Commit Graph

14 Commits

Author SHA1 Message Date
Jakob Stoklund Olesen
e0d15d47e1 Remove floats from live range splitting costs.
These floats all represented block frequencies anyway, so just use the
BlockFrequency class directly.

Some floating point computations remain in tryLocalSplit(). They are
estimating spill weights which are still floats.

llvm-svn: 186435
2013-07-16 18:26:18 +00:00
Jakob Stoklund Olesen
0d3ae14227 Reapply r185393.
Original commit message:

Remove floating point computations from SpillPlacement.cpp.

Patch by Benjamin Kramer!

Use the BlockFrequency class instead of floats in the Hopfield network
computations. This rescales the node Bias field from a [-2;2] float
range to two block frequencies BiasN and BiasP pulling in opposite
directions. This construct has a more predictable behavior when block
frequencies saturate.

The per-node scaling factors are no longer necessary, assuming the block
frequencies around a bundle are consistent.

This patch can cause the register allocator to make different spilling
decisions. The differences should be small.

llvm-svn: 186434
2013-07-16 18:26:15 +00:00
Jakob Stoklund Olesen
140dcb1e35 Revert (most of) r185393 and r185395.
"Remove floating point computations form SpillPlacement.cpp."

These commits caused test failures in lencod on clang-native-arm-lnt.

I suspect these changes are only exposing an existing issue, but
reverting anyway to keep the bots passing while we investigate.

llvm-svn: 185447
2013-07-02 17:31:58 +00:00
Jakob Stoklund Olesen
43f394b1c6 Remove floating point computations form SpillPlacement.cpp.
Patch by Benjamin Kramer!

Use the BlockFrequency class instead of floats in the Hopfield network
computations. This rescales the node Bias field from a [-2;2] float
range to two block frequencies BiasN and BiasP pulling in opposite
directions. This construct has a more predictable behavior when block
frequencies saturate.

The per-node scaling factors are no longer necessary, assuming the block
frequencies around a bundle are consistent.

This patch can cause the register allocator to make different spilling
decisions. The differences should be small.

llvm-svn: 185393
2013-07-01 23:19:39 +00:00
Jakob Stoklund Olesen
faae878e65 Be more conservative when forming compact regions.
Apply twice the negative bias on transparent blocks when computing the
compact regions. This excludes loop backedges from the region when only
one of the loop blocks uses the register.

Previously, we would include the backedge in the region if the loop
preheader and the loop latch both used the register, but the loop header
didn't.

When both the header and latch blocks use the register, we still keep it
live on the backedge.

llvm-svn: 136832
2011-08-03 23:09:38 +00:00
Jakob Stoklund Olesen
83062a212f Extend the SpillPlacement interface with two new features.
The PrefBoth constraint is used for blocks that ideally want a live-in
value both on the stack and in a register. This would be used by a block
that has a use before interference forces a spill.

Secondly, add the ChangesValue flag to BlockConstraint. This tells
SpillPlacement if a live-in value on the stack can be reused as a
live-out stack value for free. If the block redefines the virtual
register, a spill would be required for that.

This extra information will be used by SpillPlacement to more accurately
calculate spill costs when a value can exist both on the stack and in a
register.

The simplest example is a basic block that reads the virtual register,
but doesn't change its value. Spilling around such a block requires a
reload, but no spill in the block.

The spiller already knows this, but the spill placer doesn't. That can
sometimes lead to suboptimal regions.

llvm-svn: 136731
2011-08-02 21:53:03 +00:00
Jakob Stoklund Olesen
72ba470ad6 Add a simple method for marking blocks with interference in and out.
This method matches addLinks - All the listed blocks are considered to
have interference, so they add a negative bias to their bundles.

This could also be done by addConstraints, but that requires building a
separate BlockConstraint array.

llvm-svn: 135844
2011-07-23 03:10:19 +00:00
Jakob Stoklund Olesen
5add6d16b7 Build the Hopfield network incrementally when splitting global live ranges.
It is common for large live ranges to have few basic blocks with register uses
and many live-through blocks without any uses. This approach grows the Hopfield
network incrementally around the use blocks, completely avoiding checking
interference for some through blocks.

llvm-svn: 129188
2011-04-09 02:59:09 +00:00
Jakob Stoklund Olesen
402a4daae6 Extract SpillPlacement::addLinks for handling the special transparent blocks.
llvm-svn: 129079
2011-04-07 17:27:46 +00:00
Jakob Stoklund Olesen
7621fb6c1b Keep track of the number of positively biased nodes when adding constraints.
If there are no positive nodes, the algorithm can be aborted early.

llvm-svn: 129021
2011-04-06 19:14:00 +00:00
Jakob Stoklund Olesen
00f622b9b1 Break the spill placement algorithm into three parts: prepare, addConstraints, and finish.
This will allow us to abort the algorithm early if it is determined to be futile.

llvm-svn: 129020
2011-04-06 19:13:57 +00:00
Jakob Stoklund Olesen
3c64ea5ad2 Precompute block frequencies, pow() isn't free.
llvm-svn: 126975
2011-03-04 00:58:40 +00:00
Jakob Stoklund Olesen
c0ff5356d4 Add RAGreedy methods for splitting live ranges around regions.
Analyze the live range's behavior entering and leaving basic blocks. Compute an
interference pattern for each allocation candidate, and use SpillPlacement to
find an optimal region where that register can be live.

This code is still not enabled.

llvm-svn: 123774
2011-01-18 21:13:27 +00:00
Jakob Stoklund Olesen
7b1480ff12 Add the SpillPlacement analysis pass.
This pass precomputes CFG block frequency information that can be used by the
register allocator to find optimal spill code placement.

Given an interference pattern, placeSpills() will compute which basic blocks
should have the current variable enter or exit in a register, and which blocks
prefer the stack.

The algorithm is ready to consume block frequencies from profiling data, but for
now it gets by with the static estimates used for spill weights.

This is a work in progress and still not hooked up to RegAllocGreedy.

llvm-svn: 122938
2011-01-06 01:21:53 +00:00