mirror of
https://github.com/RPCS3/llvm-mirror.git
synced 2025-05-14 19:18:36 +00:00

This patch changes the VecDesc struct to use ElementCount instead of an unsigned VF value, in preparation for future work that adds support for vectorized versions of math functions using scalable vectors. Since all I'm doing in this patch is switching the type I believe it's a non-functional change. I changed getWidestVF to now return both the widest fixed-width and scalable VF values, but currently the widest scalable value will be zero. Differential Revision: https://reviews.llvm.org/D96011
178 lines
7.0 KiB
C++
178 lines
7.0 KiB
C++
//===- InjectTLIMAppings.cpp - TLI to VFABI attribute injection ----------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// Populates the VFABI attribute with the scalar-to-vector mappings
|
|
// from the TargetLibraryInfo.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "llvm/Transforms/Utils/InjectTLIMappings.h"
|
|
#include "llvm/ADT/Statistic.h"
|
|
#include "llvm/Analysis/DemandedBits.h"
|
|
#include "llvm/Analysis/GlobalsModRef.h"
|
|
#include "llvm/Analysis/OptimizationRemarkEmitter.h"
|
|
#include "llvm/Analysis/TargetLibraryInfo.h"
|
|
#include "llvm/Analysis/VectorUtils.h"
|
|
#include "llvm/IR/InstIterator.h"
|
|
#include "llvm/IR/IntrinsicInst.h"
|
|
#include "llvm/Transforms/Utils.h"
|
|
#include "llvm/Transforms/Utils/ModuleUtils.h"
|
|
|
|
using namespace llvm;
|
|
|
|
#define DEBUG_TYPE "inject-tli-mappings"
|
|
|
|
STATISTIC(NumCallInjected,
|
|
"Number of calls in which the mappings have been injected.");
|
|
|
|
STATISTIC(NumVFDeclAdded,
|
|
"Number of function declarations that have been added.");
|
|
STATISTIC(NumCompUsedAdded,
|
|
"Number of `@llvm.compiler.used` operands that have been added.");
|
|
|
|
/// A helper function that adds the vector function declaration that
|
|
/// vectorizes the CallInst CI with a vectorization factor of VF
|
|
/// lanes. The TLI assumes that all parameters and the return type of
|
|
/// CI (other than void) need to be widened to a VectorType of VF
|
|
/// lanes.
|
|
static void addVariantDeclaration(CallInst &CI, const ElementCount &VF,
|
|
const StringRef VFName) {
|
|
Module *M = CI.getModule();
|
|
|
|
// Add function declaration.
|
|
Type *RetTy = ToVectorTy(CI.getType(), VF);
|
|
SmallVector<Type *, 4> Tys;
|
|
for (Value *ArgOperand : CI.arg_operands())
|
|
Tys.push_back(ToVectorTy(ArgOperand->getType(), VF));
|
|
assert(!CI.getFunctionType()->isVarArg() &&
|
|
"VarArg functions are not supported.");
|
|
FunctionType *FTy = FunctionType::get(RetTy, Tys, /*isVarArg=*/false);
|
|
Function *VectorF =
|
|
Function::Create(FTy, Function::ExternalLinkage, VFName, M);
|
|
VectorF->copyAttributesFrom(CI.getCalledFunction());
|
|
++NumVFDeclAdded;
|
|
LLVM_DEBUG(dbgs() << DEBUG_TYPE << ": Added to the module: `" << VFName
|
|
<< "` of type " << *(VectorF->getType()) << "\n");
|
|
|
|
// Make function declaration (without a body) "sticky" in the IR by
|
|
// listing it in the @llvm.compiler.used intrinsic.
|
|
assert(!VectorF->size() && "VFABI attribute requires `@llvm.compiler.used` "
|
|
"only on declarations.");
|
|
appendToCompilerUsed(*M, {VectorF});
|
|
LLVM_DEBUG(dbgs() << DEBUG_TYPE << ": Adding `" << VFName
|
|
<< "` to `@llvm.compiler.used`.\n");
|
|
++NumCompUsedAdded;
|
|
}
|
|
|
|
static void addMappingsFromTLI(const TargetLibraryInfo &TLI, CallInst &CI) {
|
|
// This is needed to make sure we don't query the TLI for calls to
|
|
// bitcast of function pointers, like `%call = call i32 (i32*, ...)
|
|
// bitcast (i32 (...)* @goo to i32 (i32*, ...)*)(i32* nonnull %i)`,
|
|
// as such calls make the `isFunctionVectorizable` raise an
|
|
// exception.
|
|
if (CI.isNoBuiltin() || !CI.getCalledFunction())
|
|
return;
|
|
|
|
StringRef ScalarName = CI.getCalledFunction()->getName();
|
|
|
|
// Nothing to be done if the TLI thinks the function is not
|
|
// vectorizable.
|
|
if (!TLI.isFunctionVectorizable(ScalarName))
|
|
return;
|
|
SmallVector<std::string, 8> Mappings;
|
|
VFABI::getVectorVariantNames(CI, Mappings);
|
|
Module *M = CI.getModule();
|
|
const SetVector<StringRef> OriginalSetOfMappings(Mappings.begin(),
|
|
Mappings.end());
|
|
|
|
auto AddVariantDecl = [&](const ElementCount &VF) {
|
|
const std::string TLIName =
|
|
std::string(TLI.getVectorizedFunction(ScalarName, VF));
|
|
if (!TLIName.empty()) {
|
|
std::string MangledName = VFABI::mangleTLIVectorName(
|
|
TLIName, ScalarName, CI.getNumArgOperands(), VF);
|
|
if (!OriginalSetOfMappings.count(MangledName)) {
|
|
Mappings.push_back(MangledName);
|
|
++NumCallInjected;
|
|
}
|
|
Function *VariantF = M->getFunction(TLIName);
|
|
if (!VariantF)
|
|
addVariantDeclaration(CI, VF, TLIName);
|
|
}
|
|
};
|
|
|
|
// All VFs in the TLI are powers of 2.
|
|
ElementCount WidestFixedVF, WidestScalableVF;
|
|
TLI.getWidestVF(ScalarName, WidestFixedVF, WidestScalableVF);
|
|
|
|
for (ElementCount VF = ElementCount::getFixed(2);
|
|
ElementCount::isKnownLE(VF, WidestFixedVF); VF *= 2)
|
|
AddVariantDecl(VF);
|
|
|
|
// TODO: Add scalable variants once we're able to test them.
|
|
assert(WidestScalableVF.isZero() &&
|
|
"Scalable vector mappings not yet supported");
|
|
|
|
VFABI::setVectorVariantNames(&CI, Mappings);
|
|
}
|
|
|
|
static bool runImpl(const TargetLibraryInfo &TLI, Function &F) {
|
|
for (auto &I : instructions(F))
|
|
if (auto CI = dyn_cast<CallInst>(&I))
|
|
addMappingsFromTLI(TLI, *CI);
|
|
// Even if the pass adds IR attributes, the analyses are preserved.
|
|
return false;
|
|
}
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
// New pass manager implementation.
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
PreservedAnalyses InjectTLIMappings::run(Function &F,
|
|
FunctionAnalysisManager &AM) {
|
|
const TargetLibraryInfo &TLI = AM.getResult<TargetLibraryAnalysis>(F);
|
|
runImpl(TLI, F);
|
|
// Even if the pass adds IR attributes, the analyses are preserved.
|
|
return PreservedAnalyses::all();
|
|
}
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
// Legacy PM Implementation.
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
bool InjectTLIMappingsLegacy::runOnFunction(Function &F) {
|
|
const TargetLibraryInfo &TLI =
|
|
getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F);
|
|
return runImpl(TLI, F);
|
|
}
|
|
|
|
void InjectTLIMappingsLegacy::getAnalysisUsage(AnalysisUsage &AU) const {
|
|
AU.setPreservesCFG();
|
|
AU.addRequired<TargetLibraryInfoWrapperPass>();
|
|
AU.addPreserved<TargetLibraryInfoWrapperPass>();
|
|
AU.addPreserved<ScalarEvolutionWrapperPass>();
|
|
AU.addPreserved<AAResultsWrapperPass>();
|
|
AU.addPreserved<LoopAccessLegacyAnalysis>();
|
|
AU.addPreserved<DemandedBitsWrapperPass>();
|
|
AU.addPreserved<OptimizationRemarkEmitterWrapperPass>();
|
|
AU.addPreserved<GlobalsAAWrapperPass>();
|
|
}
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
// Legacy Pass manager initialization
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
char InjectTLIMappingsLegacy::ID = 0;
|
|
|
|
INITIALIZE_PASS_BEGIN(InjectTLIMappingsLegacy, DEBUG_TYPE,
|
|
"Inject TLI Mappings", false, false)
|
|
INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
|
|
INITIALIZE_PASS_END(InjectTLIMappingsLegacy, DEBUG_TYPE, "Inject TLI Mappings",
|
|
false, false)
|
|
|
|
FunctionPass *llvm::createInjectTLIMappingsLegacyPass() {
|
|
return new InjectTLIMappingsLegacy();
|
|
}
|