to emit target-specific things at the beginning of the asm output. This
fixes a problem for PPC, where the text sections are not being kept together
as expected. The base class doInitialization code calls DW->BeginModule()
which emits a bunch of DWARF section directives. The PPC doInitialization
code then emits all the TEXT section directives, with the intention that they
will be kept together. But as I understand it, the Darwin assembler treats
the default TEXT section as a special case and moves it to the beginning of
the file, which means that all those DWARF sections are in the middle of
the text. With this change, the EmitStartOfAsmFile hook is called before
the DWARF section directives are emitted, so that all the PPC text section
directives come out right at the beginning of the file.
llvm-svn: 83176
basic blocks that are so long that their size overflows a short.
Also assert that overflow does not happen in the future, as requested by Evan.
This fixes PR4401.
llvm-svn: 83159
information. This allows arbitrary code involving DW_OP_plus_uconst
and DW_OP_deref. The scheme allows for easy extention to include,
any, or all of the DW_OP_ opcodes. I thought about just exposing all
of them, but, wasn't sure if people wanted the dwarf opcodes exposed
in the api. Is that a layering violation?
With this scheme, the entire existing block scheme used by llvm-gcc
can be switched over to the new scheme. I think that would be
cleaner, as then the compiler specific bits are not present in llvm
proper. Before the old code can be yanked however, similar code in
clang would have to be removed.
Next up, more testing.
llvm-svn: 83120
unused DECLARE instruction.
KILL is not yet used anywhere, it will replace TargetInstrInfo::IMPLICIT_DEF
in the places where IMPLICIT_DEF is just used to alter liveness of physical
registers.
llvm-svn: 83006
the PassManager code into a regular verifyAnalysis method.
Also, reorganize loop verification. Make the LoopPass infrastructure
call verifyLoop as needed instead of having LoopInfo::verifyAnalysis
check every loop in the function after each looop pass. Add a new
command-line argument, -verify-loop-info, to enable the expensive
full checking.
llvm-svn: 82952
code that stops the timer doesn't have to search to find the timer
object before it stops the timer. This avoids a lock acquisition
and a few other things done with the timer running.
llvm-svn: 82949
- Allocate MachineMemOperands and MachineMemOperand lists in MachineFunctions.
This eliminates MachineInstr's std::list member and allows the data to be
created by isel and live for the remainder of codegen, avoiding a lot of
copying and unnecessary translation. This also shrinks MemSDNode.
- Delete MemOperandSDNode. Introduce MachineSDNode which has dedicated
fields for MachineMemOperands.
- Change MemSDNode to have a MachineMemOperand member instead of its own
fields with the same information. This introduces some redundancy, but
it's more consistent with what MachineInstr will eventually want.
- Ignore alignment when searching for redundant loads for CSE, but remember
the greatest alignment.
Target-specific code which previously used MemOperandSDNodes with generic
SDNodes now use MemIntrinsicSDNodes, with opcodes in a designated range
so that the SelectionDAG framework knows that MachineMemOperand information
is available.
llvm-svn: 82794
naming scheme used in SelectionDAG, where there are multiple kinds
of "target" nodes, but "machine" nodes are nodes which represent
a MachineInstr.
llvm-svn: 82790
For the AAPCS ABI, SP must always be 4-byte aligned, and at any "public
interface" it must be 8-byte aligned. For the older ARM APCS ABI, the stack
alignment is just always 4 bytes. For X86, we currently align SP at
entry to a function (e.g., to 16 bytes for Darwin), but no stack alignment
is needed at other times, such as for a leaf function.
After discussing this with Dan, I decided to go with the approach of adding
a new "TransientStackAlignment" field to TargetFrameInfo. This value
specifies the stack alignment that must be maintained even in between calls.
It defaults to 1 except for ARM, where it is 4. (Some other targets may
also want to set this if they have similar stack requirements. It's not
currently required for PPC because it sets targetHandlesStackFrameRounding
and handles the alignment in target-specific code.) The existing StackAlignment
value specifies the alignment upon entry to a function, which is how we've
been using it anyway.
llvm-svn: 82767
this adjustment does not change the direction or the signs of the object
offsets, and the details of the offset calculations can be target-specific.
Also mention that for most targets this value is only used to generate debug
info.
llvm-svn: 82750