mirror of
https://github.com/RPCS3/llvm-mirror.git
synced 2025-04-04 00:31:54 +00:00
553 lines
24 KiB
C++
553 lines
24 KiB
C++
//===- llvm/Transforms/Utils/LoopUtils.h - Loop utilities -------*- C++ -*-===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file defines some loop transformation utilities.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#ifndef LLVM_TRANSFORMS_UTILS_LOOPUTILS_H
|
|
#define LLVM_TRANSFORMS_UTILS_LOOPUTILS_H
|
|
|
|
#include "llvm/ADT/DenseMap.h"
|
|
#include "llvm/ADT/Optional.h"
|
|
#include "llvm/ADT/SetVector.h"
|
|
#include "llvm/ADT/SmallPtrSet.h"
|
|
#include "llvm/ADT/SmallVector.h"
|
|
#include "llvm/ADT/StringRef.h"
|
|
#include "llvm/Analysis/AliasAnalysis.h"
|
|
#include "llvm/Analysis/DemandedBits.h"
|
|
#include "llvm/Analysis/EHPersonalities.h"
|
|
#include "llvm/Analysis/MustExecute.h"
|
|
#include "llvm/Analysis/TargetTransformInfo.h"
|
|
#include "llvm/IR/Dominators.h"
|
|
#include "llvm/IR/IRBuilder.h"
|
|
#include "llvm/IR/InstrTypes.h"
|
|
#include "llvm/IR/Operator.h"
|
|
#include "llvm/IR/ValueHandle.h"
|
|
#include "llvm/Support/Casting.h"
|
|
|
|
namespace llvm {
|
|
|
|
class AliasSet;
|
|
class AliasSetTracker;
|
|
class BasicBlock;
|
|
class DataLayout;
|
|
class Loop;
|
|
class LoopInfo;
|
|
class OptimizationRemarkEmitter;
|
|
class PredicatedScalarEvolution;
|
|
class PredIteratorCache;
|
|
class ScalarEvolution;
|
|
class SCEV;
|
|
class TargetLibraryInfo;
|
|
class TargetTransformInfo;
|
|
|
|
|
|
/// The RecurrenceDescriptor is used to identify recurrences variables in a
|
|
/// loop. Reduction is a special case of recurrence that has uses of the
|
|
/// recurrence variable outside the loop. The method isReductionPHI identifies
|
|
/// reductions that are basic recurrences.
|
|
///
|
|
/// Basic recurrences are defined as the summation, product, OR, AND, XOR, min,
|
|
/// or max of a set of terms. For example: for(i=0; i<n; i++) { total +=
|
|
/// array[i]; } is a summation of array elements. Basic recurrences are a
|
|
/// special case of chains of recurrences (CR). See ScalarEvolution for CR
|
|
/// references.
|
|
|
|
/// This struct holds information about recurrence variables.
|
|
class RecurrenceDescriptor {
|
|
public:
|
|
/// This enum represents the kinds of recurrences that we support.
|
|
enum RecurrenceKind {
|
|
RK_NoRecurrence, ///< Not a recurrence.
|
|
RK_IntegerAdd, ///< Sum of integers.
|
|
RK_IntegerMult, ///< Product of integers.
|
|
RK_IntegerOr, ///< Bitwise or logical OR of numbers.
|
|
RK_IntegerAnd, ///< Bitwise or logical AND of numbers.
|
|
RK_IntegerXor, ///< Bitwise or logical XOR of numbers.
|
|
RK_IntegerMinMax, ///< Min/max implemented in terms of select(cmp()).
|
|
RK_FloatAdd, ///< Sum of floats.
|
|
RK_FloatMult, ///< Product of floats.
|
|
RK_FloatMinMax ///< Min/max implemented in terms of select(cmp()).
|
|
};
|
|
|
|
// This enum represents the kind of minmax recurrence.
|
|
enum MinMaxRecurrenceKind {
|
|
MRK_Invalid,
|
|
MRK_UIntMin,
|
|
MRK_UIntMax,
|
|
MRK_SIntMin,
|
|
MRK_SIntMax,
|
|
MRK_FloatMin,
|
|
MRK_FloatMax
|
|
};
|
|
|
|
RecurrenceDescriptor() = default;
|
|
|
|
RecurrenceDescriptor(Value *Start, Instruction *Exit, RecurrenceKind K,
|
|
MinMaxRecurrenceKind MK, Instruction *UAI, Type *RT,
|
|
bool Signed, SmallPtrSetImpl<Instruction *> &CI)
|
|
: StartValue(Start), LoopExitInstr(Exit), Kind(K), MinMaxKind(MK),
|
|
UnsafeAlgebraInst(UAI), RecurrenceType(RT), IsSigned(Signed) {
|
|
CastInsts.insert(CI.begin(), CI.end());
|
|
}
|
|
|
|
/// This POD struct holds information about a potential recurrence operation.
|
|
class InstDesc {
|
|
public:
|
|
InstDesc(bool IsRecur, Instruction *I, Instruction *UAI = nullptr)
|
|
: IsRecurrence(IsRecur), PatternLastInst(I), MinMaxKind(MRK_Invalid),
|
|
UnsafeAlgebraInst(UAI) {}
|
|
|
|
InstDesc(Instruction *I, MinMaxRecurrenceKind K, Instruction *UAI = nullptr)
|
|
: IsRecurrence(true), PatternLastInst(I), MinMaxKind(K),
|
|
UnsafeAlgebraInst(UAI) {}
|
|
|
|
bool isRecurrence() { return IsRecurrence; }
|
|
|
|
bool hasUnsafeAlgebra() { return UnsafeAlgebraInst != nullptr; }
|
|
|
|
Instruction *getUnsafeAlgebraInst() { return UnsafeAlgebraInst; }
|
|
|
|
MinMaxRecurrenceKind getMinMaxKind() { return MinMaxKind; }
|
|
|
|
Instruction *getPatternInst() { return PatternLastInst; }
|
|
|
|
private:
|
|
// Is this instruction a recurrence candidate.
|
|
bool IsRecurrence;
|
|
// The last instruction in a min/max pattern (select of the select(icmp())
|
|
// pattern), or the current recurrence instruction otherwise.
|
|
Instruction *PatternLastInst;
|
|
// If this is a min/max pattern the comparison predicate.
|
|
MinMaxRecurrenceKind MinMaxKind;
|
|
// Recurrence has unsafe algebra.
|
|
Instruction *UnsafeAlgebraInst;
|
|
};
|
|
|
|
/// Returns a struct describing if the instruction 'I' can be a recurrence
|
|
/// variable of type 'Kind'. If the recurrence is a min/max pattern of
|
|
/// select(icmp()) this function advances the instruction pointer 'I' from the
|
|
/// compare instruction to the select instruction and stores this pointer in
|
|
/// 'PatternLastInst' member of the returned struct.
|
|
static InstDesc isRecurrenceInstr(Instruction *I, RecurrenceKind Kind,
|
|
InstDesc &Prev, bool HasFunNoNaNAttr);
|
|
|
|
/// Returns true if instruction I has multiple uses in Insts
|
|
static bool hasMultipleUsesOf(Instruction *I,
|
|
SmallPtrSetImpl<Instruction *> &Insts);
|
|
|
|
/// Returns true if all uses of the instruction I is within the Set.
|
|
static bool areAllUsesIn(Instruction *I, SmallPtrSetImpl<Instruction *> &Set);
|
|
|
|
/// Returns a struct describing if the instruction if the instruction is a
|
|
/// Select(ICmp(X, Y), X, Y) instruction pattern corresponding to a min(X, Y)
|
|
/// or max(X, Y).
|
|
static InstDesc isMinMaxSelectCmpPattern(Instruction *I, InstDesc &Prev);
|
|
|
|
/// Returns identity corresponding to the RecurrenceKind.
|
|
static Constant *getRecurrenceIdentity(RecurrenceKind K, Type *Tp);
|
|
|
|
/// Returns the opcode of binary operation corresponding to the
|
|
/// RecurrenceKind.
|
|
static unsigned getRecurrenceBinOp(RecurrenceKind Kind);
|
|
|
|
/// Returns true if Phi is a reduction of type Kind and adds it to the
|
|
/// RecurrenceDescriptor. If either \p DB is non-null or \p AC and \p DT are
|
|
/// non-null, the minimal bit width needed to compute the reduction will be
|
|
/// computed.
|
|
static bool AddReductionVar(PHINode *Phi, RecurrenceKind Kind, Loop *TheLoop,
|
|
bool HasFunNoNaNAttr,
|
|
RecurrenceDescriptor &RedDes,
|
|
DemandedBits *DB = nullptr,
|
|
AssumptionCache *AC = nullptr,
|
|
DominatorTree *DT = nullptr);
|
|
|
|
/// Returns true if Phi is a reduction in TheLoop. The RecurrenceDescriptor
|
|
/// is returned in RedDes. If either \p DB is non-null or \p AC and \p DT are
|
|
/// non-null, the minimal bit width needed to compute the reduction will be
|
|
/// computed.
|
|
static bool isReductionPHI(PHINode *Phi, Loop *TheLoop,
|
|
RecurrenceDescriptor &RedDes,
|
|
DemandedBits *DB = nullptr,
|
|
AssumptionCache *AC = nullptr,
|
|
DominatorTree *DT = nullptr);
|
|
|
|
/// Returns true if Phi is a first-order recurrence. A first-order recurrence
|
|
/// is a non-reduction recurrence relation in which the value of the
|
|
/// recurrence in the current loop iteration equals a value defined in the
|
|
/// previous iteration. \p SinkAfter includes pairs of instructions where the
|
|
/// first will be rescheduled to appear after the second if/when the loop is
|
|
/// vectorized. It may be augmented with additional pairs if needed in order
|
|
/// to handle Phi as a first-order recurrence.
|
|
static bool
|
|
isFirstOrderRecurrence(PHINode *Phi, Loop *TheLoop,
|
|
DenseMap<Instruction *, Instruction *> &SinkAfter,
|
|
DominatorTree *DT);
|
|
|
|
RecurrenceKind getRecurrenceKind() { return Kind; }
|
|
|
|
MinMaxRecurrenceKind getMinMaxRecurrenceKind() { return MinMaxKind; }
|
|
|
|
TrackingVH<Value> getRecurrenceStartValue() { return StartValue; }
|
|
|
|
Instruction *getLoopExitInstr() { return LoopExitInstr; }
|
|
|
|
/// Returns true if the recurrence has unsafe algebra which requires a relaxed
|
|
/// floating-point model.
|
|
bool hasUnsafeAlgebra() { return UnsafeAlgebraInst != nullptr; }
|
|
|
|
/// Returns first unsafe algebra instruction in the PHI node's use-chain.
|
|
Instruction *getUnsafeAlgebraInst() { return UnsafeAlgebraInst; }
|
|
|
|
/// Returns true if the recurrence kind is an integer kind.
|
|
static bool isIntegerRecurrenceKind(RecurrenceKind Kind);
|
|
|
|
/// Returns true if the recurrence kind is a floating point kind.
|
|
static bool isFloatingPointRecurrenceKind(RecurrenceKind Kind);
|
|
|
|
/// Returns true if the recurrence kind is an arithmetic kind.
|
|
static bool isArithmeticRecurrenceKind(RecurrenceKind Kind);
|
|
|
|
/// Returns the type of the recurrence. This type can be narrower than the
|
|
/// actual type of the Phi if the recurrence has been type-promoted.
|
|
Type *getRecurrenceType() { return RecurrenceType; }
|
|
|
|
/// Returns a reference to the instructions used for type-promoting the
|
|
/// recurrence.
|
|
SmallPtrSet<Instruction *, 8> &getCastInsts() { return CastInsts; }
|
|
|
|
/// Returns true if all source operands of the recurrence are SExtInsts.
|
|
bool isSigned() { return IsSigned; }
|
|
|
|
private:
|
|
// The starting value of the recurrence.
|
|
// It does not have to be zero!
|
|
TrackingVH<Value> StartValue;
|
|
// The instruction who's value is used outside the loop.
|
|
Instruction *LoopExitInstr = nullptr;
|
|
// The kind of the recurrence.
|
|
RecurrenceKind Kind = RK_NoRecurrence;
|
|
// If this a min/max recurrence the kind of recurrence.
|
|
MinMaxRecurrenceKind MinMaxKind = MRK_Invalid;
|
|
// First occurrence of unasfe algebra in the PHI's use-chain.
|
|
Instruction *UnsafeAlgebraInst = nullptr;
|
|
// The type of the recurrence.
|
|
Type *RecurrenceType = nullptr;
|
|
// True if all source operands of the recurrence are SExtInsts.
|
|
bool IsSigned = false;
|
|
// Instructions used for type-promoting the recurrence.
|
|
SmallPtrSet<Instruction *, 8> CastInsts;
|
|
};
|
|
|
|
/// A struct for saving information about induction variables.
|
|
class InductionDescriptor {
|
|
public:
|
|
/// This enum represents the kinds of inductions that we support.
|
|
enum InductionKind {
|
|
IK_NoInduction, ///< Not an induction variable.
|
|
IK_IntInduction, ///< Integer induction variable. Step = C.
|
|
IK_PtrInduction, ///< Pointer induction var. Step = C / sizeof(elem).
|
|
IK_FpInduction ///< Floating point induction variable.
|
|
};
|
|
|
|
public:
|
|
/// Default constructor - creates an invalid induction.
|
|
InductionDescriptor() = default;
|
|
|
|
/// Get the consecutive direction. Returns:
|
|
/// 0 - unknown or non-consecutive.
|
|
/// 1 - consecutive and increasing.
|
|
/// -1 - consecutive and decreasing.
|
|
int getConsecutiveDirection() const;
|
|
|
|
Value *getStartValue() const { return StartValue; }
|
|
InductionKind getKind() const { return IK; }
|
|
const SCEV *getStep() const { return Step; }
|
|
BinaryOperator *getInductionBinOp() const { return InductionBinOp; }
|
|
ConstantInt *getConstIntStepValue() const;
|
|
|
|
/// Returns true if \p Phi is an induction in the loop \p L. If \p Phi is an
|
|
/// induction, the induction descriptor \p D will contain the data describing
|
|
/// this induction. If by some other means the caller has a better SCEV
|
|
/// expression for \p Phi than the one returned by the ScalarEvolution
|
|
/// analysis, it can be passed through \p Expr. If the def-use chain
|
|
/// associated with the phi includes casts (that we know we can ignore
|
|
/// under proper runtime checks), they are passed through \p CastsToIgnore.
|
|
static bool
|
|
isInductionPHI(PHINode *Phi, const Loop* L, ScalarEvolution *SE,
|
|
InductionDescriptor &D, const SCEV *Expr = nullptr,
|
|
SmallVectorImpl<Instruction *> *CastsToIgnore = nullptr);
|
|
|
|
/// Returns true if \p Phi is a floating point induction in the loop \p L.
|
|
/// If \p Phi is an induction, the induction descriptor \p D will contain
|
|
/// the data describing this induction.
|
|
static bool isFPInductionPHI(PHINode *Phi, const Loop* L,
|
|
ScalarEvolution *SE, InductionDescriptor &D);
|
|
|
|
/// Returns true if \p Phi is a loop \p L induction, in the context associated
|
|
/// with the run-time predicate of PSE. If \p Assume is true, this can add
|
|
/// further SCEV predicates to \p PSE in order to prove that \p Phi is an
|
|
/// induction.
|
|
/// If \p Phi is an induction, \p D will contain the data describing this
|
|
/// induction.
|
|
static bool isInductionPHI(PHINode *Phi, const Loop* L,
|
|
PredicatedScalarEvolution &PSE,
|
|
InductionDescriptor &D, bool Assume = false);
|
|
|
|
/// Returns true if the induction type is FP and the binary operator does
|
|
/// not have the "fast-math" property. Such operation requires a relaxed FP
|
|
/// mode.
|
|
bool hasUnsafeAlgebra() {
|
|
return InductionBinOp && !cast<FPMathOperator>(InductionBinOp)->isFast();
|
|
}
|
|
|
|
/// Returns induction operator that does not have "fast-math" property
|
|
/// and requires FP unsafe mode.
|
|
Instruction *getUnsafeAlgebraInst() {
|
|
if (!InductionBinOp || cast<FPMathOperator>(InductionBinOp)->isFast())
|
|
return nullptr;
|
|
return InductionBinOp;
|
|
}
|
|
|
|
/// Returns binary opcode of the induction operator.
|
|
Instruction::BinaryOps getInductionOpcode() const {
|
|
return InductionBinOp ? InductionBinOp->getOpcode() :
|
|
Instruction::BinaryOpsEnd;
|
|
}
|
|
|
|
/// Returns a reference to the type cast instructions in the induction
|
|
/// update chain, that are redundant when guarded with a runtime
|
|
/// SCEV overflow check.
|
|
const SmallVectorImpl<Instruction *> &getCastInsts() const {
|
|
return RedundantCasts;
|
|
}
|
|
|
|
private:
|
|
/// Private constructor - used by \c isInductionPHI.
|
|
InductionDescriptor(Value *Start, InductionKind K, const SCEV *Step,
|
|
BinaryOperator *InductionBinOp = nullptr,
|
|
SmallVectorImpl<Instruction *> *Casts = nullptr);
|
|
|
|
/// Start value.
|
|
TrackingVH<Value> StartValue;
|
|
/// Induction kind.
|
|
InductionKind IK = IK_NoInduction;
|
|
/// Step value.
|
|
const SCEV *Step = nullptr;
|
|
// Instruction that advances induction variable.
|
|
BinaryOperator *InductionBinOp = nullptr;
|
|
// Instructions used for type-casts of the induction variable,
|
|
// that are redundant when guarded with a runtime SCEV overflow check.
|
|
SmallVector<Instruction *, 2> RedundantCasts;
|
|
};
|
|
|
|
BasicBlock *InsertPreheaderForLoop(Loop *L, DominatorTree *DT, LoopInfo *LI,
|
|
bool PreserveLCSSA);
|
|
|
|
/// Ensure that all exit blocks of the loop are dedicated exits.
|
|
///
|
|
/// For any loop exit block with non-loop predecessors, we split the loop
|
|
/// predecessors to use a dedicated loop exit block. We update the dominator
|
|
/// tree and loop info if provided, and will preserve LCSSA if requested.
|
|
bool formDedicatedExitBlocks(Loop *L, DominatorTree *DT, LoopInfo *LI,
|
|
bool PreserveLCSSA);
|
|
|
|
/// Ensures LCSSA form for every instruction from the Worklist in the scope of
|
|
/// innermost containing loop.
|
|
///
|
|
/// For the given instruction which have uses outside of the loop, an LCSSA PHI
|
|
/// node is inserted and the uses outside the loop are rewritten to use this
|
|
/// node.
|
|
///
|
|
/// LoopInfo and DominatorTree are required and, since the routine makes no
|
|
/// changes to CFG, preserved.
|
|
///
|
|
/// Returns true if any modifications are made.
|
|
bool formLCSSAForInstructions(SmallVectorImpl<Instruction *> &Worklist,
|
|
DominatorTree &DT, LoopInfo &LI);
|
|
|
|
/// Put loop into LCSSA form.
|
|
///
|
|
/// Looks at all instructions in the loop which have uses outside of the
|
|
/// current loop. For each, an LCSSA PHI node is inserted and the uses outside
|
|
/// the loop are rewritten to use this node.
|
|
///
|
|
/// LoopInfo and DominatorTree are required and preserved.
|
|
///
|
|
/// If ScalarEvolution is passed in, it will be preserved.
|
|
///
|
|
/// Returns true if any modifications are made to the loop.
|
|
bool formLCSSA(Loop &L, DominatorTree &DT, LoopInfo *LI, ScalarEvolution *SE);
|
|
|
|
/// Put a loop nest into LCSSA form.
|
|
///
|
|
/// This recursively forms LCSSA for a loop nest.
|
|
///
|
|
/// LoopInfo and DominatorTree are required and preserved.
|
|
///
|
|
/// If ScalarEvolution is passed in, it will be preserved.
|
|
///
|
|
/// Returns true if any modifications are made to the loop.
|
|
bool formLCSSARecursively(Loop &L, DominatorTree &DT, LoopInfo *LI,
|
|
ScalarEvolution *SE);
|
|
|
|
/// Walk the specified region of the CFG (defined by all blocks
|
|
/// dominated by the specified block, and that are in the current loop) in
|
|
/// reverse depth first order w.r.t the DominatorTree. This allows us to visit
|
|
/// uses before definitions, allowing us to sink a loop body in one pass without
|
|
/// iteration. Takes DomTreeNode, AliasAnalysis, LoopInfo, DominatorTree,
|
|
/// DataLayout, TargetLibraryInfo, Loop, AliasSet information for all
|
|
/// instructions of the loop and loop safety information as
|
|
/// arguments. Diagnostics is emitted via \p ORE. It returns changed status.
|
|
bool sinkRegion(DomTreeNode *, AliasAnalysis *, LoopInfo *, DominatorTree *,
|
|
TargetLibraryInfo *, TargetTransformInfo *, Loop *,
|
|
AliasSetTracker *, LoopSafetyInfo *,
|
|
OptimizationRemarkEmitter *ORE);
|
|
|
|
/// Walk the specified region of the CFG (defined by all blocks
|
|
/// dominated by the specified block, and that are in the current loop) in depth
|
|
/// first order w.r.t the DominatorTree. This allows us to visit definitions
|
|
/// before uses, allowing us to hoist a loop body in one pass without iteration.
|
|
/// Takes DomTreeNode, AliasAnalysis, LoopInfo, DominatorTree, DataLayout,
|
|
/// TargetLibraryInfo, Loop, AliasSet information for all instructions of the
|
|
/// loop and loop safety information as arguments. Diagnostics is emitted via \p
|
|
/// ORE. It returns changed status.
|
|
bool hoistRegion(DomTreeNode *, AliasAnalysis *, LoopInfo *, DominatorTree *,
|
|
TargetLibraryInfo *, Loop *, AliasSetTracker *,
|
|
LoopSafetyInfo *, OptimizationRemarkEmitter *ORE);
|
|
|
|
/// This function deletes dead loops. The caller of this function needs to
|
|
/// guarantee that the loop is infact dead.
|
|
/// The function requires a bunch or prerequisites to be present:
|
|
/// - The loop needs to be in LCSSA form
|
|
/// - The loop needs to have a Preheader
|
|
/// - A unique dedicated exit block must exist
|
|
///
|
|
/// This also updates the relevant analysis information in \p DT, \p SE, and \p
|
|
/// LI if pointers to those are provided.
|
|
/// It also updates the loop PM if an updater struct is provided.
|
|
|
|
void deleteDeadLoop(Loop *L, DominatorTree *DT, ScalarEvolution *SE,
|
|
LoopInfo *LI);
|
|
|
|
/// Try to promote memory values to scalars by sinking stores out of
|
|
/// the loop and moving loads to before the loop. We do this by looping over
|
|
/// the stores in the loop, looking for stores to Must pointers which are
|
|
/// loop invariant. It takes a set of must-alias values, Loop exit blocks
|
|
/// vector, loop exit blocks insertion point vector, PredIteratorCache,
|
|
/// LoopInfo, DominatorTree, Loop, AliasSet information for all instructions
|
|
/// of the loop and loop safety information as arguments.
|
|
/// Diagnostics is emitted via \p ORE. It returns changed status.
|
|
bool promoteLoopAccessesToScalars(const SmallSetVector<Value *, 8> &,
|
|
SmallVectorImpl<BasicBlock *> &,
|
|
SmallVectorImpl<Instruction *> &,
|
|
PredIteratorCache &, LoopInfo *,
|
|
DominatorTree *, const TargetLibraryInfo *,
|
|
Loop *, AliasSetTracker *, LoopSafetyInfo *,
|
|
OptimizationRemarkEmitter *);
|
|
|
|
/// Does a BFS from a given node to all of its children inside a given loop.
|
|
/// The returned vector of nodes includes the starting point.
|
|
SmallVector<DomTreeNode *, 16> collectChildrenInLoop(DomTreeNode *N,
|
|
const Loop *CurLoop);
|
|
|
|
/// Returns the instructions that use values defined in the loop.
|
|
SmallVector<Instruction *, 8> findDefsUsedOutsideOfLoop(Loop *L);
|
|
|
|
/// Find string metadata for loop
|
|
///
|
|
/// If it has a value (e.g. {"llvm.distribute", 1} return the value as an
|
|
/// operand or null otherwise. If the string metadata is not found return
|
|
/// Optional's not-a-value.
|
|
Optional<const MDOperand *> findStringMetadataForLoop(Loop *TheLoop,
|
|
StringRef Name);
|
|
|
|
/// Set input string into loop metadata by keeping other values intact.
|
|
void addStringMetadataToLoop(Loop *TheLoop, const char *MDString,
|
|
unsigned V = 0);
|
|
|
|
/// Get a loop's estimated trip count based on branch weight metadata.
|
|
/// Returns 0 when the count is estimated to be 0, or None when a meaningful
|
|
/// estimate can not be made.
|
|
Optional<unsigned> getLoopEstimatedTripCount(Loop *L);
|
|
|
|
/// Check inner loop (L) backedge count is known to be invariant on all iterations
|
|
/// of its outer loop. If the loop has no parent, this is trivially true.
|
|
bool hasIterationCountInvariantInParent(Loop *L, ScalarEvolution &SE);
|
|
|
|
/// Helper to consistently add the set of standard passes to a loop pass's \c
|
|
/// AnalysisUsage.
|
|
///
|
|
/// All loop passes should call this as part of implementing their \c
|
|
/// getAnalysisUsage.
|
|
void getLoopAnalysisUsage(AnalysisUsage &AU);
|
|
|
|
/// Returns true if is legal to hoist or sink this instruction disregarding the
|
|
/// possible introduction of faults. Reasoning about potential faulting
|
|
/// instructions is the responsibility of the caller since it is challenging to
|
|
/// do efficiently from within this routine.
|
|
/// \p TargetExecutesOncePerLoop is true only when it is guaranteed that the
|
|
/// target executes at most once per execution of the loop body. This is used
|
|
/// to assess the legality of duplicating atomic loads. Generally, this is
|
|
/// true when moving out of loop and not true when moving into loops.
|
|
/// If \p ORE is set use it to emit optimization remarks.
|
|
bool canSinkOrHoistInst(Instruction &I, AAResults *AA, DominatorTree *DT,
|
|
Loop *CurLoop, AliasSetTracker *CurAST,
|
|
bool TargetExecutesOncePerLoop,
|
|
OptimizationRemarkEmitter *ORE = nullptr);
|
|
|
|
/// Returns a Min/Max operation corresponding to MinMaxRecurrenceKind.
|
|
Value *createMinMaxOp(IRBuilder<> &Builder,
|
|
RecurrenceDescriptor::MinMaxRecurrenceKind RK,
|
|
Value *Left, Value *Right);
|
|
|
|
/// Generates an ordered vector reduction using extracts to reduce the value.
|
|
Value *
|
|
getOrderedReduction(IRBuilder<> &Builder, Value *Acc, Value *Src, unsigned Op,
|
|
RecurrenceDescriptor::MinMaxRecurrenceKind MinMaxKind =
|
|
RecurrenceDescriptor::MRK_Invalid,
|
|
ArrayRef<Value *> RedOps = None);
|
|
|
|
/// Generates a vector reduction using shufflevectors to reduce the value.
|
|
Value *getShuffleReduction(IRBuilder<> &Builder, Value *Src, unsigned Op,
|
|
RecurrenceDescriptor::MinMaxRecurrenceKind
|
|
MinMaxKind = RecurrenceDescriptor::MRK_Invalid,
|
|
ArrayRef<Value *> RedOps = None);
|
|
|
|
/// Create a target reduction of the given vector. The reduction operation
|
|
/// is described by the \p Opcode parameter. min/max reductions require
|
|
/// additional information supplied in \p Flags.
|
|
/// The target is queried to determine if intrinsics or shuffle sequences are
|
|
/// required to implement the reduction.
|
|
Value *
|
|
createSimpleTargetReduction(IRBuilder<> &B, const TargetTransformInfo *TTI,
|
|
unsigned Opcode, Value *Src,
|
|
TargetTransformInfo::ReductionFlags Flags =
|
|
TargetTransformInfo::ReductionFlags(),
|
|
ArrayRef<Value *> RedOps = None);
|
|
|
|
/// Create a generic target reduction using a recurrence descriptor \p Desc
|
|
/// The target is queried to determine if intrinsics or shuffle sequences are
|
|
/// required to implement the reduction.
|
|
Value *createTargetReduction(IRBuilder<> &B, const TargetTransformInfo *TTI,
|
|
RecurrenceDescriptor &Desc, Value *Src,
|
|
bool NoNaN = false);
|
|
|
|
/// Get the intersection (logical and) of all of the potential IR flags
|
|
/// of each scalar operation (VL) that will be converted into a vector (I).
|
|
/// If OpValue is non-null, we only consider operations similar to OpValue
|
|
/// when intersecting.
|
|
/// Flag set: NSW, NUW, exact, and all of fast-math.
|
|
void propagateIRFlags(Value *I, ArrayRef<Value *> VL, Value *OpValue = nullptr);
|
|
|
|
} // end namespace llvm
|
|
|
|
#endif // LLVM_TRANSFORMS_UTILS_LOOPUTILS_H
|