to reflect the new license.
We understand that people may be surprised that we're moving the header
entirely to discuss the new license. We checked this carefully with the
Foundation's lawyer and we believe this is the correct approach.
Essentially, all code in the project is now made available by the LLVM
project under our new license, so you will see that the license headers
include that license only. Some of our contributors have contributed
code under our old license, and accordingly, we have retained a copy of
our old license notice in the top-level files in each project and
repository.
llvm-svn: 351636
Currently, variadic operands on an MCInst are assumed to be uses,
because they come after the defs. However, this is not always the case,
for example the Arm/Thumb LDM instructions write to a variable number of
registers.
This adds a property of instruction definitions which can be used to
mark variadic operands as defs. This only affects MCInst, because
MachineInstruction already tracks use/def per operand in each instance
of the instruction, so can already represent this.
This property can then be checked in MCInstrDesc, allowing us to remove
some special cases in ARMAsmParser::isITBlockTerminator.
Differential revision: https://reviews.llvm.org/D54853
llvm-svn: 348114
There are quite strong constraints on how you can use the TIED_TO
constraint between MC operands, many of which are currently not
checked until compiler run time.
MachineVerifier enforces that operands can only be tied together in
pairs (no three-way ties), and MachineInstr::tieOperands enforces that
one of the tied operands must be an output operand (def) and the other
must be an input operand (use).
Now we check these at TableGen time, so that if you violate any of
them in a new instruction definition, you find out immediately,
instead of having to wait until you compile something that makes code
generation hit one of those assertions.
Also in this commit, all the error reports in ParseConstraint now
include the name and source location of the def where the problem
happened, so that if you do trigger any of these errors, it's easier
to find the part of your TableGen input where you made the mistake.
The trunk sources already build successfully with this additional
error check, so I think no in-tree target has any of these problems.
Reviewers: fhahn, lhames, nhaehnle, MatzeB
Reviewed By: MatzeB
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D53815
llvm-svn: 347743
Summary:
So far, `isReturn` property is used to mean both a return instruction
from a functon and the end of an EH scope, a scope that starts with a EH
scope entry BB and ends with a catchret or a cleanupret instruction.
Because WinEH uses funclets, all EH-scope-ending instructions are also
real return instruction from a function. But for wasm, they only serve
as the end marker of an EH scope but not a return instruction that
exits a function. This mismatch caused incorrect prolog and epilog
generation in wasm EH scopes. This patch fixes this.
This patch is in the same vein with rL333045, which splits
`MachineBasicBlock::isEHFuncletEntry` into `isEHFuncletEntry` and
`isEHScopeEntry`.
Reviewers: dschuff
Subscribers: sbc100, jgravelle-google, sunfish, llvm-commits
Differential Revision: https://reviews.llvm.org/D50653
llvm-svn: 340325
This patch adds support for AArch64 to cfi-verify.
This required three changes to cfi-verify. First, it generalizes checking if an instruction is a trap by adding a new isTrap flag to TableGen (and defining it for x86 and AArch64). Second, the code that ensures that the operand register is not clobbered between the CFI check and the indirect call needs to allow a single dereference (in x86 this happens as part of the jump instruction). Third, we needed to ensure that return instructions are not counted as indirect branches. Technically, returns are indirect branches and can be covered by CFI, but LLVM's forward-edge CFI does not protect them, and x86 does not consider them, so we keep that behavior.
In addition, we had to improve AArch64's code to evaluate the branch target of a MCInst to handle calls where the destination is not the first operand (which it often is not).
Differential Revision: https://reviews.llvm.org/D48836
llvm-svn: 337007
A TableGen instruction record usually contains a DAG pattern that will
describe the SelectionDAG operation that can be implemented by this
instruction. However, there will be cases where several different DAG
patterns can all be implemented by the same instruction. The way to
represent this today is to write additional patterns in the Pattern
(or usually Pat) class that map those extra DAG patterns to the
instruction. This usually also works fine.
However, I've noticed cases where the current setup seems to require
quite a bit of extra (and duplicated) text in the target .td files.
For example, in the SystemZ back-end, there are quite a number of
instructions that can implement an "add-with-overflow" operation.
The same instructions also need to be used to implement just plain
addition (simply ignoring the extra overflow output). The current
solution requires creating extra Pat pattern for every instruction,
duplicating the information about which particular add operands
map best to which particular instruction.
This patch enhances TableGen to support a new PatFrags class, which
can be used to encapsulate multiple alternative patterns that may
all match to the same instruction. It operates the same way as the
existing PatFrag class, except that it accepts a list of DAG patterns
to match instead of just a single one. As an example, we can now define
a PatFrags to match either an "add-with-overflow" or a regular add
operation:
def z_sadd : PatFrags<(ops node:$src1, node:$src2),
[(z_saddo node:$src1, node:$src2),
(add node:$src1, node:$src2)]>;
and then use this in the add instruction pattern:
defm AR : BinaryRRAndK<"ar", 0x1A, 0xB9F8, z_sadd, GR32, GR32>;
These SystemZ target changes are implemented here as well.
Note that PatFrag is now defined as a subclass of PatFrags, which
means that some users of internals of PatFrag need to be updated.
(E.g. instead of using PatFrag.Fragment you now need to use
!head(PatFrag.Fragments).)
The implementation is based on the following main ideas:
- InlinePatternFragments may now replace each original pattern
with several result patterns, not just one.
- parseInstructionPattern delays calling InlinePatternFragments
and InferAllTypes. Instead, it extracts a single DAG match
pattern from the main instruction pattern.
- Processing of the DAG match pattern part of the main instruction
pattern now shares most code with processing match patterns from
the Pattern class.
- Direct use of main instruction patterns in InferFromPattern and
EmitResultInstructionAsOperand is removed; everything now operates
solely on DAG match patterns.
Reviewed by: hfinkel
Differential Revision: https://reviews.llvm.org/D48545
llvm-svn: 336999
Unlike CodeGenInstruction, CodeGenInstAlias was flatting asm strings in its constructor. For instructions it was the users responsibility to flatten the string.
AsmMatcherEmitter didn't know this and treated them the same. This caused double flattening of InstAliases. This is mostly harmless unless the desired assembly string contains curly braces. The second flattening wouldn't know to ignore these and would remove the curly braces. And for variant 1 it would remove the contents of them as well.
To mitigate this, this patch makes removes the flattening from the CodeGenIntAlias constructor and modifies AsmWriterEmitter to account for the flattening not having been done.
llvm-svn: 334919
This property is needed in order to follow values movement between
registers. This property is used in TII to implement method that
returns true if simple copy like instruction is recognized, along
with source and destination machine operands.
Patch by Nikola Prica.
Differential Revision: https://reviews.llvm.org/D45204
llvm-svn: 333093
Some ISA's such as microMIPS32(R6) have instructions which are near identical
for code generation purposes, e.g. xor and xor16. These instructions take the
same value types for operands and return values, have the same
instruction predicates and map to the same ISD opcode. (These instructions do
differ by register classes.)
In such cases, the FastISel generator rejects the instruction definition.
This patch borrows the 'FastIselShouldIgnore' bit from rL129692 and enables
applying it to an instruction definition.
Reviewers: mcrosier
Differential Revision: https://reviews.llvm.org/D46953
llvm-svn: 332983
This is used by llvm tblgen as well as by LLVM Targets, so the only
common place is Support for now. (maybe we need another target for these
sorts of things - but for now I'm at least making them correct & we can
make them better if/when people have strong feelings)
llvm-svn: 328395
ptypeN is functionally the same as typeN except that it informs the
SelectionDAG importer that an operand should be treated as a pointer even
if it was written as iN. This is important for patterns that use iN instead
of iPTR to represent pointers. E.g.:
(set GPR64:$dst, (load GPR64:$addr))
Previously, this was handled as a hardcoded special case for the appropriate
operands to G_LOAD and G_STORE.
llvm-svn: 318574
descriptions now tag add instructions, and the Hexagon backend is using this to
identify loop induction statements.
Patch by Sam Parker and Sjoerd Meijer.
Differential Revision: https://reviews.llvm.org/D23601
llvm-svn: 281304
Removed some unused headers, replaced some headers with forward class declarations.
Found using simple scripts like this one:
clear && ack --cpp -l '#include "llvm/ADT/IndexedMap.h"' | xargs grep -L 'IndexedMap[<]' | xargs grep -n --color=auto 'IndexedMap'
Patch by Eugene Kosov <claprix@yandex.ru>
Differential Revision: http://reviews.llvm.org/D19219
From: Mehdi Amini <mehdi.amini@apple.com>
llvm-svn: 266595
This introduces a new flag that indicates that a specific instruction
will never be present when the MachineScheduler runs and therefore needs
no scheduling information.
This is in preparation for an upcoming commit which checks completeness
of a scheduling model when tablegen runs.
Differential Revision: http://reviews.llvm.org/D17728
llvm-svn: 262383
Gather and scatter instructions additionally write to one of the source operands - mask register.
In this case Gather has 2 destination values - the loaded value and the mask.
Till now we did not support code gen pattern for gather - the instruction was generated from
intrinsic only and machine node was hardcoded.
When we introduce the masked_gather node, we need to select instruction automatically,
in the standard way.
I added a flag "hasTwoExplicitDefs" that allows to handle 2 destination operands.
(Some code in the X86InstrFragmentsSIMD.td is commented out, just to split one big
patch in many small patches)
llvm-svn: 230471
This patch adds a new property: isInsertSubreg and the related target hooks:
TargetIntrInfo::getInsertSubregInputs and
TargetInstrInfo::getInsertSubregLikeInputs to specify that a target specific
instruction is a (kind of) INSERT_SUBREG.
The approach is similar to r215394.
<rdar://problem/12702965>
llvm-svn: 216139
This patch adds a new property: isExtractSubreg and the related target hooks:
TargetIntrInfo::getExtractSubregInputs and
TargetInstrInfo::getExtractSubregLikeInputs to specify that a target specific
instruction is a (kind of) EXTRACT_SUBREG.
The approach is similar to r215394.
<rdar://problem/12702965>
llvm-svn: 216130
Add header guards to files that were missing guards. Remove #endif comments
as they don't seem common in LLVM (we can easily add them back if we decide
they're useful)
Changes made by clang-tidy with minor tweaks.
llvm-svn: 215558
This patch adds a new property: isRegSequence and the related target hooks:
TargetIntrInfo::getRegSequenceInputs and
TargetInstrInfo::getRegSequenceLikeInputs to specify that a target specific
instruction is a (kind of) REG_SEQUENCE.
<rdar://problem/12702965>
llvm-svn: 215394
Previously, TableGen assumed that every aliased operand consumed precisely 1
MachineInstr slot (this was reasonable because until a couple of days ago,
nothing more complicated was eligible for printing).
This allows a couple more ARM64 aliases to print so we can remove the special
code.
On the X86 side, I've gone for explicit AT&T size specifiers as the default, so
turned off a few of the aliases that would have just started printing.
llvm-svn: 208880
Utilize the previous move of MVT to a separate header for all trivial
cases (that don't need any further restructuring).
Reviewed By: Tim Northover
llvm-svn: 204003
The 'Deprecated' class allows you to specify a SubtargetFeature that the
instruction is deprecated on.
The 'ComplexDeprecationPredicate' class allows you to define a custom
predicate that is called to check for deprecation.
For example:
ComplexDeprecationPredicate<"MCR">
would mean you would have to define the following function:
bool getMCRDeprecationInfo(MCInst &MI, MCSubtargetInfo &STI,
std::string &Info)
Which returns 'false' for not deprecated, and 'true' for deprecated
and store the warning message in 'Info'.
The MCTargetAsmParser constructor was chaned to take an extra argument of
the MCInstrInfo class, so out-of-tree targets will need to be changed.
llvm-svn: 190598
Most places can use PrintFatalError as the unwinding mechanism was not
used for anything other than printing the error. The single exception
was CodeGenDAGPatterns.cpp, where intermediate errors during type
resolution were ignored to simplify incremental platform development.
This use is replaced by an error flag in TreePattern and bailout earlier
in various places if it is set.
llvm-svn: 166712
Emit TableGen errors if guessInstructionProperties is 0 and
instruction properties can't be inferred from patterns.
Allow explicit instruction properties even when they can be inferred.
This patch doesn't change the TableGen output. Redundant properties
are not yet verified because the tree has errors.
llvm-svn: 162516
When reporting an error for a defm, we would previously only report the
location of the outer defm, which is not always where the error is.
Now we also print the location of the expanded multiclass defs:
lib/Target/X86/X86InstrSSE.td:2902:12: error: foo
defm ADD : basic_sse12_fp_binop_s<0x58, "add", fadd, SSE_ALU_ITINS_S>,
^
lib/Target/X86/X86InstrSSE.td:2801:11: note: instantiated from multiclass
defm PD : sse12_fp_packed<opc, !strconcat(OpcodeStr, "pd"), OpNode, VR128,
^
lib/Target/X86/X86InstrSSE.td:194:5: note: instantiated from multiclass
def rm : PI<opc, MRMSrcMem, (outs RC:$dst), (ins RC:$src1, x86memop:$src2),
^
llvm-svn: 162409
Select instructions pick one of two virtual registers based on a
condition, like x86 cmov. On targets like ARM that support predication,
selects can sometimes be eliminated by predicating the instruction
defining one of the operands.
Teach PeepholeOptimizer to recognize select instructions, and ask the
target to optimize them.
llvm-svn: 162059
No functionality change. The hook makes it explicit which patterns
require "special" handling. i.e. it self-documents tblgen
deficiencies. I plan to add verification in ExpandISelPseudos and
Thumb2SizeReduce to catch any missing hasPostISelHooks. Otherwise it's
too fragile.
llvm-svn: 140160
Modified ARMISelLowering::AdjustInstrPostInstrSelection to handle the
full gamut of CPSR defs/uses including instructins whose "optional"
cc_out operand is not really optional. This allowed removal of the
hasPostISelHook to simplify the .td files and make the implementation
more robust.
Fixes rdar://10137436: sqlite3 miscompile
llvm-svn: 140134
Add a instruction flag: hasPostISelHook which tells the pre-RA scheduler to
call a target hook to adjust the instruction. For ARM, this is used to
adjust instructions which may be setting the 's' flag. ADC, SBC, RSB, and RSC
instructions have implicit def of CPSR (required since it now uses CPSR physical
register dependency rather than "glue"). If the carry flag is used, then the
target hook will *fill in* the optional operand with CPSR. Otherwise, the hook
will remove the CPSR implicit def from the MachineInstr.
llvm-svn: 138810
- The actual values are from the MCOI::OperandType enum.
- Teach tblgen to read it from the instruction definition.
- This is a better implementation of the hacks in edis.
llvm-svn: 135197
Manage Inits in a FoldingSet. This provides several benefits:
- Memory for Inits is properly managed
- Duplicate Inits are folded into Flyweights, saving memory
- It enforces const-correctness, protecting against certain classes
of bugs
The above benefits allow Inits to be used in more contexts, which in
turn provides more dynamism to TableGen. This enhanced capability
will be used by the AVX code generator to a fold common patterns
together.
llvm-svn: 134907