llvm-mirror/lib/CodeGen/DwarfWriter.cpp
Reid Spencer 3e54e72ef1 Fix minor doxygen nits.
llvm-svn: 40854
2007-08-05 20:06:04 +00:00

3617 lines
115 KiB
C++

//===-- llvm/CodeGen/DwarfWriter.cpp - Dwarf Framework ----------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file was developed by James M. Laskey and is distributed under the
// University of Illinois Open Source License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file contains support for writing dwarf info into asm files.
//
//===----------------------------------------------------------------------===//
#include "llvm/CodeGen/DwarfWriter.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/FoldingSet.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/ADT/UniqueVector.h"
#include "llvm/Module.h"
#include "llvm/Type.h"
#include "llvm/CodeGen/AsmPrinter.h"
#include "llvm/CodeGen/MachineModuleInfo.h"
#include "llvm/CodeGen/MachineFrameInfo.h"
#include "llvm/CodeGen/MachineLocation.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/Dwarf.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/DataTypes.h"
#include "llvm/Support/Mangler.h"
#include "llvm/Target/TargetAsmInfo.h"
#include "llvm/Target/MRegisterInfo.h"
#include "llvm/Target/TargetData.h"
#include "llvm/Target/TargetFrameInfo.h"
#include "llvm/Target/TargetInstrInfo.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/Target/TargetOptions.h"
#include <ostream>
#include <string>
using namespace llvm;
using namespace llvm::dwarf;
namespace llvm {
//===----------------------------------------------------------------------===//
/// Configuration values for initial hash set sizes (log2).
///
static const unsigned InitDiesSetSize = 9; // 512
static const unsigned InitAbbreviationsSetSize = 9; // 512
static const unsigned InitValuesSetSize = 9; // 512
//===----------------------------------------------------------------------===//
/// Forward declarations.
///
class DIE;
class DIEValue;
//===----------------------------------------------------------------------===//
/// DWLabel - Labels are used to track locations in the assembler file.
/// Labels appear in the form @verbatim <prefix><Tag><Number> @endverbatim,
/// where the tag is a category of label (Ex. location) and number is a value
/// unique in that category.
class DWLabel {
public:
/// Tag - Label category tag. Should always be a staticly declared C string.
///
const char *Tag;
/// Number - Value to make label unique.
///
unsigned Number;
DWLabel(const char *T, unsigned N) : Tag(T), Number(N) {}
void Profile(FoldingSetNodeID &ID) const {
ID.AddString(std::string(Tag));
ID.AddInteger(Number);
}
#ifndef NDEBUG
void print(std::ostream *O) const {
if (O) print(*O);
}
void print(std::ostream &O) const {
O << "." << Tag;
if (Number) O << Number;
}
#endif
};
//===----------------------------------------------------------------------===//
/// DIEAbbrevData - Dwarf abbreviation data, describes the one attribute of a
/// Dwarf abbreviation.
class DIEAbbrevData {
private:
/// Attribute - Dwarf attribute code.
///
unsigned Attribute;
/// Form - Dwarf form code.
///
unsigned Form;
public:
DIEAbbrevData(unsigned A, unsigned F)
: Attribute(A)
, Form(F)
{}
// Accessors.
unsigned getAttribute() const { return Attribute; }
unsigned getForm() const { return Form; }
/// Profile - Used to gather unique data for the abbreviation folding set.
///
void Profile(FoldingSetNodeID &ID)const {
ID.AddInteger(Attribute);
ID.AddInteger(Form);
}
};
//===----------------------------------------------------------------------===//
/// DIEAbbrev - Dwarf abbreviation, describes the organization of a debug
/// information object.
class DIEAbbrev : public FoldingSetNode {
private:
/// Tag - Dwarf tag code.
///
unsigned Tag;
/// Unique number for node.
///
unsigned Number;
/// ChildrenFlag - Dwarf children flag.
///
unsigned ChildrenFlag;
/// Data - Raw data bytes for abbreviation.
///
std::vector<DIEAbbrevData> Data;
public:
DIEAbbrev(unsigned T, unsigned C)
: Tag(T)
, ChildrenFlag(C)
, Data()
{}
~DIEAbbrev() {}
// Accessors.
unsigned getTag() const { return Tag; }
unsigned getNumber() const { return Number; }
unsigned getChildrenFlag() const { return ChildrenFlag; }
const std::vector<DIEAbbrevData> &getData() const { return Data; }
void setTag(unsigned T) { Tag = T; }
void setChildrenFlag(unsigned CF) { ChildrenFlag = CF; }
void setNumber(unsigned N) { Number = N; }
/// AddAttribute - Adds another set of attribute information to the
/// abbreviation.
void AddAttribute(unsigned Attribute, unsigned Form) {
Data.push_back(DIEAbbrevData(Attribute, Form));
}
/// AddFirstAttribute - Adds a set of attribute information to the front
/// of the abbreviation.
void AddFirstAttribute(unsigned Attribute, unsigned Form) {
Data.insert(Data.begin(), DIEAbbrevData(Attribute, Form));
}
/// Profile - Used to gather unique data for the abbreviation folding set.
///
void Profile(FoldingSetNodeID &ID) {
ID.AddInteger(Tag);
ID.AddInteger(ChildrenFlag);
// For each attribute description.
for (unsigned i = 0, N = Data.size(); i < N; ++i)
Data[i].Profile(ID);
}
/// Emit - Print the abbreviation using the specified Dwarf writer.
///
void Emit(const DwarfDebug &DD) const;
#ifndef NDEBUG
void print(std::ostream *O) {
if (O) print(*O);
}
void print(std::ostream &O);
void dump();
#endif
};
//===----------------------------------------------------------------------===//
/// DIE - A structured debug information entry. Has an abbreviation which
/// describes it's organization.
class DIE : public FoldingSetNode {
protected:
/// Abbrev - Buffer for constructing abbreviation.
///
DIEAbbrev Abbrev;
/// Offset - Offset in debug info section.
///
unsigned Offset;
/// Size - Size of instance + children.
///
unsigned Size;
/// Children DIEs.
///
std::vector<DIE *> Children;
/// Attributes values.
///
std::vector<DIEValue *> Values;
public:
DIE(unsigned Tag)
: Abbrev(Tag, DW_CHILDREN_no)
, Offset(0)
, Size(0)
, Children()
, Values()
{}
virtual ~DIE();
// Accessors.
DIEAbbrev &getAbbrev() { return Abbrev; }
unsigned getAbbrevNumber() const {
return Abbrev.getNumber();
}
unsigned getTag() const { return Abbrev.getTag(); }
unsigned getOffset() const { return Offset; }
unsigned getSize() const { return Size; }
const std::vector<DIE *> &getChildren() const { return Children; }
std::vector<DIEValue *> &getValues() { return Values; }
void setTag(unsigned Tag) { Abbrev.setTag(Tag); }
void setOffset(unsigned O) { Offset = O; }
void setSize(unsigned S) { Size = S; }
/// AddValue - Add a value and attributes to a DIE.
///
void AddValue(unsigned Attribute, unsigned Form, DIEValue *Value) {
Abbrev.AddAttribute(Attribute, Form);
Values.push_back(Value);
}
/// SiblingOffset - Return the offset of the debug information entry's
/// sibling.
unsigned SiblingOffset() const { return Offset + Size; }
/// AddSiblingOffset - Add a sibling offset field to the front of the DIE.
///
void AddSiblingOffset();
/// AddChild - Add a child to the DIE.
///
void AddChild(DIE *Child) {
Abbrev.setChildrenFlag(DW_CHILDREN_yes);
Children.push_back(Child);
}
/// Detach - Detaches objects connected to it after copying.
///
void Detach() {
Children.clear();
}
/// Profile - Used to gather unique data for the value folding set.
///
void Profile(FoldingSetNodeID &ID) ;
#ifndef NDEBUG
void print(std::ostream *O, unsigned IncIndent = 0) {
if (O) print(*O, IncIndent);
}
void print(std::ostream &O, unsigned IncIndent = 0);
void dump();
#endif
};
//===----------------------------------------------------------------------===//
/// DIEValue - A debug information entry value.
///
class DIEValue : public FoldingSetNode {
public:
enum {
isInteger,
isString,
isLabel,
isAsIsLabel,
isDelta,
isEntry,
isBlock
};
/// Type - Type of data stored in the value.
///
unsigned Type;
DIEValue(unsigned T)
: Type(T)
{}
virtual ~DIEValue() {}
// Accessors
unsigned getType() const { return Type; }
// Implement isa/cast/dyncast.
static bool classof(const DIEValue *) { return true; }
/// EmitValue - Emit value via the Dwarf writer.
///
virtual void EmitValue(DwarfDebug &DD, unsigned Form) = 0;
/// SizeOf - Return the size of a value in bytes.
///
virtual unsigned SizeOf(const DwarfDebug &DD, unsigned Form) const = 0;
/// Profile - Used to gather unique data for the value folding set.
///
virtual void Profile(FoldingSetNodeID &ID) = 0;
#ifndef NDEBUG
void print(std::ostream *O) {
if (O) print(*O);
}
virtual void print(std::ostream &O) = 0;
void dump();
#endif
};
//===----------------------------------------------------------------------===//
/// DWInteger - An integer value DIE.
///
class DIEInteger : public DIEValue {
private:
uint64_t Integer;
public:
DIEInteger(uint64_t I) : DIEValue(isInteger), Integer(I) {}
// Implement isa/cast/dyncast.
static bool classof(const DIEInteger *) { return true; }
static bool classof(const DIEValue *I) { return I->Type == isInteger; }
/// BestForm - Choose the best form for integer.
///
static unsigned BestForm(bool IsSigned, uint64_t Integer) {
if (IsSigned) {
if ((char)Integer == (signed)Integer) return DW_FORM_data1;
if ((short)Integer == (signed)Integer) return DW_FORM_data2;
if ((int)Integer == (signed)Integer) return DW_FORM_data4;
} else {
if ((unsigned char)Integer == Integer) return DW_FORM_data1;
if ((unsigned short)Integer == Integer) return DW_FORM_data2;
if ((unsigned int)Integer == Integer) return DW_FORM_data4;
}
return DW_FORM_data8;
}
/// EmitValue - Emit integer of appropriate size.
///
virtual void EmitValue(DwarfDebug &DD, unsigned Form);
/// SizeOf - Determine size of integer value in bytes.
///
virtual unsigned SizeOf(const DwarfDebug &DD, unsigned Form) const;
/// Profile - Used to gather unique data for the value folding set.
///
static void Profile(FoldingSetNodeID &ID, unsigned Integer) {
ID.AddInteger(isInteger);
ID.AddInteger(Integer);
}
virtual void Profile(FoldingSetNodeID &ID) { Profile(ID, Integer); }
#ifndef NDEBUG
virtual void print(std::ostream &O) {
O << "Int: " << (int64_t)Integer
<< " 0x" << std::hex << Integer << std::dec;
}
#endif
};
//===----------------------------------------------------------------------===//
/// DIEString - A string value DIE.
///
class DIEString : public DIEValue {
public:
const std::string String;
DIEString(const std::string &S) : DIEValue(isString), String(S) {}
// Implement isa/cast/dyncast.
static bool classof(const DIEString *) { return true; }
static bool classof(const DIEValue *S) { return S->Type == isString; }
/// EmitValue - Emit string value.
///
virtual void EmitValue(DwarfDebug &DD, unsigned Form);
/// SizeOf - Determine size of string value in bytes.
///
virtual unsigned SizeOf(const DwarfDebug &DD, unsigned Form) const {
return String.size() + sizeof(char); // sizeof('\0');
}
/// Profile - Used to gather unique data for the value folding set.
///
static void Profile(FoldingSetNodeID &ID, const std::string &String) {
ID.AddInteger(isString);
ID.AddString(String);
}
virtual void Profile(FoldingSetNodeID &ID) { Profile(ID, String); }
#ifndef NDEBUG
virtual void print(std::ostream &O) {
O << "Str: \"" << String << "\"";
}
#endif
};
//===----------------------------------------------------------------------===//
/// DIEDwarfLabel - A Dwarf internal label expression DIE.
//
class DIEDwarfLabel : public DIEValue {
public:
const DWLabel Label;
DIEDwarfLabel(const DWLabel &L) : DIEValue(isLabel), Label(L) {}
// Implement isa/cast/dyncast.
static bool classof(const DIEDwarfLabel *) { return true; }
static bool classof(const DIEValue *L) { return L->Type == isLabel; }
/// EmitValue - Emit label value.
///
virtual void EmitValue(DwarfDebug &DD, unsigned Form);
/// SizeOf - Determine size of label value in bytes.
///
virtual unsigned SizeOf(const DwarfDebug &DD, unsigned Form) const;
/// Profile - Used to gather unique data for the value folding set.
///
static void Profile(FoldingSetNodeID &ID, const DWLabel &Label) {
ID.AddInteger(isLabel);
Label.Profile(ID);
}
virtual void Profile(FoldingSetNodeID &ID) { Profile(ID, Label); }
#ifndef NDEBUG
virtual void print(std::ostream &O) {
O << "Lbl: ";
Label.print(O);
}
#endif
};
//===----------------------------------------------------------------------===//
/// DIEObjectLabel - A label to an object in code or data.
//
class DIEObjectLabel : public DIEValue {
public:
const std::string Label;
DIEObjectLabel(const std::string &L) : DIEValue(isAsIsLabel), Label(L) {}
// Implement isa/cast/dyncast.
static bool classof(const DIEObjectLabel *) { return true; }
static bool classof(const DIEValue *L) { return L->Type == isAsIsLabel; }
/// EmitValue - Emit label value.
///
virtual void EmitValue(DwarfDebug &DD, unsigned Form);
/// SizeOf - Determine size of label value in bytes.
///
virtual unsigned SizeOf(const DwarfDebug &DD, unsigned Form) const;
/// Profile - Used to gather unique data for the value folding set.
///
static void Profile(FoldingSetNodeID &ID, const std::string &Label) {
ID.AddInteger(isAsIsLabel);
ID.AddString(Label);
}
virtual void Profile(FoldingSetNodeID &ID) { Profile(ID, Label); }
#ifndef NDEBUG
virtual void print(std::ostream &O) {
O << "Obj: " << Label;
}
#endif
};
//===----------------------------------------------------------------------===//
/// DIEDelta - A simple label difference DIE.
///
class DIEDelta : public DIEValue {
public:
const DWLabel LabelHi;
const DWLabel LabelLo;
DIEDelta(const DWLabel &Hi, const DWLabel &Lo)
: DIEValue(isDelta), LabelHi(Hi), LabelLo(Lo) {}
// Implement isa/cast/dyncast.
static bool classof(const DIEDelta *) { return true; }
static bool classof(const DIEValue *D) { return D->Type == isDelta; }
/// EmitValue - Emit delta value.
///
virtual void EmitValue(DwarfDebug &DD, unsigned Form);
/// SizeOf - Determine size of delta value in bytes.
///
virtual unsigned SizeOf(const DwarfDebug &DD, unsigned Form) const;
/// Profile - Used to gather unique data for the value folding set.
///
static void Profile(FoldingSetNodeID &ID, const DWLabel &LabelHi,
const DWLabel &LabelLo) {
ID.AddInteger(isDelta);
LabelHi.Profile(ID);
LabelLo.Profile(ID);
}
virtual void Profile(FoldingSetNodeID &ID) { Profile(ID, LabelHi, LabelLo); }
#ifndef NDEBUG
virtual void print(std::ostream &O) {
O << "Del: ";
LabelHi.print(O);
O << "-";
LabelLo.print(O);
}
#endif
};
//===----------------------------------------------------------------------===//
/// DIEntry - A pointer to another debug information entry. An instance of this
/// class can also be used as a proxy for a debug information entry not yet
/// defined (ie. types.)
class DIEntry : public DIEValue {
public:
DIE *Entry;
DIEntry(DIE *E) : DIEValue(isEntry), Entry(E) {}
// Implement isa/cast/dyncast.
static bool classof(const DIEntry *) { return true; }
static bool classof(const DIEValue *E) { return E->Type == isEntry; }
/// EmitValue - Emit debug information entry offset.
///
virtual void EmitValue(DwarfDebug &DD, unsigned Form);
/// SizeOf - Determine size of debug information entry in bytes.
///
virtual unsigned SizeOf(const DwarfDebug &DD, unsigned Form) const {
return sizeof(int32_t);
}
/// Profile - Used to gather unique data for the value folding set.
///
static void Profile(FoldingSetNodeID &ID, DIE *Entry) {
ID.AddInteger(isEntry);
ID.AddPointer(Entry);
}
virtual void Profile(FoldingSetNodeID &ID) {
ID.AddInteger(isEntry);
if (Entry) {
ID.AddPointer(Entry);
} else {
ID.AddPointer(this);
}
}
#ifndef NDEBUG
virtual void print(std::ostream &O) {
O << "Die: 0x" << std::hex << (intptr_t)Entry << std::dec;
}
#endif
};
//===----------------------------------------------------------------------===//
/// DIEBlock - A block of values. Primarily used for location expressions.
//
class DIEBlock : public DIEValue, public DIE {
public:
unsigned Size; // Size in bytes excluding size header.
DIEBlock()
: DIEValue(isBlock)
, DIE(0)
, Size(0)
{}
~DIEBlock() {
}
// Implement isa/cast/dyncast.
static bool classof(const DIEBlock *) { return true; }
static bool classof(const DIEValue *E) { return E->Type == isBlock; }
/// ComputeSize - calculate the size of the block.
///
unsigned ComputeSize(DwarfDebug &DD);
/// BestForm - Choose the best form for data.
///
unsigned BestForm() const {
if ((unsigned char)Size == Size) return DW_FORM_block1;
if ((unsigned short)Size == Size) return DW_FORM_block2;
if ((unsigned int)Size == Size) return DW_FORM_block4;
return DW_FORM_block;
}
/// EmitValue - Emit block data.
///
virtual void EmitValue(DwarfDebug &DD, unsigned Form);
/// SizeOf - Determine size of block data in bytes.
///
virtual unsigned SizeOf(const DwarfDebug &DD, unsigned Form) const;
/// Profile - Used to gather unique data for the value folding set.
///
virtual void Profile(FoldingSetNodeID &ID) {
ID.AddInteger(isBlock);
DIE::Profile(ID);
}
#ifndef NDEBUG
virtual void print(std::ostream &O) {
O << "Blk: ";
DIE::print(O, 5);
}
#endif
};
//===----------------------------------------------------------------------===//
/// CompileUnit - This dwarf writer support class manages information associate
/// with a source file.
class CompileUnit {
private:
/// Desc - Compile unit debug descriptor.
///
CompileUnitDesc *Desc;
/// ID - File identifier for source.
///
unsigned ID;
/// Die - Compile unit debug information entry.
///
DIE *Die;
/// DescToDieMap - Tracks the mapping of unit level debug informaton
/// descriptors to debug information entries.
std::map<DebugInfoDesc *, DIE *> DescToDieMap;
/// DescToDIEntryMap - Tracks the mapping of unit level debug informaton
/// descriptors to debug information entries using a DIEntry proxy.
std::map<DebugInfoDesc *, DIEntry *> DescToDIEntryMap;
/// Globals - A map of globally visible named entities for this unit.
///
std::map<std::string, DIE *> Globals;
/// DiesSet - Used to uniquely define dies within the compile unit.
///
FoldingSet<DIE> DiesSet;
/// Dies - List of all dies in the compile unit.
///
std::vector<DIE *> Dies;
public:
CompileUnit(CompileUnitDesc *CUD, unsigned I, DIE *D)
: Desc(CUD)
, ID(I)
, Die(D)
, DescToDieMap()
, DescToDIEntryMap()
, Globals()
, DiesSet(InitDiesSetSize)
, Dies()
{}
~CompileUnit() {
delete Die;
for (unsigned i = 0, N = Dies.size(); i < N; ++i)
delete Dies[i];
}
// Accessors.
CompileUnitDesc *getDesc() const { return Desc; }
unsigned getID() const { return ID; }
DIE* getDie() const { return Die; }
std::map<std::string, DIE *> &getGlobals() { return Globals; }
/// hasContent - Return true if this compile unit has something to write out.
///
bool hasContent() const {
return !Die->getChildren().empty();
}
/// AddGlobal - Add a new global entity to the compile unit.
///
void AddGlobal(const std::string &Name, DIE *Die) {
Globals[Name] = Die;
}
/// getDieMapSlotFor - Returns the debug information entry map slot for the
/// specified debug descriptor.
DIE *&getDieMapSlotFor(DebugInfoDesc *DID) {
return DescToDieMap[DID];
}
/// getDIEntrySlotFor - Returns the debug information entry proxy slot for the
/// specified debug descriptor.
DIEntry *&getDIEntrySlotFor(DebugInfoDesc *DID) {
return DescToDIEntryMap[DID];
}
/// AddDie - Adds or interns the DIE to the compile unit.
///
DIE *AddDie(DIE &Buffer) {
FoldingSetNodeID ID;
Buffer.Profile(ID);
void *Where;
DIE *Die = DiesSet.FindNodeOrInsertPos(ID, Where);
if (!Die) {
Die = new DIE(Buffer);
DiesSet.InsertNode(Die, Where);
this->Die->AddChild(Die);
Buffer.Detach();
}
return Die;
}
};
//===----------------------------------------------------------------------===//
/// Dwarf - Emits general Dwarf directives.
///
class Dwarf {
protected:
//===--------------------------------------------------------------------===//
// Core attributes used by the Dwarf writer.
//
//
/// O - Stream to .s file.
///
std::ostream &O;
/// Asm - Target of Dwarf emission.
///
AsmPrinter *Asm;
/// TAI - Target Asm Printer.
const TargetAsmInfo *TAI;
/// TD - Target data.
const TargetData *TD;
/// RI - Register Information.
const MRegisterInfo *RI;
/// M - Current module.
///
Module *M;
/// MF - Current machine function.
///
MachineFunction *MF;
/// MMI - Collected machine module information.
///
MachineModuleInfo *MMI;
/// SubprogramCount - The running count of functions being compiled.
///
unsigned SubprogramCount;
unsigned SetCounter;
Dwarf(std::ostream &OS, AsmPrinter *A, const TargetAsmInfo *T)
: O(OS)
, Asm(A)
, TAI(T)
, TD(Asm->TM.getTargetData())
, RI(Asm->TM.getRegisterInfo())
, M(NULL)
, MF(NULL)
, MMI(NULL)
, SubprogramCount(0)
, SetCounter(1)
{
}
public:
//===--------------------------------------------------------------------===//
// Accessors.
//
AsmPrinter *getAsm() const { return Asm; }
MachineModuleInfo *getMMI() const { return MMI; }
const TargetAsmInfo *getTargetAsmInfo() const { return TAI; }
/// PrintLabelName - Print label name in form used by Dwarf writer.
///
void PrintLabelName(DWLabel Label) const {
PrintLabelName(Label.Tag, Label.Number);
}
void PrintLabelName(const char *Tag, unsigned Number,
bool isInSection = false) const {
if (isInSection && TAI->getDwarfSectionOffsetDirective())
O << TAI->getDwarfSectionOffsetDirective() << Tag;
else
O << TAI->getPrivateGlobalPrefix() << Tag;
if (Number) O << Number;
}
/// EmitLabel - Emit location label for internal use by Dwarf.
///
void EmitLabel(DWLabel Label) const {
EmitLabel(Label.Tag, Label.Number);
}
void EmitLabel(const char *Tag, unsigned Number) const {
PrintLabelName(Tag, Number);
O << ":\n";
}
/// EmitReference - Emit a reference to a label.
///
void EmitReference(DWLabel Label, bool IsPCRelative = false) const {
EmitReference(Label.Tag, Label.Number, IsPCRelative);
}
void EmitReference(const char *Tag, unsigned Number,
bool IsPCRelative = false) const {
if (TAI->getAddressSize() == sizeof(int32_t))
O << TAI->getData32bitsDirective();
else
O << TAI->getData64bitsDirective();
PrintLabelName(Tag, Number);
if (IsPCRelative) O << "-" << TAI->getPCSymbol();
}
void EmitReference(const std::string &Name, bool IsPCRelative = false) const {
if (TAI->getAddressSize() == sizeof(int32_t))
O << TAI->getData32bitsDirective();
else
O << TAI->getData64bitsDirective();
O << Name;
if (IsPCRelative) O << "-" << TAI->getPCSymbol();
}
/// EmitDifference - Emit the difference between two labels. Some
/// assemblers do not behave with absolute expressions with data directives,
/// so there is an option (needsSet) to use an intermediary set expression.
void EmitDifference(DWLabel LabelHi, DWLabel LabelLo,
bool IsSmall = false) {
EmitDifference(LabelHi.Tag, LabelHi.Number,
LabelLo.Tag, LabelLo.Number,
IsSmall);
}
void EmitDifference(const char *TagHi, unsigned NumberHi,
const char *TagLo, unsigned NumberLo,
bool IsSmall = false) {
if (TAI->needsSet()) {
O << "\t.set\t";
PrintLabelName("set", SetCounter);
O << ",";
PrintLabelName(TagHi, NumberHi);
O << "-";
PrintLabelName(TagLo, NumberLo);
O << "\n";
if (IsSmall || TAI->getAddressSize() == sizeof(int32_t))
O << TAI->getData32bitsDirective();
else
O << TAI->getData64bitsDirective();
PrintLabelName("set", SetCounter);
++SetCounter;
} else {
if (IsSmall || TAI->getAddressSize() == sizeof(int32_t))
O << TAI->getData32bitsDirective();
else
O << TAI->getData64bitsDirective();
PrintLabelName(TagHi, NumberHi);
O << "-";
PrintLabelName(TagLo, NumberLo);
}
}
void EmitSectionOffset(const char* Label, const char* Section,
unsigned LabelNumber, unsigned SectionNumber,
bool IsSmall = false, bool isEH = false) {
bool printAbsolute = false;
if (TAI->needsSet()) {
O << "\t.set\t";
PrintLabelName("set", SetCounter);
O << ",";
PrintLabelName(Label, LabelNumber, true);
if (isEH)
printAbsolute = TAI->isAbsoluteEHSectionOffsets();
else
printAbsolute = TAI->isAbsoluteDebugSectionOffsets();
if (!printAbsolute) {
O << "-";
PrintLabelName(Section, SectionNumber);
}
O << "\n";
if (IsSmall || TAI->getAddressSize() == sizeof(int32_t))
O << TAI->getData32bitsDirective();
else
O << TAI->getData64bitsDirective();
PrintLabelName("set", SetCounter);
++SetCounter;
} else {
if (IsSmall || TAI->getAddressSize() == sizeof(int32_t))
O << TAI->getData32bitsDirective();
else
O << TAI->getData64bitsDirective();
PrintLabelName(Label, LabelNumber, true);
if (isEH)
printAbsolute = TAI->isAbsoluteEHSectionOffsets();
else
printAbsolute = TAI->isAbsoluteDebugSectionOffsets();
if (!printAbsolute) {
O << "-";
PrintLabelName(Section, SectionNumber);
}
}
}
/// EmitFrameMoves - Emit frame instructions to describe the layout of the
/// frame.
void EmitFrameMoves(const char *BaseLabel, unsigned BaseLabelID,
const std::vector<MachineMove> &Moves) {
int stackGrowth =
Asm->TM.getFrameInfo()->getStackGrowthDirection() ==
TargetFrameInfo::StackGrowsUp ?
TAI->getAddressSize() : -TAI->getAddressSize();
bool IsLocal = BaseLabel && strcmp(BaseLabel, "label") == 0;
for (unsigned i = 0, N = Moves.size(); i < N; ++i) {
const MachineMove &Move = Moves[i];
unsigned LabelID = Move.getLabelID();
if (LabelID) {
LabelID = MMI->MappedLabel(LabelID);
// Throw out move if the label is invalid.
if (!LabelID) continue;
}
const MachineLocation &Dst = Move.getDestination();
const MachineLocation &Src = Move.getSource();
// Advance row if new location.
if (BaseLabel && LabelID && (BaseLabelID != LabelID || !IsLocal)) {
Asm->EmitInt8(DW_CFA_advance_loc4);
Asm->EOL("DW_CFA_advance_loc4");
EmitDifference("label", LabelID, BaseLabel, BaseLabelID, true);
Asm->EOL();
BaseLabelID = LabelID;
BaseLabel = "label";
IsLocal = true;
}
// If advancing cfa.
if (Dst.isRegister() && Dst.getRegister() == MachineLocation::VirtualFP) {
if (!Src.isRegister()) {
if (Src.getRegister() == MachineLocation::VirtualFP) {
Asm->EmitInt8(DW_CFA_def_cfa_offset);
Asm->EOL("DW_CFA_def_cfa_offset");
} else {
Asm->EmitInt8(DW_CFA_def_cfa);
Asm->EOL("DW_CFA_def_cfa");
Asm->EmitULEB128Bytes(RI->getDwarfRegNum(Src.getRegister()));
Asm->EOL("Register");
}
int Offset = -Src.getOffset();
Asm->EmitULEB128Bytes(Offset);
Asm->EOL("Offset");
} else {
assert(0 && "Machine move no supported yet.");
}
} else if (Src.isRegister() &&
Src.getRegister() == MachineLocation::VirtualFP) {
if (Dst.isRegister()) {
Asm->EmitInt8(DW_CFA_def_cfa_register);
Asm->EOL("DW_CFA_def_cfa_register");
Asm->EmitULEB128Bytes(RI->getDwarfRegNum(Dst.getRegister()));
Asm->EOL("Register");
} else {
assert(0 && "Machine move no supported yet.");
}
} else {
unsigned Reg = RI->getDwarfRegNum(Src.getRegister());
int Offset = Dst.getOffset() / stackGrowth;
if (Offset < 0) {
Asm->EmitInt8(DW_CFA_offset_extended_sf);
Asm->EOL("DW_CFA_offset_extended_sf");
Asm->EmitULEB128Bytes(Reg);
Asm->EOL("Reg");
Asm->EmitSLEB128Bytes(Offset);
Asm->EOL("Offset");
} else if (Reg < 64) {
Asm->EmitInt8(DW_CFA_offset + Reg);
Asm->EOL("DW_CFA_offset + Reg (" + utostr(Reg) + ")");
Asm->EmitULEB128Bytes(Offset);
Asm->EOL("Offset");
} else {
Asm->EmitInt8(DW_CFA_offset_extended);
Asm->EOL("DW_CFA_offset_extended");
Asm->EmitULEB128Bytes(Reg);
Asm->EOL("Reg");
Asm->EmitULEB128Bytes(Offset);
Asm->EOL("Offset");
}
}
}
}
};
//===----------------------------------------------------------------------===//
/// DwarfDebug - Emits Dwarf debug directives.
///
class DwarfDebug : public Dwarf {
private:
//===--------------------------------------------------------------------===//
// Attributes used to construct specific Dwarf sections.
//
/// CompileUnits - All the compile units involved in this build. The index
/// of each entry in this vector corresponds to the sources in MMI.
std::vector<CompileUnit *> CompileUnits;
/// AbbreviationsSet - Used to uniquely define abbreviations.
///
FoldingSet<DIEAbbrev> AbbreviationsSet;
/// Abbreviations - A list of all the unique abbreviations in use.
///
std::vector<DIEAbbrev *> Abbreviations;
/// ValuesSet - Used to uniquely define values.
///
FoldingSet<DIEValue> ValuesSet;
/// Values - A list of all the unique values in use.
///
std::vector<DIEValue *> Values;
/// StringPool - A UniqueVector of strings used by indirect references.
///
UniqueVector<std::string> StringPool;
/// UnitMap - Map debug information descriptor to compile unit.
///
std::map<DebugInfoDesc *, CompileUnit *> DescToUnitMap;
/// SectionMap - Provides a unique id per text section.
///
UniqueVector<std::string> SectionMap;
/// SectionSourceLines - Tracks line numbers per text section.
///
std::vector<std::vector<SourceLineInfo> > SectionSourceLines;
/// didInitial - Flag to indicate if initial emission has been done.
///
bool didInitial;
/// shouldEmit - Flag to indicate if debug information should be emitted.
///
bool shouldEmit;
struct FunctionDebugFrameInfo {
unsigned Number;
std::vector<MachineMove> Moves;
FunctionDebugFrameInfo(unsigned Num, const std::vector<MachineMove> &M):
Number(Num), Moves(M) { };
};
std::vector<FunctionDebugFrameInfo> DebugFrames;
public:
/// ShouldEmitDwarf - Returns true if Dwarf declarations should be made.
///
bool ShouldEmitDwarf() const { return shouldEmit; }
/// AssignAbbrevNumber - Define a unique number for the abbreviation.
///
void AssignAbbrevNumber(DIEAbbrev &Abbrev) {
// Profile the node so that we can make it unique.
FoldingSetNodeID ID;
Abbrev.Profile(ID);
// Check the set for priors.
DIEAbbrev *InSet = AbbreviationsSet.GetOrInsertNode(&Abbrev);
// If it's newly added.
if (InSet == &Abbrev) {
// Add to abbreviation list.
Abbreviations.push_back(&Abbrev);
// Assign the vector position + 1 as its number.
Abbrev.setNumber(Abbreviations.size());
} else {
// Assign existing abbreviation number.
Abbrev.setNumber(InSet->getNumber());
}
}
/// NewString - Add a string to the constant pool and returns a label.
///
DWLabel NewString(const std::string &String) {
unsigned StringID = StringPool.insert(String);
return DWLabel("string", StringID);
}
/// NewDIEntry - Creates a new DIEntry to be a proxy for a debug information
/// entry.
DIEntry *NewDIEntry(DIE *Entry = NULL) {
DIEntry *Value;
if (Entry) {
FoldingSetNodeID ID;
DIEntry::Profile(ID, Entry);
void *Where;
Value = static_cast<DIEntry *>(ValuesSet.FindNodeOrInsertPos(ID, Where));
if (Value) return Value;
Value = new DIEntry(Entry);
ValuesSet.InsertNode(Value, Where);
} else {
Value = new DIEntry(Entry);
}
Values.push_back(Value);
return Value;
}
/// SetDIEntry - Set a DIEntry once the debug information entry is defined.
///
void SetDIEntry(DIEntry *Value, DIE *Entry) {
Value->Entry = Entry;
// Add to values set if not already there. If it is, we merely have a
// duplicate in the values list (no harm.)
ValuesSet.GetOrInsertNode(Value);
}
/// AddUInt - Add an unsigned integer attribute data and value.
///
void AddUInt(DIE *Die, unsigned Attribute, unsigned Form, uint64_t Integer) {
if (!Form) Form = DIEInteger::BestForm(false, Integer);
FoldingSetNodeID ID;
DIEInteger::Profile(ID, Integer);
void *Where;
DIEValue *Value = ValuesSet.FindNodeOrInsertPos(ID, Where);
if (!Value) {
Value = new DIEInteger(Integer);
ValuesSet.InsertNode(Value, Where);
Values.push_back(Value);
}
Die->AddValue(Attribute, Form, Value);
}
/// AddSInt - Add an signed integer attribute data and value.
///
void AddSInt(DIE *Die, unsigned Attribute, unsigned Form, int64_t Integer) {
if (!Form) Form = DIEInteger::BestForm(true, Integer);
FoldingSetNodeID ID;
DIEInteger::Profile(ID, (uint64_t)Integer);
void *Where;
DIEValue *Value = ValuesSet.FindNodeOrInsertPos(ID, Where);
if (!Value) {
Value = new DIEInteger(Integer);
ValuesSet.InsertNode(Value, Where);
Values.push_back(Value);
}
Die->AddValue(Attribute, Form, Value);
}
/// AddString - Add a std::string attribute data and value.
///
void AddString(DIE *Die, unsigned Attribute, unsigned Form,
const std::string &String) {
FoldingSetNodeID ID;
DIEString::Profile(ID, String);
void *Where;
DIEValue *Value = ValuesSet.FindNodeOrInsertPos(ID, Where);
if (!Value) {
Value = new DIEString(String);
ValuesSet.InsertNode(Value, Where);
Values.push_back(Value);
}
Die->AddValue(Attribute, Form, Value);
}
/// AddLabel - Add a Dwarf label attribute data and value.
///
void AddLabel(DIE *Die, unsigned Attribute, unsigned Form,
const DWLabel &Label) {
FoldingSetNodeID ID;
DIEDwarfLabel::Profile(ID, Label);
void *Where;
DIEValue *Value = ValuesSet.FindNodeOrInsertPos(ID, Where);
if (!Value) {
Value = new DIEDwarfLabel(Label);
ValuesSet.InsertNode(Value, Where);
Values.push_back(Value);
}
Die->AddValue(Attribute, Form, Value);
}
/// AddObjectLabel - Add an non-Dwarf label attribute data and value.
///
void AddObjectLabel(DIE *Die, unsigned Attribute, unsigned Form,
const std::string &Label) {
FoldingSetNodeID ID;
DIEObjectLabel::Profile(ID, Label);
void *Where;
DIEValue *Value = ValuesSet.FindNodeOrInsertPos(ID, Where);
if (!Value) {
Value = new DIEObjectLabel(Label);
ValuesSet.InsertNode(Value, Where);
Values.push_back(Value);
}
Die->AddValue(Attribute, Form, Value);
}
/// AddDelta - Add a label delta attribute data and value.
///
void AddDelta(DIE *Die, unsigned Attribute, unsigned Form,
const DWLabel &Hi, const DWLabel &Lo) {
FoldingSetNodeID ID;
DIEDelta::Profile(ID, Hi, Lo);
void *Where;
DIEValue *Value = ValuesSet.FindNodeOrInsertPos(ID, Where);
if (!Value) {
Value = new DIEDelta(Hi, Lo);
ValuesSet.InsertNode(Value, Where);
Values.push_back(Value);
}
Die->AddValue(Attribute, Form, Value);
}
/// AddDIEntry - Add a DIE attribute data and value.
///
void AddDIEntry(DIE *Die, unsigned Attribute, unsigned Form, DIE *Entry) {
Die->AddValue(Attribute, Form, NewDIEntry(Entry));
}
/// AddBlock - Add block data.
///
void AddBlock(DIE *Die, unsigned Attribute, unsigned Form, DIEBlock *Block) {
Block->ComputeSize(*this);
FoldingSetNodeID ID;
Block->Profile(ID);
void *Where;
DIEValue *Value = ValuesSet.FindNodeOrInsertPos(ID, Where);
if (!Value) {
Value = Block;
ValuesSet.InsertNode(Value, Where);
Values.push_back(Value);
} else {
delete Block;
}
Die->AddValue(Attribute, Block->BestForm(), Value);
}
private:
/// AddSourceLine - Add location information to specified debug information
/// entry.
void AddSourceLine(DIE *Die, CompileUnitDesc *File, unsigned Line) {
if (File && Line) {
CompileUnit *FileUnit = FindCompileUnit(File);
unsigned FileID = FileUnit->getID();
AddUInt(Die, DW_AT_decl_file, 0, FileID);
AddUInt(Die, DW_AT_decl_line, 0, Line);
}
}
/// AddAddress - Add an address attribute to a die based on the location
/// provided.
void AddAddress(DIE *Die, unsigned Attribute,
const MachineLocation &Location) {
unsigned Reg = RI->getDwarfRegNum(Location.getRegister());
DIEBlock *Block = new DIEBlock();
if (Location.isRegister()) {
if (Reg < 32) {
AddUInt(Block, 0, DW_FORM_data1, DW_OP_reg0 + Reg);
} else {
AddUInt(Block, 0, DW_FORM_data1, DW_OP_regx);
AddUInt(Block, 0, DW_FORM_udata, Reg);
}
} else {
if (Reg < 32) {
AddUInt(Block, 0, DW_FORM_data1, DW_OP_breg0 + Reg);
} else {
AddUInt(Block, 0, DW_FORM_data1, DW_OP_bregx);
AddUInt(Block, 0, DW_FORM_udata, Reg);
}
AddUInt(Block, 0, DW_FORM_sdata, Location.getOffset());
}
AddBlock(Die, Attribute, 0, Block);
}
/// AddBasicType - Add a new basic type attribute to the specified entity.
///
void AddBasicType(DIE *Entity, CompileUnit *Unit,
const std::string &Name,
unsigned Encoding, unsigned Size) {
DIE *Die = ConstructBasicType(Unit, Name, Encoding, Size);
AddDIEntry(Entity, DW_AT_type, DW_FORM_ref4, Die);
}
/// ConstructBasicType - Construct a new basic type.
///
DIE *ConstructBasicType(CompileUnit *Unit,
const std::string &Name,
unsigned Encoding, unsigned Size) {
DIE Buffer(DW_TAG_base_type);
AddUInt(&Buffer, DW_AT_byte_size, 0, Size);
AddUInt(&Buffer, DW_AT_encoding, DW_FORM_data1, Encoding);
if (!Name.empty()) AddString(&Buffer, DW_AT_name, DW_FORM_string, Name);
return Unit->AddDie(Buffer);
}
/// AddPointerType - Add a new pointer type attribute to the specified entity.
///
void AddPointerType(DIE *Entity, CompileUnit *Unit, const std::string &Name) {
DIE *Die = ConstructPointerType(Unit, Name);
AddDIEntry(Entity, DW_AT_type, DW_FORM_ref4, Die);
}
/// ConstructPointerType - Construct a new pointer type.
///
DIE *ConstructPointerType(CompileUnit *Unit, const std::string &Name) {
DIE Buffer(DW_TAG_pointer_type);
AddUInt(&Buffer, DW_AT_byte_size, 0, TAI->getAddressSize());
if (!Name.empty()) AddString(&Buffer, DW_AT_name, DW_FORM_string, Name);
return Unit->AddDie(Buffer);
}
/// AddType - Add a new type attribute to the specified entity.
///
void AddType(DIE *Entity, TypeDesc *TyDesc, CompileUnit *Unit) {
if (!TyDesc) {
AddBasicType(Entity, Unit, "", DW_ATE_signed, sizeof(int32_t));
} else {
// Check for pre-existence.
DIEntry *&Slot = Unit->getDIEntrySlotFor(TyDesc);
// If it exists then use the existing value.
if (Slot) {
Entity->AddValue(DW_AT_type, DW_FORM_ref4, Slot);
return;
}
if (SubprogramDesc *SubprogramTy = dyn_cast<SubprogramDesc>(TyDesc)) {
// FIXME - Not sure why programs and variables are coming through here.
// Short cut for handling subprogram types (not really a TyDesc.)
AddPointerType(Entity, Unit, SubprogramTy->getName());
} else if (GlobalVariableDesc *GlobalTy =
dyn_cast<GlobalVariableDesc>(TyDesc)) {
// FIXME - Not sure why programs and variables are coming through here.
// Short cut for handling global variable types (not really a TyDesc.)
AddPointerType(Entity, Unit, GlobalTy->getName());
} else {
// Set up proxy.
Slot = NewDIEntry();
// Construct type.
DIE Buffer(DW_TAG_base_type);
ConstructType(Buffer, TyDesc, Unit);
// Add debug information entry to entity and unit.
DIE *Die = Unit->AddDie(Buffer);
SetDIEntry(Slot, Die);
Entity->AddValue(DW_AT_type, DW_FORM_ref4, Slot);
}
}
}
/// ConstructType - Adds all the required attributes to the type.
///
void ConstructType(DIE &Buffer, TypeDesc *TyDesc, CompileUnit *Unit) {
// Get core information.
const std::string &Name = TyDesc->getName();
uint64_t Size = TyDesc->getSize() >> 3;
if (BasicTypeDesc *BasicTy = dyn_cast<BasicTypeDesc>(TyDesc)) {
// Fundamental types like int, float, bool
Buffer.setTag(DW_TAG_base_type);
AddUInt(&Buffer, DW_AT_encoding, DW_FORM_data1, BasicTy->getEncoding());
} else if (DerivedTypeDesc *DerivedTy = dyn_cast<DerivedTypeDesc>(TyDesc)) {
// Fetch tag.
unsigned Tag = DerivedTy->getTag();
// FIXME - Workaround for templates.
if (Tag == DW_TAG_inheritance) Tag = DW_TAG_reference_type;
// Pointers, typedefs et al.
Buffer.setTag(Tag);
// Map to main type, void will not have a type.
if (TypeDesc *FromTy = DerivedTy->getFromType())
AddType(&Buffer, FromTy, Unit);
} else if (CompositeTypeDesc *CompTy = dyn_cast<CompositeTypeDesc>(TyDesc)){
// Fetch tag.
unsigned Tag = CompTy->getTag();
// Set tag accordingly.
if (Tag == DW_TAG_vector_type)
Buffer.setTag(DW_TAG_array_type);
else
Buffer.setTag(Tag);
std::vector<DebugInfoDesc *> &Elements = CompTy->getElements();
switch (Tag) {
case DW_TAG_vector_type:
AddUInt(&Buffer, DW_AT_GNU_vector, DW_FORM_flag, 1);
// Fall thru
case DW_TAG_array_type: {
// Add element type.
if (TypeDesc *FromTy = CompTy->getFromType())
AddType(&Buffer, FromTy, Unit);
// Don't emit size attribute.
Size = 0;
// Construct an anonymous type for index type.
DIE *IndexTy = ConstructBasicType(Unit, "", DW_ATE_signed,
sizeof(int32_t));
// Add subranges to array type.
for(unsigned i = 0, N = Elements.size(); i < N; ++i) {
SubrangeDesc *SRD = cast<SubrangeDesc>(Elements[i]);
int64_t Lo = SRD->getLo();
int64_t Hi = SRD->getHi();
DIE *Subrange = new DIE(DW_TAG_subrange_type);
// If a range is available.
if (Lo != Hi) {
AddDIEntry(Subrange, DW_AT_type, DW_FORM_ref4, IndexTy);
// Only add low if non-zero.
if (Lo) AddSInt(Subrange, DW_AT_lower_bound, 0, Lo);
AddSInt(Subrange, DW_AT_upper_bound, 0, Hi);
}
Buffer.AddChild(Subrange);
}
break;
}
case DW_TAG_structure_type:
case DW_TAG_union_type: {
// Add elements to structure type.
for(unsigned i = 0, N = Elements.size(); i < N; ++i) {
DebugInfoDesc *Element = Elements[i];
if (DerivedTypeDesc *MemberDesc = dyn_cast<DerivedTypeDesc>(Element)){
// Add field or base class.
unsigned Tag = MemberDesc->getTag();
// Extract the basic information.
const std::string &Name = MemberDesc->getName();
uint64_t Size = MemberDesc->getSize();
uint64_t Align = MemberDesc->getAlign();
uint64_t Offset = MemberDesc->getOffset();
// Construct member debug information entry.
DIE *Member = new DIE(Tag);
// Add name if not "".
if (!Name.empty())
AddString(Member, DW_AT_name, DW_FORM_string, Name);
// Add location if available.
AddSourceLine(Member, MemberDesc->getFile(), MemberDesc->getLine());
// Most of the time the field info is the same as the members.
uint64_t FieldSize = Size;
uint64_t FieldAlign = Align;
uint64_t FieldOffset = Offset;
// Set the member type.
TypeDesc *FromTy = MemberDesc->getFromType();
AddType(Member, FromTy, Unit);
// Walk up typedefs until a real size is found.
while (FromTy) {
if (FromTy->getTag() != DW_TAG_typedef) {
FieldSize = FromTy->getSize();
FieldAlign = FromTy->getSize();
break;
}
FromTy = cast<DerivedTypeDesc>(FromTy)->getFromType();
}
// Unless we have a bit field.
if (Tag == DW_TAG_member && FieldSize != Size) {
// Construct the alignment mask.
uint64_t AlignMask = ~(FieldAlign - 1);
// Determine the high bit + 1 of the declared size.
uint64_t HiMark = (Offset + FieldSize) & AlignMask;
// Work backwards to determine the base offset of the field.
FieldOffset = HiMark - FieldSize;
// Now normalize offset to the field.
Offset -= FieldOffset;
// Maybe we need to work from the other end.
if (TD->isLittleEndian()) Offset = FieldSize - (Offset + Size);
// Add size and offset.
AddUInt(Member, DW_AT_byte_size, 0, FieldSize >> 3);
AddUInt(Member, DW_AT_bit_size, 0, Size);
AddUInt(Member, DW_AT_bit_offset, 0, Offset);
}
// Add computation for offset.
DIEBlock *Block = new DIEBlock();
AddUInt(Block, 0, DW_FORM_data1, DW_OP_plus_uconst);
AddUInt(Block, 0, DW_FORM_udata, FieldOffset >> 3);
AddBlock(Member, DW_AT_data_member_location, 0, Block);
// Add accessibility (public default unless is base class.
if (MemberDesc->isProtected()) {
AddUInt(Member, DW_AT_accessibility, 0, DW_ACCESS_protected);
} else if (MemberDesc->isPrivate()) {
AddUInt(Member, DW_AT_accessibility, 0, DW_ACCESS_private);
} else if (Tag == DW_TAG_inheritance) {
AddUInt(Member, DW_AT_accessibility, 0, DW_ACCESS_public);
}
Buffer.AddChild(Member);
} else if (GlobalVariableDesc *StaticDesc =
dyn_cast<GlobalVariableDesc>(Element)) {
// Add static member.
// Construct member debug information entry.
DIE *Static = new DIE(DW_TAG_variable);
// Add name and mangled name.
const std::string &Name = StaticDesc->getName();
const std::string &LinkageName = StaticDesc->getLinkageName();
AddString(Static, DW_AT_name, DW_FORM_string, Name);
if (!LinkageName.empty()) {
AddString(Static, DW_AT_MIPS_linkage_name, DW_FORM_string,
LinkageName);
}
// Add location.
AddSourceLine(Static, StaticDesc->getFile(), StaticDesc->getLine());
// Add type.
if (TypeDesc *StaticTy = StaticDesc->getType())
AddType(Static, StaticTy, Unit);
// Add flags.
if (!StaticDesc->isStatic())
AddUInt(Static, DW_AT_external, DW_FORM_flag, 1);
AddUInt(Static, DW_AT_declaration, DW_FORM_flag, 1);
Buffer.AddChild(Static);
} else if (SubprogramDesc *MethodDesc =
dyn_cast<SubprogramDesc>(Element)) {
// Add member function.
// Construct member debug information entry.
DIE *Method = new DIE(DW_TAG_subprogram);
// Add name and mangled name.
const std::string &Name = MethodDesc->getName();
const std::string &LinkageName = MethodDesc->getLinkageName();
AddString(Method, DW_AT_name, DW_FORM_string, Name);
bool IsCTor = TyDesc->getName() == Name;
if (!LinkageName.empty()) {
AddString(Method, DW_AT_MIPS_linkage_name, DW_FORM_string,
LinkageName);
}
// Add location.
AddSourceLine(Method, MethodDesc->getFile(), MethodDesc->getLine());
// Add type.
if (CompositeTypeDesc *MethodTy =
dyn_cast_or_null<CompositeTypeDesc>(MethodDesc->getType())) {
// Get argument information.
std::vector<DebugInfoDesc *> &Args = MethodTy->getElements();
// If not a ctor.
if (!IsCTor) {
// Add return type.
AddType(Method, dyn_cast<TypeDesc>(Args[0]), Unit);
}
// Add arguments.
for(unsigned i = 1, N = Args.size(); i < N; ++i) {
DIE *Arg = new DIE(DW_TAG_formal_parameter);
AddType(Arg, cast<TypeDesc>(Args[i]), Unit);
AddUInt(Arg, DW_AT_artificial, DW_FORM_flag, 1);
Method->AddChild(Arg);
}
}
// Add flags.
if (!MethodDesc->isStatic())
AddUInt(Method, DW_AT_external, DW_FORM_flag, 1);
AddUInt(Method, DW_AT_declaration, DW_FORM_flag, 1);
Buffer.AddChild(Method);
}
}
break;
}
case DW_TAG_enumeration_type: {
// Add enumerators to enumeration type.
for(unsigned i = 0, N = Elements.size(); i < N; ++i) {
EnumeratorDesc *ED = cast<EnumeratorDesc>(Elements[i]);
const std::string &Name = ED->getName();
int64_t Value = ED->getValue();
DIE *Enumerator = new DIE(DW_TAG_enumerator);
AddString(Enumerator, DW_AT_name, DW_FORM_string, Name);
AddSInt(Enumerator, DW_AT_const_value, DW_FORM_sdata, Value);
Buffer.AddChild(Enumerator);
}
break;
}
case DW_TAG_subroutine_type: {
// Add prototype flag.
AddUInt(&Buffer, DW_AT_prototyped, DW_FORM_flag, 1);
// Add return type.
AddType(&Buffer, dyn_cast<TypeDesc>(Elements[0]), Unit);
// Add arguments.
for(unsigned i = 1, N = Elements.size(); i < N; ++i) {
DIE *Arg = new DIE(DW_TAG_formal_parameter);
AddType(Arg, cast<TypeDesc>(Elements[i]), Unit);
Buffer.AddChild(Arg);
}
break;
}
default: break;
}
}
// Add size if non-zero (derived types don't have a size.)
if (Size) AddUInt(&Buffer, DW_AT_byte_size, 0, Size);
// Add name if not anonymous or intermediate type.
if (!Name.empty()) AddString(&Buffer, DW_AT_name, DW_FORM_string, Name);
// Add source line info if available.
AddSourceLine(&Buffer, TyDesc->getFile(), TyDesc->getLine());
}
/// NewCompileUnit - Create new compile unit and it's debug information entry.
///
CompileUnit *NewCompileUnit(CompileUnitDesc *UnitDesc, unsigned ID) {
// Construct debug information entry.
DIE *Die = new DIE(DW_TAG_compile_unit);
if (TAI->isAbsoluteDebugSectionOffsets())
AddLabel(Die, DW_AT_stmt_list, DW_FORM_data4, DWLabel("section_line", 0));
else
AddDelta(Die, DW_AT_stmt_list, DW_FORM_data4, DWLabel("section_line", 0),
DWLabel("section_line", 0));
AddString(Die, DW_AT_producer, DW_FORM_string, UnitDesc->getProducer());
AddUInt (Die, DW_AT_language, DW_FORM_data1, UnitDesc->getLanguage());
AddString(Die, DW_AT_name, DW_FORM_string, UnitDesc->getFileName());
AddString(Die, DW_AT_comp_dir, DW_FORM_string, UnitDesc->getDirectory());
// Construct compile unit.
CompileUnit *Unit = new CompileUnit(UnitDesc, ID, Die);
// Add Unit to compile unit map.
DescToUnitMap[UnitDesc] = Unit;
return Unit;
}
/// GetBaseCompileUnit - Get the main compile unit.
///
CompileUnit *GetBaseCompileUnit() const {
CompileUnit *Unit = CompileUnits[0];
assert(Unit && "Missing compile unit.");
return Unit;
}
/// FindCompileUnit - Get the compile unit for the given descriptor.
///
CompileUnit *FindCompileUnit(CompileUnitDesc *UnitDesc) {
CompileUnit *Unit = DescToUnitMap[UnitDesc];
assert(Unit && "Missing compile unit.");
return Unit;
}
/// NewGlobalVariable - Add a new global variable DIE.
///
DIE *NewGlobalVariable(GlobalVariableDesc *GVD) {
// Get the compile unit context.
CompileUnitDesc *UnitDesc =
static_cast<CompileUnitDesc *>(GVD->getContext());
CompileUnit *Unit = GetBaseCompileUnit();
// Check for pre-existence.
DIE *&Slot = Unit->getDieMapSlotFor(GVD);
if (Slot) return Slot;
// Get the global variable itself.
GlobalVariable *GV = GVD->getGlobalVariable();
const std::string &Name = GVD->getName();
const std::string &FullName = GVD->getFullName();
const std::string &LinkageName = GVD->getLinkageName();
// Create the global's variable DIE.
DIE *VariableDie = new DIE(DW_TAG_variable);
AddString(VariableDie, DW_AT_name, DW_FORM_string, Name);
if (!LinkageName.empty()) {
AddString(VariableDie, DW_AT_MIPS_linkage_name, DW_FORM_string,
LinkageName);
}
AddType(VariableDie, GVD->getType(), Unit);
if (!GVD->isStatic())
AddUInt(VariableDie, DW_AT_external, DW_FORM_flag, 1);
// Add source line info if available.
AddSourceLine(VariableDie, UnitDesc, GVD->getLine());
// Add address.
DIEBlock *Block = new DIEBlock();
AddUInt(Block, 0, DW_FORM_data1, DW_OP_addr);
AddObjectLabel(Block, 0, DW_FORM_udata, Asm->getGlobalLinkName(GV));
AddBlock(VariableDie, DW_AT_location, 0, Block);
// Add to map.
Slot = VariableDie;
// Add to context owner.
Unit->getDie()->AddChild(VariableDie);
// Expose as global.
// FIXME - need to check external flag.
Unit->AddGlobal(FullName, VariableDie);
return VariableDie;
}
/// NewSubprogram - Add a new subprogram DIE.
///
DIE *NewSubprogram(SubprogramDesc *SPD) {
// Get the compile unit context.
CompileUnitDesc *UnitDesc =
static_cast<CompileUnitDesc *>(SPD->getContext());
CompileUnit *Unit = GetBaseCompileUnit();
// Check for pre-existence.
DIE *&Slot = Unit->getDieMapSlotFor(SPD);
if (Slot) return Slot;
// Gather the details (simplify add attribute code.)
const std::string &Name = SPD->getName();
const std::string &FullName = SPD->getFullName();
const std::string &LinkageName = SPD->getLinkageName();
DIE *SubprogramDie = new DIE(DW_TAG_subprogram);
AddString(SubprogramDie, DW_AT_name, DW_FORM_string, Name);
if (!LinkageName.empty()) {
AddString(SubprogramDie, DW_AT_MIPS_linkage_name, DW_FORM_string,
LinkageName);
}
if (SPD->getType()) AddType(SubprogramDie, SPD->getType(), Unit);
if (!SPD->isStatic())
AddUInt(SubprogramDie, DW_AT_external, DW_FORM_flag, 1);
AddUInt(SubprogramDie, DW_AT_prototyped, DW_FORM_flag, 1);
// Add source line info if available.
AddSourceLine(SubprogramDie, UnitDesc, SPD->getLine());
// Add to map.
Slot = SubprogramDie;
// Add to context owner.
Unit->getDie()->AddChild(SubprogramDie);
// Expose as global.
Unit->AddGlobal(FullName, SubprogramDie);
return SubprogramDie;
}
/// NewScopeVariable - Create a new scope variable.
///
DIE *NewScopeVariable(DebugVariable *DV, CompileUnit *Unit) {
// Get the descriptor.
VariableDesc *VD = DV->getDesc();
// Translate tag to proper Dwarf tag. The result variable is dropped for
// now.
unsigned Tag;
switch (VD->getTag()) {
case DW_TAG_return_variable: return NULL;
case DW_TAG_arg_variable: Tag = DW_TAG_formal_parameter; break;
case DW_TAG_auto_variable: // fall thru
default: Tag = DW_TAG_variable; break;
}
// Define variable debug information entry.
DIE *VariableDie = new DIE(Tag);
AddString(VariableDie, DW_AT_name, DW_FORM_string, VD->getName());
// Add source line info if available.
AddSourceLine(VariableDie, VD->getFile(), VD->getLine());
// Add variable type.
AddType(VariableDie, VD->getType(), Unit);
// Add variable address.
MachineLocation Location;
RI->getLocation(*MF, DV->getFrameIndex(), Location);
AddAddress(VariableDie, DW_AT_location, Location);
return VariableDie;
}
/// ConstructScope - Construct the components of a scope.
///
void ConstructScope(DebugScope *ParentScope,
unsigned ParentStartID, unsigned ParentEndID,
DIE *ParentDie, CompileUnit *Unit) {
// Add variables to scope.
std::vector<DebugVariable *> &Variables = ParentScope->getVariables();
for (unsigned i = 0, N = Variables.size(); i < N; ++i) {
DIE *VariableDie = NewScopeVariable(Variables[i], Unit);
if (VariableDie) ParentDie->AddChild(VariableDie);
}
// Add nested scopes.
std::vector<DebugScope *> &Scopes = ParentScope->getScopes();
for (unsigned j = 0, M = Scopes.size(); j < M; ++j) {
// Define the Scope debug information entry.
DebugScope *Scope = Scopes[j];
// FIXME - Ignore inlined functions for the time being.
if (!Scope->getParent()) continue;
unsigned StartID = MMI->MappedLabel(Scope->getStartLabelID());
unsigned EndID = MMI->MappedLabel(Scope->getEndLabelID());
// Ignore empty scopes.
if (StartID == EndID && StartID != 0) continue;
if (Scope->getScopes().empty() && Scope->getVariables().empty()) continue;
if (StartID == ParentStartID && EndID == ParentEndID) {
// Just add stuff to the parent scope.
ConstructScope(Scope, ParentStartID, ParentEndID, ParentDie, Unit);
} else {
DIE *ScopeDie = new DIE(DW_TAG_lexical_block);
// Add the scope bounds.
if (StartID) {
AddLabel(ScopeDie, DW_AT_low_pc, DW_FORM_addr,
DWLabel("label", StartID));
} else {
AddLabel(ScopeDie, DW_AT_low_pc, DW_FORM_addr,
DWLabel("func_begin", SubprogramCount));
}
if (EndID) {
AddLabel(ScopeDie, DW_AT_high_pc, DW_FORM_addr,
DWLabel("label", EndID));
} else {
AddLabel(ScopeDie, DW_AT_high_pc, DW_FORM_addr,
DWLabel("func_end", SubprogramCount));
}
// Add the scope contents.
ConstructScope(Scope, StartID, EndID, ScopeDie, Unit);
ParentDie->AddChild(ScopeDie);
}
}
}
/// ConstructRootScope - Construct the scope for the subprogram.
///
void ConstructRootScope(DebugScope *RootScope) {
// Exit if there is no root scope.
if (!RootScope) return;
// Get the subprogram debug information entry.
SubprogramDesc *SPD = cast<SubprogramDesc>(RootScope->getDesc());
// Get the compile unit context.
CompileUnit *Unit = GetBaseCompileUnit();
// Get the subprogram die.
DIE *SPDie = Unit->getDieMapSlotFor(SPD);
assert(SPDie && "Missing subprogram descriptor");
// Add the function bounds.
AddLabel(SPDie, DW_AT_low_pc, DW_FORM_addr,
DWLabel("func_begin", SubprogramCount));
AddLabel(SPDie, DW_AT_high_pc, DW_FORM_addr,
DWLabel("func_end", SubprogramCount));
MachineLocation Location(RI->getFrameRegister(*MF));
AddAddress(SPDie, DW_AT_frame_base, Location);
ConstructScope(RootScope, 0, 0, SPDie, Unit);
}
/// EmitInitial - Emit initial Dwarf declarations. This is necessary for cc
/// tools to recognize the object file contains Dwarf information.
void EmitInitial() {
// Check to see if we already emitted intial headers.
if (didInitial) return;
didInitial = true;
// Dwarf sections base addresses.
if (TAI->doesDwarfRequireFrameSection()) {
Asm->SwitchToDataSection(TAI->getDwarfFrameSection());
EmitLabel("section_debug_frame", 0);
}
Asm->SwitchToDataSection(TAI->getDwarfInfoSection());
EmitLabel("section_info", 0);
Asm->SwitchToDataSection(TAI->getDwarfAbbrevSection());
EmitLabel("section_abbrev", 0);
Asm->SwitchToDataSection(TAI->getDwarfARangesSection());
EmitLabel("section_aranges", 0);
Asm->SwitchToDataSection(TAI->getDwarfMacInfoSection());
EmitLabel("section_macinfo", 0);
Asm->SwitchToDataSection(TAI->getDwarfLineSection());
EmitLabel("section_line", 0);
Asm->SwitchToDataSection(TAI->getDwarfLocSection());
EmitLabel("section_loc", 0);
Asm->SwitchToDataSection(TAI->getDwarfPubNamesSection());
EmitLabel("section_pubnames", 0);
Asm->SwitchToDataSection(TAI->getDwarfStrSection());
EmitLabel("section_str", 0);
Asm->SwitchToDataSection(TAI->getDwarfRangesSection());
EmitLabel("section_ranges", 0);
Asm->SwitchToTextSection(TAI->getTextSection());
EmitLabel("text_begin", 0);
Asm->SwitchToDataSection(TAI->getDataSection());
EmitLabel("data_begin", 0);
}
/// EmitDIE - Recusively Emits a debug information entry.
///
void EmitDIE(DIE *Die) {
// Get the abbreviation for this DIE.
unsigned AbbrevNumber = Die->getAbbrevNumber();
const DIEAbbrev *Abbrev = Abbreviations[AbbrevNumber - 1];
Asm->EOL();
// Emit the code (index) for the abbreviation.
Asm->EmitULEB128Bytes(AbbrevNumber);
Asm->EOL(std::string("Abbrev [" +
utostr(AbbrevNumber) +
"] 0x" + utohexstr(Die->getOffset()) +
":0x" + utohexstr(Die->getSize()) + " " +
TagString(Abbrev->getTag())));
std::vector<DIEValue *> &Values = Die->getValues();
const std::vector<DIEAbbrevData> &AbbrevData = Abbrev->getData();
// Emit the DIE attribute values.
for (unsigned i = 0, N = Values.size(); i < N; ++i) {
unsigned Attr = AbbrevData[i].getAttribute();
unsigned Form = AbbrevData[i].getForm();
assert(Form && "Too many attributes for DIE (check abbreviation)");
switch (Attr) {
case DW_AT_sibling: {
Asm->EmitInt32(Die->SiblingOffset());
break;
}
default: {
// Emit an attribute using the defined form.
Values[i]->EmitValue(*this, Form);
break;
}
}
Asm->EOL(AttributeString(Attr));
}
// Emit the DIE children if any.
if (Abbrev->getChildrenFlag() == DW_CHILDREN_yes) {
const std::vector<DIE *> &Children = Die->getChildren();
for (unsigned j = 0, M = Children.size(); j < M; ++j) {
EmitDIE(Children[j]);
}
Asm->EmitInt8(0); Asm->EOL("End Of Children Mark");
}
}
/// SizeAndOffsetDie - Compute the size and offset of a DIE.
///
unsigned SizeAndOffsetDie(DIE *Die, unsigned Offset, bool Last) {
// Get the children.
const std::vector<DIE *> &Children = Die->getChildren();
// If not last sibling and has children then add sibling offset attribute.
if (!Last && !Children.empty()) Die->AddSiblingOffset();
// Record the abbreviation.
AssignAbbrevNumber(Die->getAbbrev());
// Get the abbreviation for this DIE.
unsigned AbbrevNumber = Die->getAbbrevNumber();
const DIEAbbrev *Abbrev = Abbreviations[AbbrevNumber - 1];
// Set DIE offset
Die->setOffset(Offset);
// Start the size with the size of abbreviation code.
Offset += Asm->SizeULEB128(AbbrevNumber);
const std::vector<DIEValue *> &Values = Die->getValues();
const std::vector<DIEAbbrevData> &AbbrevData = Abbrev->getData();
// Size the DIE attribute values.
for (unsigned i = 0, N = Values.size(); i < N; ++i) {
// Size attribute value.
Offset += Values[i]->SizeOf(*this, AbbrevData[i].getForm());
}
// Size the DIE children if any.
if (!Children.empty()) {
assert(Abbrev->getChildrenFlag() == DW_CHILDREN_yes &&
"Children flag not set");
for (unsigned j = 0, M = Children.size(); j < M; ++j) {
Offset = SizeAndOffsetDie(Children[j], Offset, (j + 1) == M);
}
// End of children marker.
Offset += sizeof(int8_t);
}
Die->setSize(Offset - Die->getOffset());
return Offset;
}
/// SizeAndOffsets - Compute the size and offset of all the DIEs.
///
void SizeAndOffsets() {
// Process base compile unit.
CompileUnit *Unit = GetBaseCompileUnit();
// Compute size of compile unit header
unsigned Offset = sizeof(int32_t) + // Length of Compilation Unit Info
sizeof(int16_t) + // DWARF version number
sizeof(int32_t) + // Offset Into Abbrev. Section
sizeof(int8_t); // Pointer Size (in bytes)
SizeAndOffsetDie(Unit->getDie(), Offset, true);
}
/// EmitDebugInfo - Emit the debug info section.
///
void EmitDebugInfo() {
// Start debug info section.
Asm->SwitchToDataSection(TAI->getDwarfInfoSection());
CompileUnit *Unit = GetBaseCompileUnit();
DIE *Die = Unit->getDie();
// Emit the compile units header.
EmitLabel("info_begin", Unit->getID());
// Emit size of content not including length itself
unsigned ContentSize = Die->getSize() +
sizeof(int16_t) + // DWARF version number
sizeof(int32_t) + // Offset Into Abbrev. Section
sizeof(int8_t) + // Pointer Size (in bytes)
sizeof(int32_t); // FIXME - extra pad for gdb bug.
Asm->EmitInt32(ContentSize); Asm->EOL("Length of Compilation Unit Info");
Asm->EmitInt16(DWARF_VERSION); Asm->EOL("DWARF version number");
EmitSectionOffset("abbrev_begin", "section_abbrev", 0, 0, true, false);
Asm->EOL("Offset Into Abbrev. Section");
Asm->EmitInt8(TAI->getAddressSize()); Asm->EOL("Address Size (in bytes)");
EmitDIE(Die);
// FIXME - extra padding for gdb bug.
Asm->EmitInt8(0); Asm->EOL("Extra Pad For GDB");
Asm->EmitInt8(0); Asm->EOL("Extra Pad For GDB");
Asm->EmitInt8(0); Asm->EOL("Extra Pad For GDB");
Asm->EmitInt8(0); Asm->EOL("Extra Pad For GDB");
EmitLabel("info_end", Unit->getID());
Asm->EOL();
}
/// EmitAbbreviations - Emit the abbreviation section.
///
void EmitAbbreviations() const {
// Check to see if it is worth the effort.
if (!Abbreviations.empty()) {
// Start the debug abbrev section.
Asm->SwitchToDataSection(TAI->getDwarfAbbrevSection());
EmitLabel("abbrev_begin", 0);
// For each abbrevation.
for (unsigned i = 0, N = Abbreviations.size(); i < N; ++i) {
// Get abbreviation data
const DIEAbbrev *Abbrev = Abbreviations[i];
// Emit the abbrevations code (base 1 index.)
Asm->EmitULEB128Bytes(Abbrev->getNumber());
Asm->EOL("Abbreviation Code");
// Emit the abbreviations data.
Abbrev->Emit(*this);
Asm->EOL();
}
// Mark end of abbreviations.
Asm->EmitULEB128Bytes(0); Asm->EOL("EOM(3)");
EmitLabel("abbrev_end", 0);
Asm->EOL();
}
}
/// EmitDebugLines - Emit source line information.
///
void EmitDebugLines() {
// Minimum line delta, thus ranging from -10..(255-10).
const int MinLineDelta = -(DW_LNS_fixed_advance_pc + 1);
// Maximum line delta, thus ranging from -10..(255-10).
const int MaxLineDelta = 255 + MinLineDelta;
// Start the dwarf line section.
Asm->SwitchToDataSection(TAI->getDwarfLineSection());
// Construct the section header.
EmitDifference("line_end", 0, "line_begin", 0, true);
Asm->EOL("Length of Source Line Info");
EmitLabel("line_begin", 0);
Asm->EmitInt16(DWARF_VERSION); Asm->EOL("DWARF version number");
EmitDifference("line_prolog_end", 0, "line_prolog_begin", 0, true);
Asm->EOL("Prolog Length");
EmitLabel("line_prolog_begin", 0);
Asm->EmitInt8(1); Asm->EOL("Minimum Instruction Length");
Asm->EmitInt8(1); Asm->EOL("Default is_stmt_start flag");
Asm->EmitInt8(MinLineDelta); Asm->EOL("Line Base Value (Special Opcodes)");
Asm->EmitInt8(MaxLineDelta); Asm->EOL("Line Range Value (Special Opcodes)");
Asm->EmitInt8(-MinLineDelta); Asm->EOL("Special Opcode Base");
// Line number standard opcode encodings argument count
Asm->EmitInt8(0); Asm->EOL("DW_LNS_copy arg count");
Asm->EmitInt8(1); Asm->EOL("DW_LNS_advance_pc arg count");
Asm->EmitInt8(1); Asm->EOL("DW_LNS_advance_line arg count");
Asm->EmitInt8(1); Asm->EOL("DW_LNS_set_file arg count");
Asm->EmitInt8(1); Asm->EOL("DW_LNS_set_column arg count");
Asm->EmitInt8(0); Asm->EOL("DW_LNS_negate_stmt arg count");
Asm->EmitInt8(0); Asm->EOL("DW_LNS_set_basic_block arg count");
Asm->EmitInt8(0); Asm->EOL("DW_LNS_const_add_pc arg count");
Asm->EmitInt8(1); Asm->EOL("DW_LNS_fixed_advance_pc arg count");
const UniqueVector<std::string> &Directories = MMI->getDirectories();
const UniqueVector<SourceFileInfo>
&SourceFiles = MMI->getSourceFiles();
// Emit directories.
for (unsigned DirectoryID = 1, NDID = Directories.size();
DirectoryID <= NDID; ++DirectoryID) {
Asm->EmitString(Directories[DirectoryID]); Asm->EOL("Directory");
}
Asm->EmitInt8(0); Asm->EOL("End of directories");
// Emit files.
for (unsigned SourceID = 1, NSID = SourceFiles.size();
SourceID <= NSID; ++SourceID) {
const SourceFileInfo &SourceFile = SourceFiles[SourceID];
Asm->EmitString(SourceFile.getName());
Asm->EOL("Source");
Asm->EmitULEB128Bytes(SourceFile.getDirectoryID());
Asm->EOL("Directory #");
Asm->EmitULEB128Bytes(0);
Asm->EOL("Mod date");
Asm->EmitULEB128Bytes(0);
Asm->EOL("File size");
}
Asm->EmitInt8(0); Asm->EOL("End of files");
EmitLabel("line_prolog_end", 0);
// A sequence for each text section.
for (unsigned j = 0, M = SectionSourceLines.size(); j < M; ++j) {
// Isolate current sections line info.
const std::vector<SourceLineInfo> &LineInfos = SectionSourceLines[j];
Asm->EOL(std::string("Section ") + SectionMap[j + 1]);
// Dwarf assumes we start with first line of first source file.
unsigned Source = 1;
unsigned Line = 1;
// Construct rows of the address, source, line, column matrix.
for (unsigned i = 0, N = LineInfos.size(); i < N; ++i) {
const SourceLineInfo &LineInfo = LineInfos[i];
unsigned LabelID = MMI->MappedLabel(LineInfo.getLabelID());
if (!LabelID) continue;
unsigned SourceID = LineInfo.getSourceID();
const SourceFileInfo &SourceFile = SourceFiles[SourceID];
unsigned DirectoryID = SourceFile.getDirectoryID();
Asm->EOL(Directories[DirectoryID]
+ SourceFile.getName()
+ ":"
+ utostr_32(LineInfo.getLine()));
// Define the line address.
Asm->EmitInt8(0); Asm->EOL("Extended Op");
Asm->EmitInt8(TAI->getAddressSize() + 1); Asm->EOL("Op size");
Asm->EmitInt8(DW_LNE_set_address); Asm->EOL("DW_LNE_set_address");
EmitReference("label", LabelID); Asm->EOL("Location label");
// If change of source, then switch to the new source.
if (Source != LineInfo.getSourceID()) {
Source = LineInfo.getSourceID();
Asm->EmitInt8(DW_LNS_set_file); Asm->EOL("DW_LNS_set_file");
Asm->EmitULEB128Bytes(Source); Asm->EOL("New Source");
}
// If change of line.
if (Line != LineInfo.getLine()) {
// Determine offset.
int Offset = LineInfo.getLine() - Line;
int Delta = Offset - MinLineDelta;
// Update line.
Line = LineInfo.getLine();
// If delta is small enough and in range...
if (Delta >= 0 && Delta < (MaxLineDelta - 1)) {
// ... then use fast opcode.
Asm->EmitInt8(Delta - MinLineDelta); Asm->EOL("Line Delta");
} else {
// ... otherwise use long hand.
Asm->EmitInt8(DW_LNS_advance_line); Asm->EOL("DW_LNS_advance_line");
Asm->EmitSLEB128Bytes(Offset); Asm->EOL("Line Offset");
Asm->EmitInt8(DW_LNS_copy); Asm->EOL("DW_LNS_copy");
}
} else {
// Copy the previous row (different address or source)
Asm->EmitInt8(DW_LNS_copy); Asm->EOL("DW_LNS_copy");
}
}
// Define last address of section.
Asm->EmitInt8(0); Asm->EOL("Extended Op");
Asm->EmitInt8(TAI->getAddressSize() + 1); Asm->EOL("Op size");
Asm->EmitInt8(DW_LNE_set_address); Asm->EOL("DW_LNE_set_address");
EmitReference("section_end", j + 1); Asm->EOL("Section end label");
// Mark end of matrix.
Asm->EmitInt8(0); Asm->EOL("DW_LNE_end_sequence");
Asm->EmitULEB128Bytes(1); Asm->EOL();
Asm->EmitInt8(1); Asm->EOL();
}
EmitLabel("line_end", 0);
Asm->EOL();
}
/// EmitCommonDebugFrame - Emit common frame info into a debug frame section.
///
void EmitCommonDebugFrame() {
if (!TAI->doesDwarfRequireFrameSection())
return;
int stackGrowth =
Asm->TM.getFrameInfo()->getStackGrowthDirection() ==
TargetFrameInfo::StackGrowsUp ?
TAI->getAddressSize() : -TAI->getAddressSize();
// Start the dwarf frame section.
Asm->SwitchToDataSection(TAI->getDwarfFrameSection());
EmitLabel("debug_frame_common", 0);
EmitDifference("debug_frame_common_end", 0,
"debug_frame_common_begin", 0, true);
Asm->EOL("Length of Common Information Entry");
EmitLabel("debug_frame_common_begin", 0);
Asm->EmitInt32((int)DW_CIE_ID);
Asm->EOL("CIE Identifier Tag");
Asm->EmitInt8(DW_CIE_VERSION);
Asm->EOL("CIE Version");
Asm->EmitString("");
Asm->EOL("CIE Augmentation");
Asm->EmitULEB128Bytes(1);
Asm->EOL("CIE Code Alignment Factor");
Asm->EmitSLEB128Bytes(stackGrowth);
Asm->EOL("CIE Data Alignment Factor");
Asm->EmitInt8(RI->getDwarfRegNum(RI->getRARegister()));
Asm->EOL("CIE RA Column");
std::vector<MachineMove> Moves;
RI->getInitialFrameState(Moves);
EmitFrameMoves(NULL, 0, Moves);
Asm->EmitAlignment(2);
EmitLabel("debug_frame_common_end", 0);
Asm->EOL();
}
/// EmitFunctionDebugFrame - Emit per function frame info into a debug frame
/// section.
void EmitFunctionDebugFrame(const FunctionDebugFrameInfo &DebugFrameInfo) {
if (!TAI->doesDwarfRequireFrameSection())
return;
// Start the dwarf frame section.
Asm->SwitchToDataSection(TAI->getDwarfFrameSection());
EmitDifference("debug_frame_end", DebugFrameInfo.Number,
"debug_frame_begin", DebugFrameInfo.Number, true);
Asm->EOL("Length of Frame Information Entry");
EmitLabel("debug_frame_begin", DebugFrameInfo.Number);
EmitSectionOffset("debug_frame_common", "section_debug_frame",
0, 0, true, false);
Asm->EOL("FDE CIE offset");
EmitReference("func_begin", DebugFrameInfo.Number);
Asm->EOL("FDE initial location");
EmitDifference("func_end", DebugFrameInfo.Number,
"func_begin", DebugFrameInfo.Number);
Asm->EOL("FDE address range");
EmitFrameMoves("func_begin", DebugFrameInfo.Number, DebugFrameInfo.Moves);
Asm->EmitAlignment(2);
EmitLabel("debug_frame_end", DebugFrameInfo.Number);
Asm->EOL();
}
/// EmitDebugPubNames - Emit visible names into a debug pubnames section.
///
void EmitDebugPubNames() {
// Start the dwarf pubnames section.
Asm->SwitchToDataSection(TAI->getDwarfPubNamesSection());
CompileUnit *Unit = GetBaseCompileUnit();
EmitDifference("pubnames_end", Unit->getID(),
"pubnames_begin", Unit->getID(), true);
Asm->EOL("Length of Public Names Info");
EmitLabel("pubnames_begin", Unit->getID());
Asm->EmitInt16(DWARF_VERSION); Asm->EOL("DWARF Version");
EmitSectionOffset("info_begin", "section_info",
Unit->getID(), 0, true, false);
Asm->EOL("Offset of Compilation Unit Info");
EmitDifference("info_end", Unit->getID(), "info_begin", Unit->getID(),true);
Asm->EOL("Compilation Unit Length");
std::map<std::string, DIE *> &Globals = Unit->getGlobals();
for (std::map<std::string, DIE *>::iterator GI = Globals.begin(),
GE = Globals.end();
GI != GE; ++GI) {
const std::string &Name = GI->first;
DIE * Entity = GI->second;
Asm->EmitInt32(Entity->getOffset()); Asm->EOL("DIE offset");
Asm->EmitString(Name); Asm->EOL("External Name");
}
Asm->EmitInt32(0); Asm->EOL("End Mark");
EmitLabel("pubnames_end", Unit->getID());
Asm->EOL();
}
/// EmitDebugStr - Emit visible names into a debug str section.
///
void EmitDebugStr() {
// Check to see if it is worth the effort.
if (!StringPool.empty()) {
// Start the dwarf str section.
Asm->SwitchToDataSection(TAI->getDwarfStrSection());
// For each of strings in the string pool.
for (unsigned StringID = 1, N = StringPool.size();
StringID <= N; ++StringID) {
// Emit a label for reference from debug information entries.
EmitLabel("string", StringID);
// Emit the string itself.
const std::string &String = StringPool[StringID];
Asm->EmitString(String); Asm->EOL();
}
Asm->EOL();
}
}
/// EmitDebugLoc - Emit visible names into a debug loc section.
///
void EmitDebugLoc() {
// Start the dwarf loc section.
Asm->SwitchToDataSection(TAI->getDwarfLocSection());
Asm->EOL();
}
/// EmitDebugARanges - Emit visible names into a debug aranges section.
///
void EmitDebugARanges() {
// Start the dwarf aranges section.
Asm->SwitchToDataSection(TAI->getDwarfARangesSection());
// FIXME - Mock up
#if 0
CompileUnit *Unit = GetBaseCompileUnit();
// Don't include size of length
Asm->EmitInt32(0x1c); Asm->EOL("Length of Address Ranges Info");
Asm->EmitInt16(DWARF_VERSION); Asm->EOL("Dwarf Version");
EmitReference("info_begin", Unit->getID());
Asm->EOL("Offset of Compilation Unit Info");
Asm->EmitInt8(TAI->getAddressSize()); Asm->EOL("Size of Address");
Asm->EmitInt8(0); Asm->EOL("Size of Segment Descriptor");
Asm->EmitInt16(0); Asm->EOL("Pad (1)");
Asm->EmitInt16(0); Asm->EOL("Pad (2)");
// Range 1
EmitReference("text_begin", 0); Asm->EOL("Address");
EmitDifference("text_end", 0, "text_begin", 0, true); Asm->EOL("Length");
Asm->EmitInt32(0); Asm->EOL("EOM (1)");
Asm->EmitInt32(0); Asm->EOL("EOM (2)");
Asm->EOL();
#endif
}
/// EmitDebugRanges - Emit visible names into a debug ranges section.
///
void EmitDebugRanges() {
// Start the dwarf ranges section.
Asm->SwitchToDataSection(TAI->getDwarfRangesSection());
Asm->EOL();
}
/// EmitDebugMacInfo - Emit visible names into a debug macinfo section.
///
void EmitDebugMacInfo() {
// Start the dwarf macinfo section.
Asm->SwitchToDataSection(TAI->getDwarfMacInfoSection());
Asm->EOL();
}
/// ConstructCompileUnitDIEs - Create a compile unit DIE for each source and
/// header file.
void ConstructCompileUnitDIEs() {
const UniqueVector<CompileUnitDesc *> CUW = MMI->getCompileUnits();
for (unsigned i = 1, N = CUW.size(); i <= N; ++i) {
unsigned ID = MMI->RecordSource(CUW[i]);
CompileUnit *Unit = NewCompileUnit(CUW[i], ID);
CompileUnits.push_back(Unit);
}
}
/// ConstructGlobalDIEs - Create DIEs for each of the externally visible
/// global variables.
void ConstructGlobalDIEs() {
std::vector<GlobalVariableDesc *> GlobalVariables =
MMI->getAnchoredDescriptors<GlobalVariableDesc>(*M);
for (unsigned i = 0, N = GlobalVariables.size(); i < N; ++i) {
GlobalVariableDesc *GVD = GlobalVariables[i];
NewGlobalVariable(GVD);
}
}
/// ConstructSubprogramDIEs - Create DIEs for each of the externally visible
/// subprograms.
void ConstructSubprogramDIEs() {
std::vector<SubprogramDesc *> Subprograms =
MMI->getAnchoredDescriptors<SubprogramDesc>(*M);
for (unsigned i = 0, N = Subprograms.size(); i < N; ++i) {
SubprogramDesc *SPD = Subprograms[i];
NewSubprogram(SPD);
}
}
public:
//===--------------------------------------------------------------------===//
// Main entry points.
//
DwarfDebug(std::ostream &OS, AsmPrinter *A, const TargetAsmInfo *T)
: Dwarf(OS, A, T)
, CompileUnits()
, AbbreviationsSet(InitAbbreviationsSetSize)
, Abbreviations()
, ValuesSet(InitValuesSetSize)
, Values()
, StringPool()
, DescToUnitMap()
, SectionMap()
, SectionSourceLines()
, didInitial(false)
, shouldEmit(false)
{
}
virtual ~DwarfDebug() {
for (unsigned i = 0, N = CompileUnits.size(); i < N; ++i)
delete CompileUnits[i];
for (unsigned j = 0, M = Values.size(); j < M; ++j)
delete Values[j];
}
/// SetModuleInfo - Set machine module information when it's known that pass
/// manager has created it. Set by the target AsmPrinter.
void SetModuleInfo(MachineModuleInfo *mmi) {
// Make sure initial declarations are made.
if (!MMI && mmi->hasDebugInfo()) {
MMI = mmi;
shouldEmit = true;
// Emit initial sections
EmitInitial();
// Create all the compile unit DIEs.
ConstructCompileUnitDIEs();
// Create DIEs for each of the externally visible global variables.
ConstructGlobalDIEs();
// Create DIEs for each of the externally visible subprograms.
ConstructSubprogramDIEs();
// Prime section data.
SectionMap.insert(TAI->getTextSection());
}
}
/// BeginModule - Emit all Dwarf sections that should come prior to the
/// content.
void BeginModule(Module *M) {
this->M = M;
if (!ShouldEmitDwarf()) return;
}
/// EndModule - Emit all Dwarf sections that should come after the content.
///
void EndModule() {
if (!ShouldEmitDwarf()) return;
// Standard sections final addresses.
Asm->SwitchToTextSection(TAI->getTextSection());
EmitLabel("text_end", 0);
Asm->SwitchToDataSection(TAI->getDataSection());
EmitLabel("data_end", 0);
// End text sections.
for (unsigned i = 1, N = SectionMap.size(); i <= N; ++i) {
Asm->SwitchToTextSection(SectionMap[i].c_str());
EmitLabel("section_end", i);
}
// Emit common frame information.
EmitCommonDebugFrame();
// Emit function debug frame information
for (std::vector<FunctionDebugFrameInfo>::iterator I = DebugFrames.begin(),
E = DebugFrames.end(); I != E; ++I)
EmitFunctionDebugFrame(*I);
// Compute DIE offsets and sizes.
SizeAndOffsets();
// Emit all the DIEs into a debug info section
EmitDebugInfo();
// Corresponding abbreviations into a abbrev section.
EmitAbbreviations();
// Emit source line correspondence into a debug line section.
EmitDebugLines();
// Emit info into a debug pubnames section.
EmitDebugPubNames();
// Emit info into a debug str section.
EmitDebugStr();
// Emit info into a debug loc section.
EmitDebugLoc();
// Emit info into a debug aranges section.
EmitDebugARanges();
// Emit info into a debug ranges section.
EmitDebugRanges();
// Emit info into a debug macinfo section.
EmitDebugMacInfo();
}
/// BeginFunction - Gather pre-function debug information. Assumes being
/// emitted immediately after the function entry point.
void BeginFunction(MachineFunction *MF) {
this->MF = MF;
if (!ShouldEmitDwarf()) return;
// Begin accumulating function debug information.
MMI->BeginFunction(MF);
// Assumes in correct section after the entry point.
EmitLabel("func_begin", ++SubprogramCount);
}
/// EndFunction - Gather and emit post-function debug information.
///
void EndFunction() {
if (!ShouldEmitDwarf()) return;
// Define end label for subprogram.
EmitLabel("func_end", SubprogramCount);
// Get function line info.
const std::vector<SourceLineInfo> &LineInfos = MMI->getSourceLines();
if (!LineInfos.empty()) {
// Get section line info.
unsigned ID = SectionMap.insert(Asm->CurrentSection);
if (SectionSourceLines.size() < ID) SectionSourceLines.resize(ID);
std::vector<SourceLineInfo> &SectionLineInfos = SectionSourceLines[ID-1];
// Append the function info to section info.
SectionLineInfos.insert(SectionLineInfos.end(),
LineInfos.begin(), LineInfos.end());
}
// Construct scopes for subprogram.
ConstructRootScope(MMI->getRootScope());
DebugFrames.push_back(FunctionDebugFrameInfo(SubprogramCount,
MMI->getFrameMoves()));
}
};
//===----------------------------------------------------------------------===//
/// DwarfException - Emits Dwarf exception handling directives.
///
class DwarfException : public Dwarf {
private:
struct FunctionEHFrameInfo {
std::string FnName;
unsigned Number;
unsigned PersonalityIndex;
bool hasCalls;
bool hasLandingPads;
std::vector<MachineMove> Moves;
FunctionEHFrameInfo(const std::string &FN, unsigned Num, unsigned P,
bool hC, bool hL,
const std::vector<MachineMove> &M):
FnName(FN), Number(Num), PersonalityIndex(P),
hasCalls(hC), hasLandingPads(hL), Moves(M) { };
};
std::vector<FunctionEHFrameInfo> EHFrames;
/// shouldEmit - Flag to indicate if debug information should be emitted.
///
bool shouldEmit;
/// EmitCommonEHFrame - Emit the common eh unwind frame.
///
void EmitCommonEHFrame(const Function *Personality, unsigned Index) {
// Size and sign of stack growth.
int stackGrowth =
Asm->TM.getFrameInfo()->getStackGrowthDirection() ==
TargetFrameInfo::StackGrowsUp ?
TAI->getAddressSize() : -TAI->getAddressSize();
// Begin eh frame section.
Asm->SwitchToTextSection(TAI->getDwarfEHFrameSection());
O << "EH_frame" << Index << ":\n";
EmitLabel("section_eh_frame", Index);
// Define base labels.
EmitLabel("eh_frame_common", Index);
// Define the eh frame length.
EmitDifference("eh_frame_common_end", Index,
"eh_frame_common_begin", Index, true);
Asm->EOL("Length of Common Information Entry");
// EH frame header.
EmitLabel("eh_frame_common_begin", Index);
Asm->EmitInt32((int)0);
Asm->EOL("CIE Identifier Tag");
Asm->EmitInt8(DW_CIE_VERSION);
Asm->EOL("CIE Version");
// The personality presence indicates that language specific information
// will show up in the eh frame.
Asm->EmitString(Personality ? "zPLR" : "zR");
Asm->EOL("CIE Augmentation");
// Round out reader.
Asm->EmitULEB128Bytes(1);
Asm->EOL("CIE Code Alignment Factor");
Asm->EmitSLEB128Bytes(stackGrowth);
Asm->EOL("CIE Data Alignment Factor");
Asm->EmitInt8(RI->getDwarfRegNum(RI->getRARegister()));
Asm->EOL("CIE RA Column");
// If there is a personality, we need to indicate the functions location.
if (Personality) {
Asm->EmitULEB128Bytes(7);
Asm->EOL("Augmentation Size");
Asm->EmitInt8(DW_EH_PE_pcrel | DW_EH_PE_sdata4);
Asm->EOL("Personality (pcrel sdata4)");
O << TAI->getData32bitsDirective();
Asm->EmitExternalGlobal((const GlobalVariable *)(Personality));
O << "-" << TAI->getPCSymbol();
Asm->EOL("Personality");
Asm->EmitULEB128Bytes(DW_EH_PE_pcrel);
Asm->EOL("LSDA Encoding (pcrel)");
Asm->EmitULEB128Bytes(DW_EH_PE_pcrel);
Asm->EOL("FDE Encoding (pcrel)");
} else {
Asm->EmitULEB128Bytes(1);
Asm->EOL("Augmentation Size");
Asm->EmitULEB128Bytes(DW_EH_PE_pcrel);
Asm->EOL("FDE Encoding (pcrel)");
}
// Indicate locations of general callee saved registers in frame.
std::vector<MachineMove> Moves;
RI->getInitialFrameState(Moves);
EmitFrameMoves(NULL, 0, Moves);
Asm->EmitAlignment(2);
EmitLabel("eh_frame_common_end", Index);
Asm->EOL();
}
/// EmitEHFrame - Emit function exception frame information.
///
void EmitEHFrame(const FunctionEHFrameInfo &EHFrameInfo) {
Asm->SwitchToTextSection(TAI->getDwarfEHFrameSection());
// Externally visible entry into the functions eh frame info.
if (const char *GlobalDirective = TAI->getGlobalDirective())
O << GlobalDirective << EHFrameInfo.FnName << ".eh\n";
// If there are no calls then you can't unwind.
if (!EHFrameInfo.hasCalls) {
O << EHFrameInfo.FnName << ".eh = 0\n";
} else {
O << EHFrameInfo.FnName << ".eh:\n";
// EH frame header.
EmitDifference("eh_frame_end", EHFrameInfo.Number,
"eh_frame_begin", EHFrameInfo.Number, true);
Asm->EOL("Length of Frame Information Entry");
EmitLabel("eh_frame_begin", EHFrameInfo.Number);
EmitSectionOffset("eh_frame_begin", "eh_frame_common",
EHFrameInfo.Number, EHFrameInfo.PersonalityIndex,
true, true);
Asm->EOL("FDE CIE offset");
EmitReference("eh_func_begin", EHFrameInfo.Number, true);
Asm->EOL("FDE initial location");
EmitDifference("eh_func_end", EHFrameInfo.Number,
"eh_func_begin", EHFrameInfo.Number);
Asm->EOL("FDE address range");
// If there is a personality and landing pads then point to the language
// specific data area in the exception table.
if (EHFrameInfo.PersonalityIndex) {
Asm->EmitULEB128Bytes(4);
Asm->EOL("Augmentation size");
if (EHFrameInfo.hasLandingPads) {
EmitReference("exception", EHFrameInfo.Number, true);
} else if(TAI->getAddressSize() == 8) {
Asm->EmitInt64((int)0);
} else {
Asm->EmitInt32((int)0);
}
Asm->EOL("Language Specific Data Area");
} else {
Asm->EmitULEB128Bytes(0);
Asm->EOL("Augmentation size");
}
// Indicate locations of function specific callee saved registers in
// frame.
EmitFrameMoves("eh_func_begin", EHFrameInfo.Number, EHFrameInfo.Moves);
Asm->EmitAlignment(2);
EmitLabel("eh_frame_end", EHFrameInfo.Number);
}
if (const char *UsedDirective = TAI->getUsedDirective())
O << UsedDirective << EHFrameInfo.FnName << ".eh\n\n";
}
/// EmitExceptionTable - Emit landpads and actions.
///
/// The general organization of the table is complex, but the basic concepts
/// are easy. First there is a header which describes the location and
/// organization of the three components that follow.
/// 1. The landing pad site information describes the range of code covered
/// by the try. In our case it's an accumulation of the ranges covered
/// by the invokes in the try. There is also a reference to the landing
/// pad that handles the exception once processed. Finally an index into
/// the actions table.
/// 2. The action table, in our case, is composed of pairs of type ids
/// and next action offset. Starting with the action index from the
/// landing pad site, each type Id is checked for a match to the current
/// exception. If it matches then the exception and type id are passed
/// on to the landing pad. Otherwise the next action is looked up. This
/// chain is terminated with a next action of zero. If no type id is
/// found the the frame is unwound and handling continues.
/// 3. Type id table contains references to all the C++ typeinfo for all
/// catches in the function. This tables is reversed indexed base 1.
/// SharedTypeIds - How many leading type ids two landing pads have in common.
static unsigned SharedTypeIds(const LandingPadInfo *L,
const LandingPadInfo *R) {
const std::vector<int> &LIds = L->TypeIds, &RIds = R->TypeIds;
unsigned LSize = LIds.size(), RSize = RIds.size();
unsigned MinSize = LSize < RSize ? LSize : RSize;
unsigned Count = 0;
for (; Count != MinSize; ++Count)
if (LIds[Count] != RIds[Count])
return Count;
return Count;
}
/// PadLT - Order landing pads lexicographically by type id.
static bool PadLT(const LandingPadInfo *L, const LandingPadInfo *R) {
const std::vector<int> &LIds = L->TypeIds, &RIds = R->TypeIds;
unsigned LSize = LIds.size(), RSize = RIds.size();
unsigned MinSize = LSize < RSize ? LSize : RSize;
for (unsigned i = 0; i != MinSize; ++i)
if (LIds[i] != RIds[i])
return LIds[i] < RIds[i];
return LSize < RSize;
}
struct KeyInfo {
static inline unsigned getEmptyKey() { return -1U; }
static inline unsigned getTombstoneKey() { return -2U; }
static unsigned getHashValue(const unsigned &Key) { return Key; }
static bool isPod() { return true; }
};
struct PadSite {
unsigned PadIndex;
unsigned SiteIndex;
};
typedef DenseMap<unsigned, PadSite, KeyInfo> PadMapType;
struct ActionEntry {
int ValueForTypeID; // The value to write - may not be equal to the type id.
int NextAction;
struct ActionEntry *Previous;
};
void EmitExceptionTable() {
// Map all labels and get rid of any dead landing pads.
MMI->TidyLandingPads();
const std::vector<GlobalVariable *> &TypeInfos = MMI->getTypeInfos();
const std::vector<unsigned> &FilterIds = MMI->getFilterIds();
const std::vector<LandingPadInfo> &PadInfos = MMI->getLandingPads();
if (PadInfos.empty()) return;
// Sort the landing pads in order of their type ids. This is used to fold
// duplicate actions.
SmallVector<const LandingPadInfo *, 64> LandingPads;
LandingPads.reserve(PadInfos.size());
for (unsigned i = 0, N = PadInfos.size(); i != N; ++i)
LandingPads.push_back(&PadInfos[i]);
std::sort(LandingPads.begin(), LandingPads.end(), PadLT);
// Gather first action index for each landing pad site.
SmallVector<unsigned, 64> FirstActions;
FirstActions.reserve(PadInfos.size());
// The actions table.
SmallVector<ActionEntry, 32> Actions;
// Negative type ids index into FilterIds, positive type ids index into
// TypeInfos. The value written for a positive type id is just the type
// id itself. For a negative type id, however, the value written is the
// (negative) byte offset of the corresponding FilterIds entry. The byte
// offset is usually equal to the type id, because the FilterIds entries
// are written using a variable width encoding which outputs one byte per
// entry as long as the value written is not too large, but can differ.
// This kind of complication does not occur for positive type ids because
// type infos are output using a fixed width encoding.
// FilterOffsets[i] holds the byte offset corresponding to FilterIds[i].
SmallVector<int, 16> FilterOffsets;
FilterOffsets.reserve(FilterIds.size());
int Offset = -1;
for(std::vector<unsigned>::const_iterator I = FilterIds.begin(),
E = FilterIds.end(); I != E; ++I) {
FilterOffsets.push_back(Offset);
Offset -= Asm->SizeULEB128(*I);
}
// Compute sizes for exception table.
unsigned SizeSites = 0;
unsigned SizeActions = 0;
// Look at each landing pad site to compute size. We need the size of each
// landing pad site info and the size of the landing pad's actions.
int FirstAction = 0;
for (unsigned i = 0, N = LandingPads.size(); i != N; ++i) {
const LandingPadInfo *LP = LandingPads[i];
const std::vector<int> &TypeIds = LP->TypeIds;
const unsigned NumShared = i ? SharedTypeIds(LP, LandingPads[i-1]) : 0;
unsigned SizeSiteActions = 0;
if (NumShared < TypeIds.size()) {
unsigned SizeAction = 0;
ActionEntry *PrevAction = 0;
if (NumShared) {
const unsigned SizePrevIds = LandingPads[i-1]->TypeIds.size();
assert(Actions.size());
PrevAction = &Actions.back();
SizeAction = Asm->SizeSLEB128(PrevAction->NextAction) +
Asm->SizeSLEB128(PrevAction->ValueForTypeID);
for (unsigned j = NumShared; j != SizePrevIds; ++j) {
SizeAction -= Asm->SizeSLEB128(PrevAction->ValueForTypeID);
SizeAction += -PrevAction->NextAction;
PrevAction = PrevAction->Previous;
}
}
// Compute the actions.
for (unsigned I = NumShared, M = TypeIds.size(); I != M; ++I) {
int TypeID = TypeIds[I];
assert(-1-TypeID < (int)FilterOffsets.size() && "Unknown filter id!");
int ValueForTypeID = TypeID < 0 ? FilterOffsets[-1 - TypeID] : TypeID;
unsigned SizeTypeID = Asm->SizeSLEB128(ValueForTypeID);
int NextAction = SizeAction ? -(SizeAction + SizeTypeID) : 0;
SizeAction = SizeTypeID + Asm->SizeSLEB128(NextAction);
SizeSiteActions += SizeAction;
ActionEntry Action = {ValueForTypeID, NextAction, PrevAction};
Actions.push_back(Action);
PrevAction = &Actions.back();
}
// Record the first action of the landing pad site.
FirstAction = SizeActions + SizeSiteActions - SizeAction + 1;
} // else identical - re-use previous FirstAction
FirstActions.push_back(FirstAction);
// Compute this sites contribution to size.
SizeActions += SizeSiteActions;
unsigned M = LP->BeginLabels.size();
SizeSites += M*(sizeof(int32_t) + // Site start.
sizeof(int32_t) + // Site length.
sizeof(int32_t) + // Landing pad.
Asm->SizeULEB128(FirstAction)); // Action.
}
// Final tallies.
unsigned SizeTypes = TypeInfos.size() * TAI->getAddressSize();
unsigned TypeOffset = sizeof(int8_t) + // Call site format
Asm->SizeULEB128(SizeSites) + // Call-site table length
SizeSites + SizeActions + SizeTypes;
unsigned TotalSize = sizeof(int8_t) + // LPStart format
sizeof(int8_t) + // TType format
Asm->SizeULEB128(TypeOffset) + // TType base offset
TypeOffset;
unsigned SizeAlign = (4 - TotalSize) & 3;
// Begin the exception table.
Asm->SwitchToDataSection(TAI->getDwarfExceptionSection());
O << "GCC_except_table" << SubprogramCount << ":\n";
Asm->EmitAlignment(2);
for (unsigned i = 0; i != SizeAlign; ++i) {
Asm->EmitInt8(0);
Asm->EOL("Padding");
}
EmitLabel("exception", SubprogramCount);
// Emit the header.
Asm->EmitInt8(DW_EH_PE_omit);
Asm->EOL("LPStart format (DW_EH_PE_omit)");
Asm->EmitInt8(DW_EH_PE_absptr);
Asm->EOL("TType format (DW_EH_PE_absptr)");
Asm->EmitULEB128Bytes(TypeOffset);
Asm->EOL("TType base offset");
Asm->EmitInt8(DW_EH_PE_udata4);
Asm->EOL("Call site format (DW_EH_PE_udata4)");
Asm->EmitULEB128Bytes(SizeSites);
Asm->EOL("Call-site table length");
// Emit the landing pad site information in order of address.
PadMapType PadMap;
for (unsigned i = 0, N = LandingPads.size(); i != N; ++i) {
const LandingPadInfo *LandingPad = LandingPads[i];
for (unsigned j=0, E = LandingPad->BeginLabels.size(); j != E; ++j) {
unsigned BeginLabel = LandingPad->BeginLabels[j];
assert(!PadMap.count(BeginLabel) && "duplicate landing pad labels!");
PadSite P = { i, j };
PadMap[BeginLabel] = P;
}
}
for (MachineFunction::const_iterator I = MF->begin(), E = MF->end();
I != E; ++I) {
for (MachineBasicBlock::const_iterator MI = I->begin(), E = I->end();
MI != E; ++MI) {
if (MI->getOpcode() != TargetInstrInfo::LABEL)
continue;
unsigned BeginLabel = MI->getOperand(0).getImmedValue();
PadMapType::iterator L = PadMap.find(BeginLabel);
if (L == PadMap.end())
continue;
PadSite P = L->second;
const LandingPadInfo *LandingPad = LandingPads[P.PadIndex];
assert(BeginLabel == LandingPad->BeginLabels[P.SiteIndex] &&
"Inconsistent landing pad map!");
EmitSectionOffset("label", "eh_func_begin", BeginLabel, SubprogramCount,
false, true);
Asm->EOL("Region start");
EmitDifference("label", LandingPad->EndLabels[P.SiteIndex],
"label", BeginLabel);
Asm->EOL("Region length");
if (LandingPad->TypeIds.empty()) {
if (TAI->getAddressSize() == sizeof(int32_t))
Asm->EmitInt32(0);
else
Asm->EmitInt64(0);
} else {
EmitSectionOffset("label", "eh_func_begin",
LandingPad->LandingPadLabel, SubprogramCount,
false, true);
}
Asm->EOL("Landing pad");
Asm->EmitULEB128Bytes(FirstActions[P.PadIndex]);
Asm->EOL("Action");
}
}
// Emit the actions.
for (unsigned I = 0, N = Actions.size(); I != N; ++I) {
ActionEntry &Action = Actions[I];
Asm->EmitSLEB128Bytes(Action.ValueForTypeID);
Asm->EOL("TypeInfo index");
Asm->EmitSLEB128Bytes(Action.NextAction);
Asm->EOL("Next action");
}
// Emit the type ids.
for (unsigned M = TypeInfos.size(); M; --M) {
GlobalVariable *GV = TypeInfos[M - 1];
if (TAI->getAddressSize() == sizeof(int32_t))
O << TAI->getData32bitsDirective();
else
O << TAI->getData64bitsDirective();
if (GV)
O << Asm->getGlobalLinkName(GV);
else
O << "0";
Asm->EOL("TypeInfo");
}
// Emit the filter typeids.
for (unsigned j = 0, M = FilterIds.size(); j < M; ++j) {
unsigned TypeID = FilterIds[j];
Asm->EmitULEB128Bytes(TypeID);
Asm->EOL("Filter TypeInfo index");
}
Asm->EmitAlignment(2);
}
public:
//===--------------------------------------------------------------------===//
// Main entry points.
//
DwarfException(std::ostream &OS, AsmPrinter *A, const TargetAsmInfo *T)
: Dwarf(OS, A, T)
, shouldEmit(false)
{}
virtual ~DwarfException() {}
/// SetModuleInfo - Set machine module information when it's known that pass
/// manager has created it. Set by the target AsmPrinter.
void SetModuleInfo(MachineModuleInfo *mmi) {
MMI = mmi;
}
/// BeginModule - Emit all exception information that should come prior to the
/// content.
void BeginModule(Module *M) {
this->M = M;
}
/// EndModule - Emit all exception information that should come after the
/// content.
void EndModule() {
if (!shouldEmit) return;
const std::vector<Function *> Personalities = MMI->getPersonalities();
for (unsigned i =0; i < Personalities.size(); ++i)
EmitCommonEHFrame(Personalities[i], i);
for (std::vector<FunctionEHFrameInfo>::iterator I = EHFrames.begin(),
E = EHFrames.end(); I != E; ++I)
EmitEHFrame(*I);
}
/// BeginFunction - Gather pre-function exception information. Assumes being
/// emitted immediately after the function entry point.
void BeginFunction(MachineFunction *MF) {
this->MF = MF;
if (MMI &&
ExceptionHandling &&
TAI->doesSupportExceptionHandling()) {
shouldEmit = true;
// Assumes in correct section after the entry point.
EmitLabel("eh_func_begin", ++SubprogramCount);
}
}
/// EndFunction - Gather and emit post-function exception information.
///
void EndFunction() {
if (!shouldEmit) return;
EmitLabel("eh_func_end", SubprogramCount);
EmitExceptionTable();
// Save EH frame information
EHFrames.push_back(FunctionEHFrameInfo(getAsm()->CurrentFnName,
SubprogramCount,
MMI->getPersonalityIndex(),
MF->getFrameInfo()->hasCalls(),
!MMI->getLandingPads().empty(),
MMI->getFrameMoves()));
}
};
} // End of namespace llvm
//===----------------------------------------------------------------------===//
/// Emit - Print the abbreviation using the specified Dwarf writer.
///
void DIEAbbrev::Emit(const DwarfDebug &DD) const {
// Emit its Dwarf tag type.
DD.getAsm()->EmitULEB128Bytes(Tag);
DD.getAsm()->EOL(TagString(Tag));
// Emit whether it has children DIEs.
DD.getAsm()->EmitULEB128Bytes(ChildrenFlag);
DD.getAsm()->EOL(ChildrenString(ChildrenFlag));
// For each attribute description.
for (unsigned i = 0, N = Data.size(); i < N; ++i) {
const DIEAbbrevData &AttrData = Data[i];
// Emit attribute type.
DD.getAsm()->EmitULEB128Bytes(AttrData.getAttribute());
DD.getAsm()->EOL(AttributeString(AttrData.getAttribute()));
// Emit form type.
DD.getAsm()->EmitULEB128Bytes(AttrData.getForm());
DD.getAsm()->EOL(FormEncodingString(AttrData.getForm()));
}
// Mark end of abbreviation.
DD.getAsm()->EmitULEB128Bytes(0); DD.getAsm()->EOL("EOM(1)");
DD.getAsm()->EmitULEB128Bytes(0); DD.getAsm()->EOL("EOM(2)");
}
#ifndef NDEBUG
void DIEAbbrev::print(std::ostream &O) {
O << "Abbreviation @"
<< std::hex << (intptr_t)this << std::dec
<< " "
<< TagString(Tag)
<< " "
<< ChildrenString(ChildrenFlag)
<< "\n";
for (unsigned i = 0, N = Data.size(); i < N; ++i) {
O << " "
<< AttributeString(Data[i].getAttribute())
<< " "
<< FormEncodingString(Data[i].getForm())
<< "\n";
}
}
void DIEAbbrev::dump() { print(cerr); }
#endif
//===----------------------------------------------------------------------===//
#ifndef NDEBUG
void DIEValue::dump() {
print(cerr);
}
#endif
//===----------------------------------------------------------------------===//
/// EmitValue - Emit integer of appropriate size.
///
void DIEInteger::EmitValue(DwarfDebug &DD, unsigned Form) {
switch (Form) {
case DW_FORM_flag: // Fall thru
case DW_FORM_ref1: // Fall thru
case DW_FORM_data1: DD.getAsm()->EmitInt8(Integer); break;
case DW_FORM_ref2: // Fall thru
case DW_FORM_data2: DD.getAsm()->EmitInt16(Integer); break;
case DW_FORM_ref4: // Fall thru
case DW_FORM_data4: DD.getAsm()->EmitInt32(Integer); break;
case DW_FORM_ref8: // Fall thru
case DW_FORM_data8: DD.getAsm()->EmitInt64(Integer); break;
case DW_FORM_udata: DD.getAsm()->EmitULEB128Bytes(Integer); break;
case DW_FORM_sdata: DD.getAsm()->EmitSLEB128Bytes(Integer); break;
default: assert(0 && "DIE Value form not supported yet"); break;
}
}
/// SizeOf - Determine size of integer value in bytes.
///
unsigned DIEInteger::SizeOf(const DwarfDebug &DD, unsigned Form) const {
switch (Form) {
case DW_FORM_flag: // Fall thru
case DW_FORM_ref1: // Fall thru
case DW_FORM_data1: return sizeof(int8_t);
case DW_FORM_ref2: // Fall thru
case DW_FORM_data2: return sizeof(int16_t);
case DW_FORM_ref4: // Fall thru
case DW_FORM_data4: return sizeof(int32_t);
case DW_FORM_ref8: // Fall thru
case DW_FORM_data8: return sizeof(int64_t);
case DW_FORM_udata: return DD.getAsm()->SizeULEB128(Integer);
case DW_FORM_sdata: return DD.getAsm()->SizeSLEB128(Integer);
default: assert(0 && "DIE Value form not supported yet"); break;
}
return 0;
}
//===----------------------------------------------------------------------===//
/// EmitValue - Emit string value.
///
void DIEString::EmitValue(DwarfDebug &DD, unsigned Form) {
DD.getAsm()->EmitString(String);
}
//===----------------------------------------------------------------------===//
/// EmitValue - Emit label value.
///
void DIEDwarfLabel::EmitValue(DwarfDebug &DD, unsigned Form) {
DD.EmitReference(Label);
}
/// SizeOf - Determine size of label value in bytes.
///
unsigned DIEDwarfLabel::SizeOf(const DwarfDebug &DD, unsigned Form) const {
return DD.getTargetAsmInfo()->getAddressSize();
}
//===----------------------------------------------------------------------===//
/// EmitValue - Emit label value.
///
void DIEObjectLabel::EmitValue(DwarfDebug &DD, unsigned Form) {
DD.EmitReference(Label);
}
/// SizeOf - Determine size of label value in bytes.
///
unsigned DIEObjectLabel::SizeOf(const DwarfDebug &DD, unsigned Form) const {
return DD.getTargetAsmInfo()->getAddressSize();
}
//===----------------------------------------------------------------------===//
/// EmitValue - Emit delta value.
///
void DIEDelta::EmitValue(DwarfDebug &DD, unsigned Form) {
bool IsSmall = Form == DW_FORM_data4;
DD.EmitDifference(LabelHi, LabelLo, IsSmall);
}
/// SizeOf - Determine size of delta value in bytes.
///
unsigned DIEDelta::SizeOf(const DwarfDebug &DD, unsigned Form) const {
if (Form == DW_FORM_data4) return 4;
return DD.getTargetAsmInfo()->getAddressSize();
}
//===----------------------------------------------------------------------===//
/// EmitValue - Emit debug information entry offset.
///
void DIEntry::EmitValue(DwarfDebug &DD, unsigned Form) {
DD.getAsm()->EmitInt32(Entry->getOffset());
}
//===----------------------------------------------------------------------===//
/// ComputeSize - calculate the size of the block.
///
unsigned DIEBlock::ComputeSize(DwarfDebug &DD) {
if (!Size) {
const std::vector<DIEAbbrevData> &AbbrevData = Abbrev.getData();
for (unsigned i = 0, N = Values.size(); i < N; ++i) {
Size += Values[i]->SizeOf(DD, AbbrevData[i].getForm());
}
}
return Size;
}
/// EmitValue - Emit block data.
///
void DIEBlock::EmitValue(DwarfDebug &DD, unsigned Form) {
switch (Form) {
case DW_FORM_block1: DD.getAsm()->EmitInt8(Size); break;
case DW_FORM_block2: DD.getAsm()->EmitInt16(Size); break;
case DW_FORM_block4: DD.getAsm()->EmitInt32(Size); break;
case DW_FORM_block: DD.getAsm()->EmitULEB128Bytes(Size); break;
default: assert(0 && "Improper form for block"); break;
}
const std::vector<DIEAbbrevData> &AbbrevData = Abbrev.getData();
for (unsigned i = 0, N = Values.size(); i < N; ++i) {
DD.getAsm()->EOL();
Values[i]->EmitValue(DD, AbbrevData[i].getForm());
}
}
/// SizeOf - Determine size of block data in bytes.
///
unsigned DIEBlock::SizeOf(const DwarfDebug &DD, unsigned Form) const {
switch (Form) {
case DW_FORM_block1: return Size + sizeof(int8_t);
case DW_FORM_block2: return Size + sizeof(int16_t);
case DW_FORM_block4: return Size + sizeof(int32_t);
case DW_FORM_block: return Size + DD.getAsm()->SizeULEB128(Size);
default: assert(0 && "Improper form for block"); break;
}
return 0;
}
//===----------------------------------------------------------------------===//
/// DIE Implementation
DIE::~DIE() {
for (unsigned i = 0, N = Children.size(); i < N; ++i)
delete Children[i];
}
/// AddSiblingOffset - Add a sibling offset field to the front of the DIE.
///
void DIE::AddSiblingOffset() {
DIEInteger *DI = new DIEInteger(0);
Values.insert(Values.begin(), DI);
Abbrev.AddFirstAttribute(DW_AT_sibling, DW_FORM_ref4);
}
/// Profile - Used to gather unique data for the value folding set.
///
void DIE::Profile(FoldingSetNodeID &ID) {
Abbrev.Profile(ID);
for (unsigned i = 0, N = Children.size(); i < N; ++i)
ID.AddPointer(Children[i]);
for (unsigned j = 0, M = Values.size(); j < M; ++j)
ID.AddPointer(Values[j]);
}
#ifndef NDEBUG
void DIE::print(std::ostream &O, unsigned IncIndent) {
static unsigned IndentCount = 0;
IndentCount += IncIndent;
const std::string Indent(IndentCount, ' ');
bool isBlock = Abbrev.getTag() == 0;
if (!isBlock) {
O << Indent
<< "Die: "
<< "0x" << std::hex << (intptr_t)this << std::dec
<< ", Offset: " << Offset
<< ", Size: " << Size
<< "\n";
O << Indent
<< TagString(Abbrev.getTag())
<< " "
<< ChildrenString(Abbrev.getChildrenFlag());
} else {
O << "Size: " << Size;
}
O << "\n";
const std::vector<DIEAbbrevData> &Data = Abbrev.getData();
IndentCount += 2;
for (unsigned i = 0, N = Data.size(); i < N; ++i) {
O << Indent;
if (!isBlock) {
O << AttributeString(Data[i].getAttribute());
} else {
O << "Blk[" << i << "]";
}
O << " "
<< FormEncodingString(Data[i].getForm())
<< " ";
Values[i]->print(O);
O << "\n";
}
IndentCount -= 2;
for (unsigned j = 0, M = Children.size(); j < M; ++j) {
Children[j]->print(O, 4);
}
if (!isBlock) O << "\n";
IndentCount -= IncIndent;
}
void DIE::dump() {
print(cerr);
}
#endif
//===----------------------------------------------------------------------===//
/// DwarfWriter Implementation
///
DwarfWriter::DwarfWriter(std::ostream &OS, AsmPrinter *A,
const TargetAsmInfo *T) {
DE = new DwarfException(OS, A, T);
DD = new DwarfDebug(OS, A, T);
}
DwarfWriter::~DwarfWriter() {
delete DE;
delete DD;
}
/// SetModuleInfo - Set machine module info when it's known that pass manager
/// has created it. Set by the target AsmPrinter.
void DwarfWriter::SetModuleInfo(MachineModuleInfo *MMI) {
DD->SetModuleInfo(MMI);
DE->SetModuleInfo(MMI);
}
/// BeginModule - Emit all Dwarf sections that should come prior to the
/// content.
void DwarfWriter::BeginModule(Module *M) {
DE->BeginModule(M);
DD->BeginModule(M);
}
/// EndModule - Emit all Dwarf sections that should come after the content.
///
void DwarfWriter::EndModule() {
DE->EndModule();
DD->EndModule();
}
/// BeginFunction - Gather pre-function debug information. Assumes being
/// emitted immediately after the function entry point.
void DwarfWriter::BeginFunction(MachineFunction *MF) {
DE->BeginFunction(MF);
DD->BeginFunction(MF);
}
/// EndFunction - Gather and emit post-function debug information.
///
void DwarfWriter::EndFunction() {
DD->EndFunction();
DE->EndFunction();
if (MachineModuleInfo *MMI = DD->getMMI() ? DD->getMMI() : DE->getMMI()) {
// Clear function debug information.
MMI->EndFunction();
}
}