--- Reverse-merging r141377 into '.':
U tools/llvm-objdump/MachODump.cpp
--- Reverse-merging r141376 into '.':
U include/llvm/Object/COFF.h
U include/llvm/Object/ObjectFile.h
U include/llvm-c/Object.h
U tools/llvm-objdump/llvm-objdump.cpp
U lib/Object/MachOObjectFile.cpp
U lib/Object/COFFObjectFile.cpp
U lib/Object/Object.cpp
U lib/Object/ELFObjectFile.cpp
llvm-svn: 141379
Multidefs are a bit unwieldy and incomplete. Remove them in favor of
another mechanism, probably for loops.
Revert "Make Test More Thorough"
Revert "Fix a typo."
Revert "Vim Support for Multidefs"
Revert "Emacs Support for Multidefs"
Revert "Document Multidefs"
Revert "Add a Multidef Test"
Revert "Update Test for Multidefs"
Revert "Process Multidefs"
Revert "Parser Multidef Support"
Revert "Lexer Support for Multidefs"
Revert "Add Multidef Data Structures"
llvm-svn: 141378
They are not in sync now, for example Bitcast would show up as LLVMCall.
So instead introduce 2 functions that map to and from the opcodes in the C
bindings.
llvm-svn: 141290
This restores my karma after I added TRI::getSubClassWithSubReg().
Register constraints are applied 'backwards'. Starting from the
register class required by an instruction operand, the correct question
is: 'How can I constrain the super-register register class so all its
sub-registers satisfy the instruction constraint?' The
getMatchingSuperRegClass() hook answers that.
We never need to go 'forwards': Starting from a super-register register
class, what register class are the sub-registers in? The
getSubRegisterRegClass() hook did that.
llvm-svn: 141258
Add a set of data structures and members analogous to those used for
multiclass defs. These will represent a new kind of multiclass def: a
multidef. The idea behind the multidef is to process a list of items
and create a def record for each one inside the enclosing multiclass.
This allows the user to dynamically create a set of defs based on the
contents of a list.
llvm-svn: 141230
This function is used to constrain a register class to a sub-class that
supports the given sub-register index.
For example, getSubClassWithSubReg(GR32, sub_8bit) -> GR32_ABCD.
The function will be used to compute register classes when emitting
INSERT_SUBREG and EXTRACT_SUBREG nodes and for register class inflation
of sub-register operations.
The version provided by TableGen is usually adequate, but targets can
override.
llvm-svn: 141142
using llvm's public 'C' disassembler API now including annotations.
Hooked this up to Darwin's otool(1) so it can again print things like branch
targets for example this:
blx _puts
instead of this:
blx #-36
and includes support for annotations for branches to symbol stubs like:
bl 0x40 @ symbol stub for: _puts
and annotations for pc relative loads like this:
ldr r3, #8 @ literal pool for: Hello, world!
Also again can print the expression encoded in the Mach-O relocation entries for
things like this:
movt r0, :upper16:((_foo-_bar)+1234)
llvm-svn: 141129
The <undef> flag says that a MachineOperand doesn't read its register,
or doesn't depend on the previous value of its register.
A full register def never depends on the previous register value. A
partial register def may depend on the previous value if it is intended
to update part of a register.
For example:
%vreg10:dsub_0<def,undef> = COPY %vreg1
%vreg10:dsub_1<def> = COPY %vreg2
The first copy instruction defines the full %vreg10 register with the
bits not covered by dsub_0 defined as <undef>. It is not considered a
read of %vreg10.
The second copy modifies part of %vreg10 while preserving the rest. It
has an implicit read of %vreg10.
This patch adds a MachineOperand::readsReg() method to determine if an
operand reads its register.
Previously, this was modelled by adding a full-register <imp-def>
operand to the instruction. This approach makes it possible to
determine directly from a MachineOperand if it reads its register. No
scanning of MI operands is required.
llvm-svn: 141124
This handles the case in which LSR rewrites an IV user that is a phi and
splits critical edges originating from a switch.
Fixes <rdar://problem/6453893> LSR is not splitting edges "nicely"
llvm-svn: 141059
We want heuristics to be based on accurate data, but more importantly
we don't want llvm to behave randomly. A benign trunc inserted by an
upstream pass should not cause a wild swings in optimization
level. See PR11034. It's a general problem with threshold-based
heuristics, but we can make it less bad.
llvm-svn: 140919
This uses less memory and it reduces the complexity of sub-class
operations:
- hasSubClassEq() and friends become O(1) instead of O(N).
- getCommonSubClass() becomes O(N) instead of O(N^2).
In the future, TableGen will infer register classes. This makes it
cheap to add them.
llvm-svn: 140898
This intrinsic is used to pass the index of the function context to the back-end
for further processing. The back-end is in charge of filling in the rest of the
entries.
llvm-svn: 140676
This also enables domain swizzling for AVX code which required a few
trivial test changes.
The pass will be moved to lib/CodeGen shortly.
llvm-svn: 140659
I am going to unify the SSEDomainFix and NEONMoveFix passes into a
single target independent pass. They are essentially doing the same
thing.
llvm-svn: 140652