This helps compile time when the greedy register allocator splits live
ranges in giant functions. Without the bias, we would try to grow
regions through the giant edge bundles, usually to find out that the
region became too big and expensive.
If a live range has many uses in blocks near the giant bundle, the small
negative bias doesn't make a big difference, and we still consider
regions including the giant edge bundle.
Giant edge bundles are usually connected to landing pads or indirect
branches.
llvm-svn: 157174
This class is meant to be the primary interface for examining a live
range in the vicinity on a given instruction. It avoids all the messy
dealings with iterators and early clobbers.
This is a more abstract interface to live ranges, hiding the
implementation as a vector of segments.
llvm-svn: 157141
getUDivExpr attempts to simplify by checking for overflow.
isLoopEntryGuardedByCond then evaluates the loop predicate which
may lead to the same getUDivExpr causing endless recursion.
Fixes PR12868: clang 3.2 segmentation fault.
llvm-svn: 157092
Use a dedicated MachO load command to annotate data-in-code regions.
This is the same format the linker produces for final executable images,
allowing consistency of representation and use of introspection tools
for both object and executable files.
Data-in-code regions are annotated via ".data_region"/".end_data_region"
directive pairs, with an optional region type.
data_region_directive := ".data_region" { region_type }
region_type := "jt8" | "jt16" | "jt32" | "jta32"
end_data_region_directive := ".end_data_region"
The previous handling of ARM-style "$d.*" labels was broken and has
been removed. Specifically, it didn't handle ARM vs. Thumb mode when
marking the end of the section.
rdar://11459456
llvm-svn: 157062
Many targets always use the same bitwise encoding value for physical
registers in all (or most) instructions. Add this mapping to the
.td files and TableGen'erate the information and expose an accessor
in MCRegisterInfo.
patch by Tom Stellard.
llvm-svn: 156829
so that it can be reused in MemCpyOptimizer. This analysis is needed to remove
an unnecessary memcpy when returning a struct into a local variable.
rdar://11341081
PR12686
llvm-svn: 156776
Returning a temporary BitVector is very expensive. If you must, create
the temporary explicitly: Use BitVector(A).flip() instead of ~A.
llvm-svn: 156768
These operators were crazy slow, calling malloc to return a temporary
result. At the same time, they look very innocent when used in code.
If you need temporary BitVectors to compute your thing, create them
explicitly, and use the inplace logical operators. This makes the high
cost explicit in the code.
llvm-svn: 156767
Ordinary patch for PR1255.
Added new case-ranges orientated methods for adding/removing cases in SwitchInst. After this patch cases will internally representated as ConstantArray-s instead of ConstantInt, externally cases wrapped within the ConstantRangesSet object.
Old methods of SwitchInst are also works well, but marked as deprecated. So on this stage we have no side effects except that I added support for case ranges in BitcodeReader/Writer, of course test for Bitcode is also added. Old "switch" format is also supported.
llvm-svn: 156704
This lets you save the textual representation of the LLVM IR to a file.
Before this patch it could only be printed to STDERR from llvm-c.
Patch by Carlo Kok!
llvm-svn: 156479
Added new case-ranges orientated methods for adding/removing cases in SwitchInst. After this patch cases will internally representated as ConstantArray-s instead of ConstantInt, externally cases wrapped within the ConstantRangesSet object.
Old methods of SwitchInst are also works well, but marked as deprecated. So on this stage we have no side effects except that I added support for case ranges in BitcodeReader/Writer, of course test for Bitcode is also added. Old "switch" format is also supported.
llvm-svn: 156374