Manage tied operands entirely internally to MachineInstr. This makes it
possible to change the representation of tied operands, as I will do
shortly.
The constraint that tied uses and defs must be in the same order was too
restrictive.
llvm-svn: 163021
because it does not support CMOV of vectors. To implement this efficientlyi, we broadcast the condition bit and use a sequence of NAND-OR
to select between the two operands. This is the same sequence we use for targets that don't have vector BLENDs (like SSE2).
rdar://12201387
llvm-svn: 162926
When a MachineInstr is constructed, its implicit operands are added
first, then the explicit operands are inserted before the implicits.
MCInstrDesc has oprand flags like early clobber and operand ties that
apply to the explicit operands.
Don't look at those flags when the implicit operands are first added in
the explicit operands's positions.
llvm-svn: 162910
When there are multiple tied use-def pairs on an inline asm instruction,
the tied uses must appear in the same order as the defs.
It is possible to write an LLVM IR inline asm instruction that breaks
this constraint, but there is no reason for a front end to emit the
operands out of order.
The gnu inline asm syntax specifies tied operands as a single read/write
constraint "+r", so ouf of order operands are not possible.
llvm-svn: 162878
For normal instructions, isTied() is set automatically by addOperand(),
based on MCInstrDesc, but inline asm has tied operands outside the
descriptor.
llvm-svn: 162869
Ordered memory operations are more constrained than volatile loads and
stores because they must be ordered with respect to all other memory
operations.
llvm-svn: 162861
It is technically allowed to move a normal load across a volatile load,
but probably not a good idea.
It is not allowed to move a load across an atomic load with
Ordering > Monotonic, and we model those with MOVolatile as well.
I recently removed the mayStore flag from atomic load instructions, so
they don't need a pseudo-opcode. This patch makes up for the difference.
llvm-svn: 162857
The operands on an INLINEASM machine instruction are divided into groups
headed by immediate flag operands. Verify this structure.
Extract verifyTiedOperands(), and only call it for non-inlineasm
instructions.
llvm-svn: 162849
WHen running with -verify-machineinstrs, check that tied operands come
in matching use/def pairs, and that they are consistent with MCInstrDesc
when it applies.
llvm-svn: 162816
The isTied bit is set automatically when a tied use is added and
MCInstrDesc indicates a tied operand. The tie is broken when one of the
tied operands is removed.
llvm-svn: 162814
While in SSA form, a MachineInstr can have pairs of tied defs and uses.
The tied operands are used to represent read-modify-write operands that
must be assigned the same physical register.
Previously, tied operand pairs were computed from fixed MCInstrDesc
fields, or by using black magic on inline assembly instructions.
The isTied flag makes it possible to add tied operands to any
instruction while getting rid of (some of) the inlineasm magic.
Tied operands on normal instructions are needed to represent predicated
individual instructions in SSA form. An extra <tied,imp-use> operand is
required to represent the output value when the instruction predicate is
false.
Adding a predicate to:
%vreg0<def> = ADD %vreg1, %vreg2
Will look like:
%vreg0<tied,def> = ADD %vreg1, %vreg2, pred:3, %vreg7<tied,imp-use>
The virtual register %vreg7 is the value given to %vreg0 when the
predicate is false. It will be assigned the same physreg as %vreg0.
This commit adds the isTied flag and sets it based on MCInstrDesc when
building an instruction. The flag is not used for anything yet.
llvm-svn: 162774
Register operands are manipulated by a lot of target-independent code,
and it is not always possible to preserve target flags. That means it is
not safe to use target flags on register operands.
None of the targets in the tree are using register operand target flags.
External targets should be using immediate operands to annotate
instructions with operand modifiers.
llvm-svn: 162770
These extra flags are not required to properly order the atomic
load/store instructions. SelectionDAGBuilder chains atomics as if they
were volatile, and SelectionDAG::getAtomic() sets the isVolatile bit on
the memory operands of all atomic operations.
The volatile bit is enough to order atomic loads and stores during and
after SelectionDAG.
This means we set mayLoad on atomic_load, mayStore on atomic_store, and
mayLoad+mayStore on the remaining atomic read-modify-write operations.
llvm-svn: 162733
In SelectionDAGLegalize::ExpandLegalINT_TO_FP, expand INT_TO_FP nodes without
using any f64 operations if f64 is not a legal type.
Patch by Stefan Kristiansson.
llvm-svn: 162728
the case of multiple edges from one block to another.
A simple example is a switch statement with multiple values to the same
destination. The definition of an edge is modified from a pair of blocks to
a pair of PredBlock and an index into the successors.
Also set the weight correctly when building SelectionDAG from LLVM IR,
especially when converting a Switch.
IntegersSubsetMapping is updated to calculate the weight for each cluster.
llvm-svn: 162572
output (we're emitting a specification already and the information
isn't changing) and we're not in old gdb compat mode.
Saves 1% on the debug information for a build of llvm.
Fixes rdar://11043421
llvm-svn: 162493
The logic for recomputing latency based on a ScheduleDAG edge was
shady. This bypasses the problem by requiring the client to provide
operand indices. This ensures consistent use of the machine model's
API.
llvm-svn: 162420
Based on CR feedback from r162301 and Craig Topper's refactoring in r162347
here are a few other places that could use the same API (& in one instance drop
a Function.h dependency).
llvm-svn: 162367
SelectionDAG's 'init' has not been called when the SelectionDAGBuilder is
constructed (in SelectionDAGISel's constructor), so this was previously always
initialized with 0.
llvm-svn: 162333
Even looking at the revision history I couldn't quite piece together why this
cast was ever written in the first place, but I assume it was because of some
change in the inheritance, perhaps this function was reimplemented in a
derived type & this caller was meant to get the base version (& it wasn't
virtual)?
llvm-svn: 162301
The getSumForBlock function was quadratic in the number of successors
because getSuccWeight would perform a linear search for an already known
iterator.
This patch was originally committed as r161460, but reverted again
because of assertion failures. Now that duplicate Machine CFG edges have
been eliminated, this works properly.
llvm-svn: 162233
IR that hasn't been through SimplifyCFG can look like this:
br i1 %b, label %r, label %r
Make sure we don't create duplicate Machine CFG edges in this case.
Fix the machine code verifier to accept conditional branches with a
single CFG edge.
llvm-svn: 162230
The DAGCombiner tries to optimise a BUILD_VECTOR by checking if it
consists purely of get_vector_elts from one or two source vectors. If
so, it either makes a concat_vectors node or a shufflevector node.
However, it doesn't check the element type width of the underlying
vector, so if you have this sequence:
Node0: v4i16 = ...
Node1: i32 = extract_vector_elt Node0
Node2: i32 = extract_vector_elt Node0
Node3: v16i8 = BUILD_VECTOR Node1, Node2, ...
It will attempt to:
Node0: v4i16 = ...
NewNode1: v16i8 = concat_vectors Node0, ...
Where this is actually invalid because the element width is completely
different. This causes an assertion failure on DAG legalization stage.
Fix:
If output item type of BUILD_VECTOR differs from input item type.
Make concat_vectors based on input element type and then bitcast it to the output vector type. So the case described above will transformed to:
Node0: v4i16 = ...
NewNode1: v8i16 = concat_vectors Node0, ...
NewNode2: v16i8 = bitcast NewNode1
llvm-svn: 162195