getTargetNode and SelectNodeTo to reduce duplication, and to
make some of the getTargetNode code available to SelectNodeTo.
Use SelectNodeTo instead of getTargetNode in several new
interesting cases, as it mutates nodes in place instead of
creating new ones.
This triggers some scheduling behavior differences due to nodes
being presented to the scheduler in a different order. Some of the
arbitrary scheduling decisions it makes are now arbitrarily made
differently. This is visible in CodeGen/PowerPC/LargeAbsoluteAddr.ll,
where a trivial scheduling difference led to a trivial register
allocation difference.
llvm-svn: 53203
1. LSR runOnLoop is always returning false regardless if any transformation is made.
2. AddUsersIfInteresting can create new instructions that are added to DeadInsts. But there is a later early exit which prevents them from being freed.
llvm-svn: 53193
Added abstract class MemSDNode for any Node that have an associated MemOperand
Changed atomic.lcs => atomic.cmp.swap, atomic.las => atomic.load.add, and
atomic.lss => atomic.load.sub
llvm-svn: 52706
test (doesn't work for any MMX vector types, it's
not me). Rewritten to use v2i16 which is generic
and going to stay that way; I think that preserves
the point of the test.
llvm-svn: 52692
,------.
| |
| v
| t2 = phi ... t1 ...
| |
| v
| t1 = ...
| ... = ... t1 ...
| |
`------'
where there is a use in a PHI node that's a predecessor to the defining
block. We don't want to mark all predecessors as having the value "alive" in
this case. Also, the assert was too restrictive and didn't handle this case.
llvm-svn: 52655
shuffle could be skipped. The check is invalid because the loop index i
doesn't correspond to the element actually inserted. The correct check is
already done a few lines earlier, for whether the element is already in
the right spot, so this shouldn't have any effect on the codegen for
code that was already correct.
llvm-svn: 52486
wrong for volatile loads and stores. In fact this
is almost all of them! There are three types of
problems: (1) it is wrong to change the width of
a volatile memory access. These may be used to
do memory mapped i/o, in which case a load can have
an effect even if the result is not used. Consider
loading an i32 but only using the lower 8 bits. It
is wrong to change this into a load of an i8, because
you are no longer tickling the other three bytes. It
is also unwise to make a load/store wider. For
example, changing an i16 load into an i32 load is
wrong no matter how aligned things are, since the
fact of loading an additional 2 bytes can have
i/o side-effects. (2) it is wrong to change the
number of volatile load/stores: they may be counted
by the hardware. (3) it is wrong to change a volatile
load/store that requires one memory access into one
that requires several. For example on x86-32, you
can store a double in one processor operation, but to
store an i64 requires two (two i32 stores). In a
multi-threaded program you may want to bitcast an i64
to a double and store as a double because that will
occur atomically, and be indivisible to other threads.
So it would be wrong to convert the store-of-double
into a store of an i64, because this will become two
i32 stores - no longer atomic. My policy here is
to say that the number of processor operations for
an illegal operation is undefined. So it is alright
to change a store of an i64 (requires at least two
stores; but could be validly lowered to memcpy for
example) into a store of double (one processor op).
In short, if the new store is legal and has the same
size then I say that the transform is ok. It would
also be possible to say that transforms are always
ok if before they were illegal, whether after they
are illegal or not, but that's more awkward to do
and I doubt it buys us anything much.
However this exposed an interesting thing - on x86-32
a store of i64 is considered legal! That is because
operations are marked legal by default, regardless of
whether the type is legal or not. In some ways this
is clever: before type legalization this means that
operations on illegal types are considered legal;
after type legalization there are no illegal types
so now operations are only legal if they really are.
But I consider this to be too cunning for mere mortals.
Better to do things explicitly by testing AfterLegalize.
So I have changed things so that operations with illegal
types are considered illegal - indeed they can never
map to a machine operation. However this means that
the DAG combiner is more conservative because before
it was "accidentally" performing transforms where the
type was illegal because the operation was nonetheless
marked legal. So in a few such places I added a check
on AfterLegalize, which I suppose was actually just
forgotten before. This causes the DAG combiner to do
slightly more than it used to, which resulted in the X86
backend blowing up because it got a slightly surprising
node it wasn't expecting, so I tweaked it.
llvm-svn: 52254
don't fail when (expected) error output is produced. This fixes 17 tests.
While I was there, I also made all RUN lines of the form "not llvm-as..." a bit
more consistent, they now all redirect stderr and stdout to /dev/null and use
input redirect to read their input.
llvm-svn: 52174
and insertvalue and extractvalue instructions.
First-class array values are not trivial because C doesn't
support them. The approach I took here is to wrap all arrays
in structs. Feedback is welcome.
The 2007-01-15-NamedArrayType.ll test needed to be modified
because it has a "not grep" for a string that now exists,
because array types now have associated struct types, and
those struct types have names.
llvm-svn: 51881
in DAGISelEmitter output. This bug was recently uncovered by the
addition of patterns for CALL32m and CALL64m, which are nodes
that now have both MemOperands and variadic_ops.
This bug was especially visible with PIC in various configurations,
because the new patterns are matching the indirect call code used
in many PIC configurations.
llvm-svn: 51877
we did not truncate the value down to i1 with (x&1). This caused a problem
when the computation of x was nontrivial, for example, "add i1 1, 1" would
return 2 instead of 0.
This makes the testcase compile into:
...
llvm_cbe_t = (((llvm_cbe_r == 0u) + (llvm_cbe_r == 0u))&1);
llvm_cbe_u = (((unsigned int )(bool )llvm_cbe_t));
...
instead of:
...
llvm_cbe_t = ((llvm_cbe_r == 0u) + (llvm_cbe_r == 0u));
llvm_cbe_u = (((unsigned int )(bool )llvm_cbe_t));
...
This fixes a miscompilation of mediabench/adpcm/rawdaudio/rawdaudio and
403.gcc with the CBE, regressions from LLVM 2.2. Tanya, please pull
this into the release branch.
llvm-svn: 51813
cases due to an isel deficiency already noted in
lib/Target/X86/README.txt, but they can be matched in this fold-call.ll
testcase, for example.
This is interesting mainly because it exposes a tricky tblgen bug;
tblgen was incorrectly computing the starting index for variable_ops
in the case of a complex pattern.
llvm-svn: 51706