
Reviewed By: void
CC: llvm-commits, echristo, void, aemerson
Differential Revision: http://llvm-reviews.chandlerc.com/D2093
llvm-svn: 194220
This patch enables llvm-cov to correctly output the run count stored in
the GCDA file. GCOVProfiling currently does not generate this
information, so the GCDA run data had to be hacked on from a GCDA file
generated by gcc. This is corrected by a subsequent patch.
With the run and program data included, both llvm-cov and gcov produced
the same output.
llvm-svn: 194033
linkonce_odr_auto_hide was in incomplete attempt to implement a way
for the linker to hide symbols that are known to be available in every
TU and whose addresses are not relevant for a particular DSO.
It was redundant in that it all its uses are equivalent to
linkonce_odr+unnamed_addr. Unlike those, it has never been connected
to clang or llvm's optimizers, so it was effectively dead.
Given that nothing produces it, this patch just nukes it
(other than the llvm-c enum value).
llvm-svn: 193865
The function verifyFunction() in lib/IR/Verifier.cpp misses some
calls. It creates a temporary FunctionPassManager that will run a
single Verifier pass. Unfortunately, FunctionPassManager is no
PassManager and does not call doInitialization() and doFinalization()
by itself. Verifier does important tasks in doInitialization() such as
collecting type information used to check DebugInfo metadata and
doFinalization() does some additional checks. Therefore these checks
were missed and debug info couldn't be verified at all, it just
crashed if the function had some.
verifyFunction() is currently not used in llvm unless -debug option is
enabled, and in unittests/IR/VerifierTest.cpp
VerifierTest had to be changed to create the function in a module from
which the type debug info can be collected.
Patch by Michael Kruse.
llvm-svn: 193719
llvm-cov will now be able to read program counts from the GCDA file and
output it in the same format as gcov. The program summary tag was
identified from gcov-io.h as "\0\0\0\a3".
There is currently a bug in GCOVProfiling.cpp which does not generate
the
run- or program-counting IR, so this change was tested manually by
modifying the GCDA file and comparing the gcov and llvm-cov outputs.
llvm-svn: 193389
This was a fundamental flaw in llvm-cov where it treated the values in
the GCDA files as block counts instead of edge counts. This created
incorrect line counts when branching was present. Instead, the edge
counts should be summed to obtain the correct block count.
The fix was tested using custom test files as well as single source
files from the test-suite directory. The behaviour can be verified by
reading the GCOV documentation that describes the GCDA spec ("ARC_COUNTS
gives the counter values for those arcs that are instrumented") and the
header description provided by GCOVProfiling.cpp ("instruments the code
that runs to records (sic) the edges between blocks that run and emit a
complementary "gcda" file on exit").
llvm-svn: 193299