llvm-mirror/lib/CodeGen/TargetInstrInfoImpl.cpp
Chris Lattner 9ce833945e improve portability to avoid conflicting with std::next in c++'0x.
Patch by Howard Hinnant!

llvm-svn: 90365
2009-12-03 00:50:42 +00:00

346 lines
13 KiB
C++

//===-- TargetInstrInfoImpl.cpp - Target Instruction Information ----------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements the TargetInstrInfoImpl class, it just provides default
// implementations of various methods.
//
//===----------------------------------------------------------------------===//
#include "llvm/Target/TargetInstrInfo.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/Target/TargetRegisterInfo.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/CodeGen/MachineFrameInfo.h"
#include "llvm/CodeGen/MachineInstr.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineMemOperand.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/PseudoSourceValue.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/raw_ostream.h"
using namespace llvm;
// commuteInstruction - The default implementation of this method just exchanges
// the two operands returned by findCommutedOpIndices.
MachineInstr *TargetInstrInfoImpl::commuteInstruction(MachineInstr *MI,
bool NewMI) const {
const TargetInstrDesc &TID = MI->getDesc();
bool HasDef = TID.getNumDefs();
if (HasDef && !MI->getOperand(0).isReg())
// No idea how to commute this instruction. Target should implement its own.
return 0;
unsigned Idx1, Idx2;
if (!findCommutedOpIndices(MI, Idx1, Idx2)) {
std::string msg;
raw_string_ostream Msg(msg);
Msg << "Don't know how to commute: " << *MI;
llvm_report_error(Msg.str());
}
assert(MI->getOperand(Idx1).isReg() && MI->getOperand(Idx2).isReg() &&
"This only knows how to commute register operands so far");
unsigned Reg1 = MI->getOperand(Idx1).getReg();
unsigned Reg2 = MI->getOperand(Idx2).getReg();
bool Reg1IsKill = MI->getOperand(Idx1).isKill();
bool Reg2IsKill = MI->getOperand(Idx2).isKill();
bool ChangeReg0 = false;
if (HasDef && MI->getOperand(0).getReg() == Reg1) {
// Must be two address instruction!
assert(MI->getDesc().getOperandConstraint(0, TOI::TIED_TO) &&
"Expecting a two-address instruction!");
Reg2IsKill = false;
ChangeReg0 = true;
}
if (NewMI) {
// Create a new instruction.
unsigned Reg0 = HasDef
? (ChangeReg0 ? Reg2 : MI->getOperand(0).getReg()) : 0;
bool Reg0IsDead = HasDef ? MI->getOperand(0).isDead() : false;
MachineFunction &MF = *MI->getParent()->getParent();
if (HasDef)
return BuildMI(MF, MI->getDebugLoc(), MI->getDesc())
.addReg(Reg0, RegState::Define | getDeadRegState(Reg0IsDead))
.addReg(Reg2, getKillRegState(Reg2IsKill))
.addReg(Reg1, getKillRegState(Reg2IsKill));
else
return BuildMI(MF, MI->getDebugLoc(), MI->getDesc())
.addReg(Reg2, getKillRegState(Reg2IsKill))
.addReg(Reg1, getKillRegState(Reg2IsKill));
}
if (ChangeReg0)
MI->getOperand(0).setReg(Reg2);
MI->getOperand(Idx2).setReg(Reg1);
MI->getOperand(Idx1).setReg(Reg2);
MI->getOperand(Idx2).setIsKill(Reg1IsKill);
MI->getOperand(Idx1).setIsKill(Reg2IsKill);
return MI;
}
/// findCommutedOpIndices - If specified MI is commutable, return the two
/// operand indices that would swap value. Return true if the instruction
/// is not in a form which this routine understands.
bool TargetInstrInfoImpl::findCommutedOpIndices(MachineInstr *MI,
unsigned &SrcOpIdx1,
unsigned &SrcOpIdx2) const {
const TargetInstrDesc &TID = MI->getDesc();
if (!TID.isCommutable())
return false;
// This assumes v0 = op v1, v2 and commuting would swap v1 and v2. If this
// is not true, then the target must implement this.
SrcOpIdx1 = TID.getNumDefs();
SrcOpIdx2 = SrcOpIdx1 + 1;
if (!MI->getOperand(SrcOpIdx1).isReg() ||
!MI->getOperand(SrcOpIdx2).isReg())
// No idea.
return false;
return true;
}
bool TargetInstrInfoImpl::PredicateInstruction(MachineInstr *MI,
const SmallVectorImpl<MachineOperand> &Pred) const {
bool MadeChange = false;
const TargetInstrDesc &TID = MI->getDesc();
if (!TID.isPredicable())
return false;
for (unsigned j = 0, i = 0, e = MI->getNumOperands(); i != e; ++i) {
if (TID.OpInfo[i].isPredicate()) {
MachineOperand &MO = MI->getOperand(i);
if (MO.isReg()) {
MO.setReg(Pred[j].getReg());
MadeChange = true;
} else if (MO.isImm()) {
MO.setImm(Pred[j].getImm());
MadeChange = true;
} else if (MO.isMBB()) {
MO.setMBB(Pred[j].getMBB());
MadeChange = true;
}
++j;
}
}
return MadeChange;
}
void TargetInstrInfoImpl::reMaterialize(MachineBasicBlock &MBB,
MachineBasicBlock::iterator I,
unsigned DestReg,
unsigned SubIdx,
const MachineInstr *Orig,
const TargetRegisterInfo *TRI) const {
MachineInstr *MI = MBB.getParent()->CloneMachineInstr(Orig);
MachineOperand &MO = MI->getOperand(0);
if (TargetRegisterInfo::isVirtualRegister(DestReg)) {
MO.setReg(DestReg);
MO.setSubReg(SubIdx);
} else if (SubIdx) {
MO.setReg(TRI->getSubReg(DestReg, SubIdx));
} else {
MO.setReg(DestReg);
}
MBB.insert(I, MI);
}
bool
TargetInstrInfoImpl::isIdentical(const MachineInstr *MI,
const MachineInstr *Other,
const MachineRegisterInfo *MRI) const {
if (MI->getOpcode() != Other->getOpcode() ||
MI->getNumOperands() != Other->getNumOperands())
return false;
for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
const MachineOperand &MO = MI->getOperand(i);
const MachineOperand &OMO = Other->getOperand(i);
if (MO.isReg() && MO.isDef()) {
assert(OMO.isReg() && OMO.isDef());
unsigned Reg = MO.getReg();
if (TargetRegisterInfo::isPhysicalRegister(Reg)) {
if (Reg != OMO.getReg())
return false;
} else if (MRI->getRegClass(MO.getReg()) !=
MRI->getRegClass(OMO.getReg()))
return false;
continue;
}
if (!MO.isIdenticalTo(OMO))
return false;
}
return true;
}
unsigned
TargetInstrInfoImpl::GetFunctionSizeInBytes(const MachineFunction &MF) const {
unsigned FnSize = 0;
for (MachineFunction::const_iterator MBBI = MF.begin(), E = MF.end();
MBBI != E; ++MBBI) {
const MachineBasicBlock &MBB = *MBBI;
for (MachineBasicBlock::const_iterator I = MBB.begin(),E = MBB.end();
I != E; ++I)
FnSize += GetInstSizeInBytes(I);
}
return FnSize;
}
/// foldMemoryOperand - Attempt to fold a load or store of the specified stack
/// slot into the specified machine instruction for the specified operand(s).
/// If this is possible, a new instruction is returned with the specified
/// operand folded, otherwise NULL is returned. The client is responsible for
/// removing the old instruction and adding the new one in the instruction
/// stream.
MachineInstr*
TargetInstrInfo::foldMemoryOperand(MachineFunction &MF,
MachineInstr* MI,
const SmallVectorImpl<unsigned> &Ops,
int FrameIndex) const {
unsigned Flags = 0;
for (unsigned i = 0, e = Ops.size(); i != e; ++i)
if (MI->getOperand(Ops[i]).isDef())
Flags |= MachineMemOperand::MOStore;
else
Flags |= MachineMemOperand::MOLoad;
// Ask the target to do the actual folding.
MachineInstr *NewMI = foldMemoryOperandImpl(MF, MI, Ops, FrameIndex);
if (!NewMI) return 0;
assert((!(Flags & MachineMemOperand::MOStore) ||
NewMI->getDesc().mayStore()) &&
"Folded a def to a non-store!");
assert((!(Flags & MachineMemOperand::MOLoad) ||
NewMI->getDesc().mayLoad()) &&
"Folded a use to a non-load!");
const MachineFrameInfo &MFI = *MF.getFrameInfo();
assert(MFI.getObjectOffset(FrameIndex) != -1);
MachineMemOperand *MMO =
MF.getMachineMemOperand(PseudoSourceValue::getFixedStack(FrameIndex),
Flags, /*Offset=*/0,
MFI.getObjectSize(FrameIndex),
MFI.getObjectAlignment(FrameIndex));
NewMI->addMemOperand(MF, MMO);
return NewMI;
}
/// foldMemoryOperand - Same as the previous version except it allows folding
/// of any load and store from / to any address, not just from a specific
/// stack slot.
MachineInstr*
TargetInstrInfo::foldMemoryOperand(MachineFunction &MF,
MachineInstr* MI,
const SmallVectorImpl<unsigned> &Ops,
MachineInstr* LoadMI) const {
assert(LoadMI->getDesc().canFoldAsLoad() && "LoadMI isn't foldable!");
#ifndef NDEBUG
for (unsigned i = 0, e = Ops.size(); i != e; ++i)
assert(MI->getOperand(Ops[i]).isUse() && "Folding load into def!");
#endif
// Ask the target to do the actual folding.
MachineInstr *NewMI = foldMemoryOperandImpl(MF, MI, Ops, LoadMI);
if (!NewMI) return 0;
// Copy the memoperands from the load to the folded instruction.
NewMI->setMemRefs(LoadMI->memoperands_begin(),
LoadMI->memoperands_end());
return NewMI;
}
bool
TargetInstrInfo::isReallyTriviallyReMaterializableGeneric(const MachineInstr *
MI,
AliasAnalysis *
AA) const {
const MachineFunction &MF = *MI->getParent()->getParent();
const MachineRegisterInfo &MRI = MF.getRegInfo();
const TargetMachine &TM = MF.getTarget();
const TargetInstrInfo &TII = *TM.getInstrInfo();
const TargetRegisterInfo &TRI = *TM.getRegisterInfo();
// A load from a fixed stack slot can be rematerialized. This may be
// redundant with subsequent checks, but it's target-independent,
// simple, and a common case.
int FrameIdx = 0;
if (TII.isLoadFromStackSlot(MI, FrameIdx) &&
MF.getFrameInfo()->isImmutableObjectIndex(FrameIdx))
return true;
const TargetInstrDesc &TID = MI->getDesc();
// Avoid instructions obviously unsafe for remat.
if (TID.hasUnmodeledSideEffects() || TID.isNotDuplicable() ||
TID.mayStore())
return false;
// Avoid instructions which load from potentially varying memory.
if (TID.mayLoad() && !MI->isInvariantLoad(AA))
return false;
// If any of the registers accessed are non-constant, conservatively assume
// the instruction is not rematerializable.
for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
const MachineOperand &MO = MI->getOperand(i);
if (!MO.isReg()) continue;
unsigned Reg = MO.getReg();
if (Reg == 0)
continue;
// Check for a well-behaved physical register.
if (TargetRegisterInfo::isPhysicalRegister(Reg)) {
if (MO.isUse()) {
// If the physreg has no defs anywhere, it's just an ambient register
// and we can freely move its uses. Alternatively, if it's allocatable,
// it could get allocated to something with a def during allocation.
if (!MRI.def_empty(Reg))
return false;
BitVector AllocatableRegs = TRI.getAllocatableSet(MF, 0);
if (AllocatableRegs.test(Reg))
return false;
// Check for a def among the register's aliases too.
for (const unsigned *Alias = TRI.getAliasSet(Reg); *Alias; ++Alias) {
unsigned AliasReg = *Alias;
if (!MRI.def_empty(AliasReg))
return false;
if (AllocatableRegs.test(AliasReg))
return false;
}
} else {
// A physreg def. We can't remat it.
return false;
}
continue;
}
// Only allow one virtual-register def, and that in the first operand.
if (MO.isDef() != (i == 0))
return false;
// For the def, it should be the only def of that register.
if (MO.isDef() && (llvm::next(MRI.def_begin(Reg)) != MRI.def_end() ||
MRI.isLiveIn(Reg)))
return false;
// Don't allow any virtual-register uses. Rematting an instruction with
// virtual register uses would length the live ranges of the uses, which
// is not necessarily a good idea, certainly not "trivial".
if (MO.isUse())
return false;
}
// Everything checked out.
return true;
}