llvm-mirror/lib/Transforms/Utils/CloneModule.cpp
Duncan P. N. Exon Smith f1a894dcb2 TransformUtils: Fix metadata handling in CloneModule (and improve CloneFunctionInto)
This commit fixes how metadata is handled in CloneModule to be sound,
and improves how it's handled in CloneFunctionInto (although the latter
is still awkward when called within a module).

Ruiling Song pointed out in PR48841 that CloneModule was changed to
unsoundly use the RF_ReuseAndMutateDistinctMDs flag (renamed in
fa35c1f80f0ea080a7cbc581416929b0a654f25c for clarity). This flag papered
over a crash caused by other various changes made to CloneFunctionInto
over the past few years that made it unsound to use cloning between
different modules.

(This commit partially addresses PR48841, fixing the repro from
preprocessed source but not textual IR. MDNodeMapper::mapDistinctNode
became unsound in df763188c9a1ecb1e7e5c4d4ea53a99fbb755903 and this
commit does not address that regression.)

RF_ReuseAndMutateDistinctMDs is designed for the IRMover to use,
avoiding unnecessary clones of all referenced metadata when linking
between modules (with IRMover, the source module is discarded after
linking). It never makes sense to use when you're not discarding the
source. This commit drops its incorrect use in CloneModule.

Sadly, the right thing to do with metadata when cloning a function is
complicated, and this patch doesn't totally fix it.

The first problem is that there are two different types of referenceable
metadata and it's not obvious what to with one of them when remapping.

- `!0 = !{!1}` is metadata's version of a constant. Programatically it's
  called "uniqued" (probably a better term would be "constant") because,
  like `ConstantArray`, it's stored in uniquing tables. Once it's
  constructed, it's illegal to change its arguments.
- `!0 = distinct !{!1}` is a bit closer to a global variable. It's legal
  to change the operands after construction.

What should be done with distinct metadata when cloning functions within
the same module?

- Should new, cloned nodes be created?
- Should all references point to the same, old nodes?

The answer depends on whether that metadata is effectively owned by a
function.

And that's the second problem. Referenceable metadata's ownership model
is not clear or explicit. Technically, it's all stored on an
LLVMContext. However, any metadata that is `distinct`, that transitively
references a `distinct` node, or that transitively references a
GlobalValue is specific to a Module and is effectively owned by it. More
specifically, some metadata is effectively owned by a specific Function
within a module.

Effectively function-local metadata was introduced somewhere around
c10d0e5ccd12f049bddb24dcf8bbb7fbbc6c68f2, which made it illegal for two
functions to share a DISubprogram attachment.

When cloning a function within a module, you need to clone the
function-local debug info and suppress cloning of global debug info (the
status quo suppresses cloning some global debug info but not all). When
cloning a function to a new/different module, you need to clone all of
the debug info.

Here's what I think we should do (eventually? soon? not this patch
though):
- Distinguish explicitly (somehow) between pure constant metadata owned
  by the LLVMContext, global metadata owned by the Module, and local
  metadata owned by a GlobalValue (such as a function).
- Update CloneFunctionInto to trigger cloning of all "local" metadata
  (only), perhaps by adding a bit to RemapFlag. Alternatively, split
  out a separate function CloneFunctionMetadataInto to prime the
  metadata map that callers are updated to call ahead of time as
  appropriate.

Here's the somewhat more isolated fix in this patch:
- Converted the `ModuleLevelChanges` parameter to `CloneFunctionInto` to
  an enum called `CloneFunctionChangeType` that is one of
  LocalChangesOnly, GlobalChanges, DifferentModule, and ClonedModule.
- The code maintaining the "functions uniquely own subprograms"
  invariant is now only active in the first two cases, where a function
  is being cloned within a single module. That's necessary because this
  code inhibits cloning of (some) "global" metadata that's effectively
  owned by the module.
- The code maintaining the "all compile units must be explicitly
  referenced by !llvm.dbg.cu" invariant is now only active in the
  DifferentModule case, where a function is being cloned into a new
  module in isolation.
- CoroSplit.cpp's call to CloneFunctionInto in CoroCloner::create
  uses LocalChangeOnly, since fa635d730f74f3285b77cc1537f1692184b8bf5b
  only set `ModuleLevelChanges` to trigger cloning of local metadata.
- CloneModule drops its unsound use of RF_ReuseAndMutateDistinctMDs
  and special handling of !llvm.dbg.cu.
- Fixed some outdated header docs and left a couple of FIXMEs.

Differential Revision: https://reviews.llvm.org/D96531
2021-02-15 11:56:00 -08:00

203 lines
7.4 KiB
C++

//===- CloneModule.cpp - Clone an entire module ---------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements the CloneModule interface which makes a copy of an
// entire module.
//
//===----------------------------------------------------------------------===//
#include "llvm/IR/Constant.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/Module.h"
#include "llvm/Transforms/Utils/Cloning.h"
#include "llvm/Transforms/Utils/ValueMapper.h"
using namespace llvm;
static void copyComdat(GlobalObject *Dst, const GlobalObject *Src) {
const Comdat *SC = Src->getComdat();
if (!SC)
return;
Comdat *DC = Dst->getParent()->getOrInsertComdat(SC->getName());
DC->setSelectionKind(SC->getSelectionKind());
Dst->setComdat(DC);
}
/// This is not as easy as it might seem because we have to worry about making
/// copies of global variables and functions, and making their (initializers and
/// references, respectively) refer to the right globals.
///
std::unique_ptr<Module> llvm::CloneModule(const Module &M) {
// Create the value map that maps things from the old module over to the new
// module.
ValueToValueMapTy VMap;
return CloneModule(M, VMap);
}
std::unique_ptr<Module> llvm::CloneModule(const Module &M,
ValueToValueMapTy &VMap) {
return CloneModule(M, VMap, [](const GlobalValue *GV) { return true; });
}
std::unique_ptr<Module> llvm::CloneModule(
const Module &M, ValueToValueMapTy &VMap,
function_ref<bool(const GlobalValue *)> ShouldCloneDefinition) {
// First off, we need to create the new module.
std::unique_ptr<Module> New =
std::make_unique<Module>(M.getModuleIdentifier(), M.getContext());
New->setSourceFileName(M.getSourceFileName());
New->setDataLayout(M.getDataLayout());
New->setTargetTriple(M.getTargetTriple());
New->setModuleInlineAsm(M.getModuleInlineAsm());
// Loop over all of the global variables, making corresponding globals in the
// new module. Here we add them to the VMap and to the new Module. We
// don't worry about attributes or initializers, they will come later.
//
for (Module::const_global_iterator I = M.global_begin(), E = M.global_end();
I != E; ++I) {
GlobalVariable *GV = new GlobalVariable(*New,
I->getValueType(),
I->isConstant(), I->getLinkage(),
(Constant*) nullptr, I->getName(),
(GlobalVariable*) nullptr,
I->getThreadLocalMode(),
I->getType()->getAddressSpace());
GV->copyAttributesFrom(&*I);
VMap[&*I] = GV;
}
// Loop over the functions in the module, making external functions as before
for (const Function &I : M) {
Function *NF =
Function::Create(cast<FunctionType>(I.getValueType()), I.getLinkage(),
I.getAddressSpace(), I.getName(), New.get());
NF->copyAttributesFrom(&I);
VMap[&I] = NF;
}
// Loop over the aliases in the module
for (Module::const_alias_iterator I = M.alias_begin(), E = M.alias_end();
I != E; ++I) {
if (!ShouldCloneDefinition(&*I)) {
// An alias cannot act as an external reference, so we need to create
// either a function or a global variable depending on the value type.
// FIXME: Once pointee types are gone we can probably pick one or the
// other.
GlobalValue *GV;
if (I->getValueType()->isFunctionTy())
GV = Function::Create(cast<FunctionType>(I->getValueType()),
GlobalValue::ExternalLinkage,
I->getAddressSpace(), I->getName(), New.get());
else
GV = new GlobalVariable(
*New, I->getValueType(), false, GlobalValue::ExternalLinkage,
nullptr, I->getName(), nullptr,
I->getThreadLocalMode(), I->getType()->getAddressSpace());
VMap[&*I] = GV;
// We do not copy attributes (mainly because copying between different
// kinds of globals is forbidden), but this is generally not required for
// correctness.
continue;
}
auto *GA = GlobalAlias::create(I->getValueType(),
I->getType()->getPointerAddressSpace(),
I->getLinkage(), I->getName(), New.get());
GA->copyAttributesFrom(&*I);
VMap[&*I] = GA;
}
// Now that all of the things that global variable initializer can refer to
// have been created, loop through and copy the global variable referrers
// over... We also set the attributes on the global now.
//
for (const GlobalVariable &G : M.globals()) {
GlobalVariable *GV = cast<GlobalVariable>(VMap[&G]);
SmallVector<std::pair<unsigned, MDNode *>, 1> MDs;
G.getAllMetadata(MDs);
for (auto MD : MDs)
GV->addMetadata(MD.first, *MapMetadata(MD.second, VMap));
if (G.isDeclaration())
continue;
if (!ShouldCloneDefinition(&G)) {
// Skip after setting the correct linkage for an external reference.
GV->setLinkage(GlobalValue::ExternalLinkage);
continue;
}
if (G.hasInitializer())
GV->setInitializer(MapValue(G.getInitializer(), VMap));
copyComdat(GV, &G);
}
// Similarly, copy over function bodies now...
//
for (const Function &I : M) {
if (I.isDeclaration())
continue;
Function *F = cast<Function>(VMap[&I]);
if (!ShouldCloneDefinition(&I)) {
// Skip after setting the correct linkage for an external reference.
F->setLinkage(GlobalValue::ExternalLinkage);
// Personality function is not valid on a declaration.
F->setPersonalityFn(nullptr);
continue;
}
Function::arg_iterator DestI = F->arg_begin();
for (Function::const_arg_iterator J = I.arg_begin(); J != I.arg_end();
++J) {
DestI->setName(J->getName());
VMap[&*J] = &*DestI++;
}
SmallVector<ReturnInst *, 8> Returns; // Ignore returns cloned.
CloneFunctionInto(F, &I, VMap, CloneFunctionChangeType::ClonedModule,
Returns);
if (I.hasPersonalityFn())
F->setPersonalityFn(MapValue(I.getPersonalityFn(), VMap));
copyComdat(F, &I);
}
// And aliases
for (Module::const_alias_iterator I = M.alias_begin(), E = M.alias_end();
I != E; ++I) {
// We already dealt with undefined aliases above.
if (!ShouldCloneDefinition(&*I))
continue;
GlobalAlias *GA = cast<GlobalAlias>(VMap[&*I]);
if (const Constant *C = I->getAliasee())
GA->setAliasee(MapValue(C, VMap));
}
// And named metadata....
for (Module::const_named_metadata_iterator I = M.named_metadata_begin(),
E = M.named_metadata_end();
I != E; ++I) {
const NamedMDNode &NMD = *I;
NamedMDNode *NewNMD = New->getOrInsertNamedMetadata(NMD.getName());
for (unsigned i = 0, e = NMD.getNumOperands(); i != e; ++i)
NewNMD->addOperand(MapMetadata(NMD.getOperand(i), VMap));
}
return New;
}
extern "C" {
LLVMModuleRef LLVMCloneModule(LLVMModuleRef M) {
return wrap(CloneModule(*unwrap(M)).release());
}
}