doesn't do its own local caching, and is slightly more aggressive about
free/store dse (see testcase). This eliminates the last external client
of MemDep::getDependenceFrom().
llvm-svn: 60619
loops when they can be subsumed into addressing modes.
Change X86 addressing mode check to realize that
some PIC references need an extra register.
(I believe this is correct for Linux, if not, I'm sure
someone will tell me.)
llvm-svn: 60608
1. Merge the 'None' result into 'Normal', making loads
and stores return their dependencies on allocations as Normal.
2. Split the 'Normal' result into 'Clobber' and 'Def' to
distinguish between the cases when memdep knows the value is
produced from when we just know if may be changed.
3. Move some of the logic for determining whether readonly calls
are CSEs into memdep instead of it being in GVN. This still
leaves verification that the arguments are hte same to GVN to
let it know about value equivalences in different contexts.
4. Change memdep's call/call dependency analysis to use
getModRefInfo(CallSite,CallSite) instead of doing something
very weak. This only really matters for things like DSA, but
someday maybe we'll have some other decent context sensitive
analyses :)
5. This reimplements the guts of memdep to handle the new results.
6. This simplifies GVN significantly:
a) readonly call CSE is slightly simpler
b) I eliminated the "getDependencyFrom" chaining for load
elimination and load CSE doesn't have to worry about
volatile (they are always clobbers) anymore.
c) GVN no longer does any 'lastLoad' caching, leaving it to
memdep.
7. The logic in DSE is simplified a bit and sped up. A potentially
unsafe case was eliminated.
llvm-svn: 60607
This fixes many bugs. I will add more test cases in a separate check-in.
Some day, the code that manipulates CFG and updates dom. info could use refactoring help.
llvm-svn: 60554
1) have it fold "br undef", which does occur with
surprising frequency as jump threading iterates.
2) teach j-t to delete dead blocks. This removes the successor
edges, reducing the in-edges of other blocks, allowing
recursive simplification.
3) Fold things like:
br COND, BBX, BBY
BBX:
br COND, BBZ, BBW
which also happens because jump threading iterates.
llvm-svn: 60470
straight-forward implementation. This does not require any extra
alias analysis queries beyond what we already do for non-local loads.
Some programs really really like load PRE. For example, SPASS triggers
this ~1000 times, ~300 times in 255.vortex, and ~1500 times on 403.gcc.
The biggest limitation to the implementation is that it does not split
critical edges. This is a huge killer on many programs and should be
addressed after the initial patch is enabled by default.
The implementation of this should incidentally speed up rejection of
non-local loads because it avoids creating the repl densemap in cases
when it won't be used for fully redundant loads.
This is currently disabled by default.
Before I turn this on, I need to fix a couple of miscompilations in
the testsuite, look at compile time performance numbers, and look at
perf impact. This is pretty close to ready though.
llvm-svn: 60408
constant. If X is a constant, then this is folded elsewhere.
- Added a note to Target/README.txt to indicate that we'd like to implement
this when we're able.
llvm-svn: 60399
figuring out the base of the IV. This produces better
code in the example. (Addresses use (IV) instead of
(BASE,IV) - a significant improvement on low-register
machines like x86).
llvm-svn: 60374
instead of std::sort. This shrinks the release-asserts LSR.o file
by 1100 bytes of code on my system.
We should start using array_pod_sort where possible.
llvm-svn: 60335
buggy rewrite, this notifies ScalarEvolution of a pending instruction
about to be removed and then erases it, instead of erasing it then
notifying.
llvm-svn: 60329
new instructions it simplifies. Because we're threading jumps on edges
with constants coming in from PHI's, we inherently are exposing a lot more
constants to the new block. Folding them and deleting dead conditions
allows the cost model in jump threading to be more accurate as it iterates.
llvm-svn: 60327
elimination: when finding dependent load/stores, realize that
they are the same if aliasing claims must alias instead of relying
on the pointers to be exactly equal. This makes load elimination
more aggressive. For example, on 403.gcc, we had:
< 68 gvn - Number of instructions PRE'd
< 152718 gvn - Number of instructions deleted
< 49699 gvn - Number of loads deleted
< 6153 memdep - Number of dirty cached non-local responses
< 169336 memdep - Number of fully cached non-local responses
< 162428 memdep - Number of uncached non-local responses
now we have:
> 64 gvn - Number of instructions PRE'd
> 153623 gvn - Number of instructions deleted
> 49856 gvn - Number of loads deleted
> 5022 memdep - Number of dirty cached non-local responses
> 159030 memdep - Number of fully cached non-local responses
> 162443 memdep - Number of uncached non-local responses
That's an extra 157 loads deleted and extra 905 other instructions nuked.
This slows down GVN very slightly, from 3.91 to 3.96s.
llvm-svn: 60314
vector instead of a densemap. This shrinks the memory usage of this thing
substantially (the high water mark) as well as making operations like
scanning it faster. This speeds up memdep slightly, gvn goes from
3.9376 to 3.9118s on 403.gcc
This also splits out the statistics for the cached non-local case to
differentiate between the dirty and clean cached case. Here's the stats
for 403.gcc:
6153 memdep - Number of dirty cached non-local responses
169336 memdep - Number of fully cached non-local responses
162428 memdep - Number of uncached non-local responses
yay for caching :)
llvm-svn: 60313