This is the beginning of purely symbolic subregister indices, but we need a bit
of jiggling before the explicit numeric indices can be completely removed.
llvm-svn: 104492
that are aliases of the specified register.
- Rename modifiesRegister to definesRegister since it's looking a def of the
specific register or one of its super-registers. It's not looking for def of a
sub-register or alias that could change the specified register.
- Added modifiesRegister to look for defs of aliases.
llvm-svn: 104377
reads or writes a register.
This takes partial redefines and undef uses into account.
Don't actually use it yet. That caused miscompiles.
llvm-svn: 104372
If the size of the string is greater than the zero fill size, the function will attempt to write a very large string of zeros to the object file (~4GB on 32 bit platforms). This assertion will catch the scenario and crash the program before the write occurs.
llvm-svn: 104334
isn't ideal if we want to be able to use another object file format.
Add a createObjectStreamer() factory method so that the correct object
file streamer can be instantiated for a given target triple.
llvm-svn: 104318
pipeline stall. It's useful for targets like ARM cortex-a8. NEON has a lot
of long latency instructions so a strict register pressure reduction
scheduler does not work well.
Early experiments show this speeds up some NEON loops by over 30%.
llvm-svn: 104216
partial redefines.
We are going to treat a partial redefine of a virtual register as a
read-modify-write:
%reg1024:6 = OP
Unless the register is fully clobbered:
%reg1024:6 = OP, %reg1024<imp-def>
MachineInstr::readsVirtualRegister() knows the difference. The first case is a
read, the second isn't.
llvm-svn: 104149
- Of questionable utility, since in general anything which wants to do this should probably be within a target specific hook, which can rely on the sections being of the appropriate type. However, it can be useful for short term hacks.
llvm-svn: 103980
variable has not yet been used in an expression. This allows us to support a few
cases that show up in real code (mostly because gcc generates it for Objective-C
on Darwin), without giving up a reasonable semantic model for assignment.
llvm-svn: 103950
instructions.
e.g.
%reg1026<def> = VLDMQ %reg1025<kill>, 260, pred:14, pred:%reg0
%reg1027<def> = EXTRACT_SUBREG %reg1026, 6
%reg1028<def> = EXTRACT_SUBREG %reg1026<kill>, 5
...
%reg1029<def> = REG_SEQUENCE %reg1028<kill>, 5, %reg1027<kill>, 6, %reg1028, 7, %reg1027, 8, %reg1028, 9, %reg1027, 10, %reg1030<kill>, 11, %reg1032<kill>, 12
After REG_SEQUENCE is eliminated, we are left with:
%reg1026<def> = VLDMQ %reg1025<kill>, 260, pred:14, pred:%reg0
%reg1029:6<def> = EXTRACT_SUBREG %reg1026, 6
%reg1029:5<def> = EXTRACT_SUBREG %reg1026<kill>, 5
The regular coalescer will not be able to coalesce reg1026 and reg1029 because it doesn't
know how to combine sub-register indices 5 and 6. Now 2-address pass will consult the
target whether sub-registers 5 and 6 of reg1026 can be combined to into a larger
sub-register (or combined to be reg1026 itself as is the case here). If it is possible,
it will be able to replace references of reg1026 with reg1029 + the larger sub-register
index.
llvm-svn: 103835
the variable actually tracks.
N.B., several back-ends are using "HasCalls" as being synonymous for something
that adjusts the stack. This isn't 100% correct and should be looked into.
llvm-svn: 103802