Extracting the low element of a vector is now done with EXTRACT_SUBREG,
and the zero-extension performed by load movss is now modeled with
SUBREG_TO_REG, and so on.
Register-to-register movss and movsd are no longer considered copies;
they are two-address instructions which insert a scalar into a vector.
llvm-svn: 97354
defs or uses. The regular def and use checking below covers them, and
can be more precise. It's safe to hoist an instruction with a dead
implicit def if the register isn't live into the loop header.
llvm-svn: 97352
but codegen'd differently. This really wanted to use some
sort of subreg to get the low 4 bytes of the G8RC register
or something. However, it's invalid and nothing is testing
it, so I'm just zapping the bogosity.
llvm-svn: 97345
confusing the old MAT variable with the new GlobalType one. This caused
us to promote the @disp global pointer into:
@disp.body = internal global double*** undef
instead of:
@disp.body = internal global [3 x double**] undef
llvm-svn: 97285
for alignment into the LSDA. If the TType base offset is emitted, then put the
padding there. Otherwise, put it in the call site table length. There will be no
conflict between the two sites when placing the padding in one place.
llvm-svn: 97277
o Parallel addition and subtraction, signed/unsigned
o Miscellaneous operations: QADD, QDADD, QSUB, QDSUB
o Unsigned sum of absolute differences [and accumulate]: USAD8, USADA8
o Signed/Unsigned saturate: SSAT, SSAT16, USAT, USAT16
o Signed multiply accumulate long (halfwords): SMLAL<x><y>
o Signed multiply accumulate/subtract [long] (dual): SMLAD[x], SMLALD[X], SMLSD[X], SMLSLD[X]
o Signed dual multiply add/subtract [long]: SMUAD[X], SMUSD[X]
llvm-svn: 97276
This is possible because F8RC is a subclass of F4RC. We keep FMRSD around so
fextend has a pattern.
Also allow folding of memory operands on FMRSD.
llvm-svn: 97275
The PowerPC floating point registers can represent both f32 and f64 via the
two register classes F4RC and F8RC. F8RC is considered a subclass of F4RC to
allow cross-class coalescing. This coalescing only affects whether registers
are spilled as f32 or f64.
Spill slots must be accessed with load/store instructions corresponding to the
class of the spilled register. PPCInstrInfo::foldMemoryOperandImpl was looking
at the instruction opcode which is wrong.
X86 has similar floating point register classes, but doesn't try to fold
memory operands, so there is no problem there.
llvm-svn: 97262
object construction. There is no provision to change them when the
code for a function generated.
So we have to change these names while printing assembly.
llvm-svn: 97213
the alignment requirement, if it no longer makes the TType base offset overflow
into extra bytes, then we need to pad to those bytes ourselves.
llvm-svn: 97196
will eliminate the need for padding in the "Call site table length". E.g., if
we have this:
GCC_except_table1:
Lexception1:
.byte 0xff ## @LPStart Encoding = omit
.byte 0x9b ## @TType Encoding = indirect pcrel sdata4
.byte 0x7f ## @TType base offset
.byte 0x03 ## Call site Encoding = udata4
.byte 0x89 ## Call site table length
with padding of 1. We want to emit the padding like this:
GCC_except_table1:
Lexception1:
.byte 0xff ## @LPStart Encoding = omit
.byte 0x9b ## @TType Encoding = indirect pcrel sdata4
.byte 0xff ## @TType base offset
.space 1,0 ## Padding
.byte 0x03 ## Call site Encoding = udata4
.byte 0x89 ## Call site table length
and not with padding on the "Call site table length" entry.
llvm-svn: 97183
section with TextAlignFillValue and calls EmitCodeAlignment() instead of
calling EmitValueToAlignment(). This allows x86 assembly code to be aligned
with optimal nops.
llvm-svn: 97158