to be really bad. Once they are joined they are not broken apart. Also, physical
intervals cannot be spilled!
Added a heuristic as a workaround for this. Be careful coalescing with a
physical register if the virtual register uses are "far". Check if there are
uses in the same loop as the source (copy instruction). Check if it is in the
loop preheader, etc.
llvm-svn: 35134
entry (0x8b056f0, LLVM BB @0x8b01b30, ID#0):
Live Ins: %r0 %r1 %r2 %r3
%reg1032 = tMOVrr %r3<kill>
%reg1033 = tMOVri8 1
%reg1034 = tMOVri8 0
tCMPi8 %reg1029<kill>, 0
tBcc mbb<entry,0x8b06a10>, 0
Successors according to CFG: 0x8b06980 0x8b06a10
entry (0x8b06980, LLVM BB @0x8b01b30, ID#12):
Predecessors according to CFG: 0x8b056f0
%reg1036 = tMOVrr %reg1034<kill>
Successors according to CFG: 0x8b06a10
entry (0x8b06a10, LLVM BB @0x8b01b30, ID#13):
Predecessors according to CFG: 0x8b056f0 0x8b06980
%reg1024<dead> = tMOVrr %reg1030<kill>
...
reg1030 and r1 have already been joined. When reg1024 and reg1030 are joined,
r1 live range from function entry to the tMOVrr instruction are dead. Eliminate
r1 from the livein set of the entry BB, not the BB where the copy is.
llvm-svn: 34866
- When coalescing a copy MI, if its destination is "dead", propagate the
property to the source MI's destination if there are no intervening uses.
- Detect dead function live-in's and remove them.
llvm-svn: 34383
by 40%, FreeBench/fourinarow by 20%, and many other programs 10-25%.
On PPC, this speeds up fourinarow by 18%, and probably other things as well.
llvm-svn: 31504
Turn on -Wunused and -Wno-unused-parameter. Clean up most of the resulting
fall out by removing unused variables. Remaining warnings have to do with
unused functions (I didn't want to delete code without review) and unused
variables in generated code. Maintainers should clean up the remaining
issues when they see them. All changes pass DejaGnu tests and Olden.
llvm-svn: 31380
actually *removes* one of the operands, instead of just assigning both operands
the same register. This make reasoning about instructions unnecessarily complex,
because you need to know if you are before or after register allocation to match
up operand #'s with the target description file.
Changing this also gets rid of a bunch of hacky code in various places.
This patch also includes changes to fold loads into cmp/test instructions in
the X86 backend, along with a significant simplification to the X86 spill
folding code.
llvm-svn: 30108