mirror of
https://github.com/RPCS3/llvm-mirror.git
synced 2025-05-16 03:56:02 +00:00

When deciding to widen narrow use, we may need to prove some facts about it. For proof, the context is used. Currently we take the instruction being widened as the context. However, we may be more precise here if we take as context the point that dominates all users of instruction being widened. Differential Revision: https://reviews.llvm.org/D90456 Reviewed By: skatkov
2041 lines
76 KiB
C++
2041 lines
76 KiB
C++
//===-- SimplifyIndVar.cpp - Induction variable simplification ------------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file implements induction variable simplification. It does
|
|
// not define any actual pass or policy, but provides a single function to
|
|
// simplify a loop's induction variables based on ScalarEvolution.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "llvm/Transforms/Utils/SimplifyIndVar.h"
|
|
#include "llvm/ADT/STLExtras.h"
|
|
#include "llvm/ADT/SmallVector.h"
|
|
#include "llvm/ADT/Statistic.h"
|
|
#include "llvm/Analysis/LoopInfo.h"
|
|
#include "llvm/IR/DataLayout.h"
|
|
#include "llvm/IR/Dominators.h"
|
|
#include "llvm/IR/IRBuilder.h"
|
|
#include "llvm/IR/Instructions.h"
|
|
#include "llvm/IR/IntrinsicInst.h"
|
|
#include "llvm/IR/PatternMatch.h"
|
|
#include "llvm/Support/Debug.h"
|
|
#include "llvm/Support/raw_ostream.h"
|
|
#include "llvm/Transforms/Utils/Local.h"
|
|
#include "llvm/Transforms/Utils/ScalarEvolutionExpander.h"
|
|
|
|
using namespace llvm;
|
|
|
|
#define DEBUG_TYPE "indvars"
|
|
|
|
STATISTIC(NumElimIdentity, "Number of IV identities eliminated");
|
|
STATISTIC(NumElimOperand, "Number of IV operands folded into a use");
|
|
STATISTIC(NumFoldedUser, "Number of IV users folded into a constant");
|
|
STATISTIC(NumElimRem , "Number of IV remainder operations eliminated");
|
|
STATISTIC(
|
|
NumSimplifiedSDiv,
|
|
"Number of IV signed division operations converted to unsigned division");
|
|
STATISTIC(
|
|
NumSimplifiedSRem,
|
|
"Number of IV signed remainder operations converted to unsigned remainder");
|
|
STATISTIC(NumElimCmp , "Number of IV comparisons eliminated");
|
|
|
|
namespace {
|
|
/// This is a utility for simplifying induction variables
|
|
/// based on ScalarEvolution. It is the primary instrument of the
|
|
/// IndvarSimplify pass, but it may also be directly invoked to cleanup after
|
|
/// other loop passes that preserve SCEV.
|
|
class SimplifyIndvar {
|
|
Loop *L;
|
|
LoopInfo *LI;
|
|
ScalarEvolution *SE;
|
|
DominatorTree *DT;
|
|
const TargetTransformInfo *TTI;
|
|
SCEVExpander &Rewriter;
|
|
SmallVectorImpl<WeakTrackingVH> &DeadInsts;
|
|
|
|
bool Changed;
|
|
|
|
public:
|
|
SimplifyIndvar(Loop *Loop, ScalarEvolution *SE, DominatorTree *DT,
|
|
LoopInfo *LI, const TargetTransformInfo *TTI,
|
|
SCEVExpander &Rewriter,
|
|
SmallVectorImpl<WeakTrackingVH> &Dead)
|
|
: L(Loop), LI(LI), SE(SE), DT(DT), TTI(TTI), Rewriter(Rewriter),
|
|
DeadInsts(Dead), Changed(false) {
|
|
assert(LI && "IV simplification requires LoopInfo");
|
|
}
|
|
|
|
bool hasChanged() const { return Changed; }
|
|
|
|
/// Iteratively perform simplification on a worklist of users of the
|
|
/// specified induction variable. This is the top-level driver that applies
|
|
/// all simplifications to users of an IV.
|
|
void simplifyUsers(PHINode *CurrIV, IVVisitor *V = nullptr);
|
|
|
|
Value *foldIVUser(Instruction *UseInst, Instruction *IVOperand);
|
|
|
|
bool eliminateIdentitySCEV(Instruction *UseInst, Instruction *IVOperand);
|
|
bool replaceIVUserWithLoopInvariant(Instruction *UseInst);
|
|
|
|
bool eliminateOverflowIntrinsic(WithOverflowInst *WO);
|
|
bool eliminateSaturatingIntrinsic(SaturatingInst *SI);
|
|
bool eliminateTrunc(TruncInst *TI);
|
|
bool eliminateIVUser(Instruction *UseInst, Instruction *IVOperand);
|
|
bool makeIVComparisonInvariant(ICmpInst *ICmp, Value *IVOperand);
|
|
void eliminateIVComparison(ICmpInst *ICmp, Value *IVOperand);
|
|
void simplifyIVRemainder(BinaryOperator *Rem, Value *IVOperand,
|
|
bool IsSigned);
|
|
void replaceRemWithNumerator(BinaryOperator *Rem);
|
|
void replaceRemWithNumeratorOrZero(BinaryOperator *Rem);
|
|
void replaceSRemWithURem(BinaryOperator *Rem);
|
|
bool eliminateSDiv(BinaryOperator *SDiv);
|
|
bool strengthenOverflowingOperation(BinaryOperator *OBO, Value *IVOperand);
|
|
bool strengthenRightShift(BinaryOperator *BO, Value *IVOperand);
|
|
};
|
|
}
|
|
|
|
/// Fold an IV operand into its use. This removes increments of an
|
|
/// aligned IV when used by a instruction that ignores the low bits.
|
|
///
|
|
/// IVOperand is guaranteed SCEVable, but UseInst may not be.
|
|
///
|
|
/// Return the operand of IVOperand for this induction variable if IVOperand can
|
|
/// be folded (in case more folding opportunities have been exposed).
|
|
/// Otherwise return null.
|
|
Value *SimplifyIndvar::foldIVUser(Instruction *UseInst, Instruction *IVOperand) {
|
|
Value *IVSrc = nullptr;
|
|
const unsigned OperIdx = 0;
|
|
const SCEV *FoldedExpr = nullptr;
|
|
bool MustDropExactFlag = false;
|
|
switch (UseInst->getOpcode()) {
|
|
default:
|
|
return nullptr;
|
|
case Instruction::UDiv:
|
|
case Instruction::LShr:
|
|
// We're only interested in the case where we know something about
|
|
// the numerator and have a constant denominator.
|
|
if (IVOperand != UseInst->getOperand(OperIdx) ||
|
|
!isa<ConstantInt>(UseInst->getOperand(1)))
|
|
return nullptr;
|
|
|
|
// Attempt to fold a binary operator with constant operand.
|
|
// e.g. ((I + 1) >> 2) => I >> 2
|
|
if (!isa<BinaryOperator>(IVOperand)
|
|
|| !isa<ConstantInt>(IVOperand->getOperand(1)))
|
|
return nullptr;
|
|
|
|
IVSrc = IVOperand->getOperand(0);
|
|
// IVSrc must be the (SCEVable) IV, since the other operand is const.
|
|
assert(SE->isSCEVable(IVSrc->getType()) && "Expect SCEVable IV operand");
|
|
|
|
ConstantInt *D = cast<ConstantInt>(UseInst->getOperand(1));
|
|
if (UseInst->getOpcode() == Instruction::LShr) {
|
|
// Get a constant for the divisor. See createSCEV.
|
|
uint32_t BitWidth = cast<IntegerType>(UseInst->getType())->getBitWidth();
|
|
if (D->getValue().uge(BitWidth))
|
|
return nullptr;
|
|
|
|
D = ConstantInt::get(UseInst->getContext(),
|
|
APInt::getOneBitSet(BitWidth, D->getZExtValue()));
|
|
}
|
|
FoldedExpr = SE->getUDivExpr(SE->getSCEV(IVSrc), SE->getSCEV(D));
|
|
// We might have 'exact' flag set at this point which will no longer be
|
|
// correct after we make the replacement.
|
|
if (UseInst->isExact() &&
|
|
SE->getSCEV(IVSrc) != SE->getMulExpr(FoldedExpr, SE->getSCEV(D)))
|
|
MustDropExactFlag = true;
|
|
}
|
|
// We have something that might fold it's operand. Compare SCEVs.
|
|
if (!SE->isSCEVable(UseInst->getType()))
|
|
return nullptr;
|
|
|
|
// Bypass the operand if SCEV can prove it has no effect.
|
|
if (SE->getSCEV(UseInst) != FoldedExpr)
|
|
return nullptr;
|
|
|
|
LLVM_DEBUG(dbgs() << "INDVARS: Eliminated IV operand: " << *IVOperand
|
|
<< " -> " << *UseInst << '\n');
|
|
|
|
UseInst->setOperand(OperIdx, IVSrc);
|
|
assert(SE->getSCEV(UseInst) == FoldedExpr && "bad SCEV with folded oper");
|
|
|
|
if (MustDropExactFlag)
|
|
UseInst->dropPoisonGeneratingFlags();
|
|
|
|
++NumElimOperand;
|
|
Changed = true;
|
|
if (IVOperand->use_empty())
|
|
DeadInsts.emplace_back(IVOperand);
|
|
return IVSrc;
|
|
}
|
|
|
|
bool SimplifyIndvar::makeIVComparisonInvariant(ICmpInst *ICmp,
|
|
Value *IVOperand) {
|
|
unsigned IVOperIdx = 0;
|
|
ICmpInst::Predicate Pred = ICmp->getPredicate();
|
|
if (IVOperand != ICmp->getOperand(0)) {
|
|
// Swapped
|
|
assert(IVOperand == ICmp->getOperand(1) && "Can't find IVOperand");
|
|
IVOperIdx = 1;
|
|
Pred = ICmpInst::getSwappedPredicate(Pred);
|
|
}
|
|
|
|
// Get the SCEVs for the ICmp operands (in the specific context of the
|
|
// current loop)
|
|
const Loop *ICmpLoop = LI->getLoopFor(ICmp->getParent());
|
|
const SCEV *S = SE->getSCEVAtScope(ICmp->getOperand(IVOperIdx), ICmpLoop);
|
|
const SCEV *X = SE->getSCEVAtScope(ICmp->getOperand(1 - IVOperIdx), ICmpLoop);
|
|
|
|
auto *PN = dyn_cast<PHINode>(IVOperand);
|
|
if (!PN)
|
|
return false;
|
|
auto LIP = SE->getLoopInvariantPredicate(Pred, S, X, L);
|
|
if (!LIP)
|
|
return false;
|
|
ICmpInst::Predicate InvariantPredicate = LIP->Pred;
|
|
const SCEV *InvariantLHS = LIP->LHS;
|
|
const SCEV *InvariantRHS = LIP->RHS;
|
|
|
|
// Rewrite the comparison to a loop invariant comparison if it can be done
|
|
// cheaply, where cheaply means "we don't need to emit any new
|
|
// instructions".
|
|
|
|
SmallDenseMap<const SCEV*, Value*> CheapExpansions;
|
|
CheapExpansions[S] = ICmp->getOperand(IVOperIdx);
|
|
CheapExpansions[X] = ICmp->getOperand(1 - IVOperIdx);
|
|
|
|
// TODO: Support multiple entry loops? (We currently bail out of these in
|
|
// the IndVarSimplify pass)
|
|
if (auto *BB = L->getLoopPredecessor()) {
|
|
const int Idx = PN->getBasicBlockIndex(BB);
|
|
if (Idx >= 0) {
|
|
Value *Incoming = PN->getIncomingValue(Idx);
|
|
const SCEV *IncomingS = SE->getSCEV(Incoming);
|
|
CheapExpansions[IncomingS] = Incoming;
|
|
}
|
|
}
|
|
Value *NewLHS = CheapExpansions[InvariantLHS];
|
|
Value *NewRHS = CheapExpansions[InvariantRHS];
|
|
|
|
if (!NewLHS)
|
|
if (auto *ConstLHS = dyn_cast<SCEVConstant>(InvariantLHS))
|
|
NewLHS = ConstLHS->getValue();
|
|
if (!NewRHS)
|
|
if (auto *ConstRHS = dyn_cast<SCEVConstant>(InvariantRHS))
|
|
NewRHS = ConstRHS->getValue();
|
|
|
|
if (!NewLHS || !NewRHS)
|
|
// We could not find an existing value to replace either LHS or RHS.
|
|
// Generating new instructions has subtler tradeoffs, so avoid doing that
|
|
// for now.
|
|
return false;
|
|
|
|
LLVM_DEBUG(dbgs() << "INDVARS: Simplified comparison: " << *ICmp << '\n');
|
|
ICmp->setPredicate(InvariantPredicate);
|
|
ICmp->setOperand(0, NewLHS);
|
|
ICmp->setOperand(1, NewRHS);
|
|
return true;
|
|
}
|
|
|
|
/// SimplifyIVUsers helper for eliminating useless
|
|
/// comparisons against an induction variable.
|
|
void SimplifyIndvar::eliminateIVComparison(ICmpInst *ICmp, Value *IVOperand) {
|
|
unsigned IVOperIdx = 0;
|
|
ICmpInst::Predicate Pred = ICmp->getPredicate();
|
|
ICmpInst::Predicate OriginalPred = Pred;
|
|
if (IVOperand != ICmp->getOperand(0)) {
|
|
// Swapped
|
|
assert(IVOperand == ICmp->getOperand(1) && "Can't find IVOperand");
|
|
IVOperIdx = 1;
|
|
Pred = ICmpInst::getSwappedPredicate(Pred);
|
|
}
|
|
|
|
// Get the SCEVs for the ICmp operands (in the specific context of the
|
|
// current loop)
|
|
const Loop *ICmpLoop = LI->getLoopFor(ICmp->getParent());
|
|
const SCEV *S = SE->getSCEVAtScope(ICmp->getOperand(IVOperIdx), ICmpLoop);
|
|
const SCEV *X = SE->getSCEVAtScope(ICmp->getOperand(1 - IVOperIdx), ICmpLoop);
|
|
|
|
// If the condition is always true or always false, replace it with
|
|
// a constant value.
|
|
if (SE->isKnownPredicate(Pred, S, X)) {
|
|
ICmp->replaceAllUsesWith(ConstantInt::getTrue(ICmp->getContext()));
|
|
DeadInsts.emplace_back(ICmp);
|
|
LLVM_DEBUG(dbgs() << "INDVARS: Eliminated comparison: " << *ICmp << '\n');
|
|
} else if (SE->isKnownPredicate(ICmpInst::getInversePredicate(Pred), S, X)) {
|
|
ICmp->replaceAllUsesWith(ConstantInt::getFalse(ICmp->getContext()));
|
|
DeadInsts.emplace_back(ICmp);
|
|
LLVM_DEBUG(dbgs() << "INDVARS: Eliminated comparison: " << *ICmp << '\n');
|
|
} else if (makeIVComparisonInvariant(ICmp, IVOperand)) {
|
|
// fallthrough to end of function
|
|
} else if (ICmpInst::isSigned(OriginalPred) &&
|
|
SE->isKnownNonNegative(S) && SE->isKnownNonNegative(X)) {
|
|
// If we were unable to make anything above, all we can is to canonicalize
|
|
// the comparison hoping that it will open the doors for other
|
|
// optimizations. If we find out that we compare two non-negative values,
|
|
// we turn the instruction's predicate to its unsigned version. Note that
|
|
// we cannot rely on Pred here unless we check if we have swapped it.
|
|
assert(ICmp->getPredicate() == OriginalPred && "Predicate changed?");
|
|
LLVM_DEBUG(dbgs() << "INDVARS: Turn to unsigned comparison: " << *ICmp
|
|
<< '\n');
|
|
ICmp->setPredicate(ICmpInst::getUnsignedPredicate(OriginalPred));
|
|
} else
|
|
return;
|
|
|
|
++NumElimCmp;
|
|
Changed = true;
|
|
}
|
|
|
|
bool SimplifyIndvar::eliminateSDiv(BinaryOperator *SDiv) {
|
|
// Get the SCEVs for the ICmp operands.
|
|
auto *N = SE->getSCEV(SDiv->getOperand(0));
|
|
auto *D = SE->getSCEV(SDiv->getOperand(1));
|
|
|
|
// Simplify unnecessary loops away.
|
|
const Loop *L = LI->getLoopFor(SDiv->getParent());
|
|
N = SE->getSCEVAtScope(N, L);
|
|
D = SE->getSCEVAtScope(D, L);
|
|
|
|
// Replace sdiv by udiv if both of the operands are non-negative
|
|
if (SE->isKnownNonNegative(N) && SE->isKnownNonNegative(D)) {
|
|
auto *UDiv = BinaryOperator::Create(
|
|
BinaryOperator::UDiv, SDiv->getOperand(0), SDiv->getOperand(1),
|
|
SDiv->getName() + ".udiv", SDiv);
|
|
UDiv->setIsExact(SDiv->isExact());
|
|
SDiv->replaceAllUsesWith(UDiv);
|
|
LLVM_DEBUG(dbgs() << "INDVARS: Simplified sdiv: " << *SDiv << '\n');
|
|
++NumSimplifiedSDiv;
|
|
Changed = true;
|
|
DeadInsts.push_back(SDiv);
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
// i %s n -> i %u n if i >= 0 and n >= 0
|
|
void SimplifyIndvar::replaceSRemWithURem(BinaryOperator *Rem) {
|
|
auto *N = Rem->getOperand(0), *D = Rem->getOperand(1);
|
|
auto *URem = BinaryOperator::Create(BinaryOperator::URem, N, D,
|
|
Rem->getName() + ".urem", Rem);
|
|
Rem->replaceAllUsesWith(URem);
|
|
LLVM_DEBUG(dbgs() << "INDVARS: Simplified srem: " << *Rem << '\n');
|
|
++NumSimplifiedSRem;
|
|
Changed = true;
|
|
DeadInsts.emplace_back(Rem);
|
|
}
|
|
|
|
// i % n --> i if i is in [0,n).
|
|
void SimplifyIndvar::replaceRemWithNumerator(BinaryOperator *Rem) {
|
|
Rem->replaceAllUsesWith(Rem->getOperand(0));
|
|
LLVM_DEBUG(dbgs() << "INDVARS: Simplified rem: " << *Rem << '\n');
|
|
++NumElimRem;
|
|
Changed = true;
|
|
DeadInsts.emplace_back(Rem);
|
|
}
|
|
|
|
// (i+1) % n --> (i+1)==n?0:(i+1) if i is in [0,n).
|
|
void SimplifyIndvar::replaceRemWithNumeratorOrZero(BinaryOperator *Rem) {
|
|
auto *T = Rem->getType();
|
|
auto *N = Rem->getOperand(0), *D = Rem->getOperand(1);
|
|
ICmpInst *ICmp = new ICmpInst(Rem, ICmpInst::ICMP_EQ, N, D);
|
|
SelectInst *Sel =
|
|
SelectInst::Create(ICmp, ConstantInt::get(T, 0), N, "iv.rem", Rem);
|
|
Rem->replaceAllUsesWith(Sel);
|
|
LLVM_DEBUG(dbgs() << "INDVARS: Simplified rem: " << *Rem << '\n');
|
|
++NumElimRem;
|
|
Changed = true;
|
|
DeadInsts.emplace_back(Rem);
|
|
}
|
|
|
|
/// SimplifyIVUsers helper for eliminating useless remainder operations
|
|
/// operating on an induction variable or replacing srem by urem.
|
|
void SimplifyIndvar::simplifyIVRemainder(BinaryOperator *Rem, Value *IVOperand,
|
|
bool IsSigned) {
|
|
auto *NValue = Rem->getOperand(0);
|
|
auto *DValue = Rem->getOperand(1);
|
|
// We're only interested in the case where we know something about
|
|
// the numerator, unless it is a srem, because we want to replace srem by urem
|
|
// in general.
|
|
bool UsedAsNumerator = IVOperand == NValue;
|
|
if (!UsedAsNumerator && !IsSigned)
|
|
return;
|
|
|
|
const SCEV *N = SE->getSCEV(NValue);
|
|
|
|
// Simplify unnecessary loops away.
|
|
const Loop *ICmpLoop = LI->getLoopFor(Rem->getParent());
|
|
N = SE->getSCEVAtScope(N, ICmpLoop);
|
|
|
|
bool IsNumeratorNonNegative = !IsSigned || SE->isKnownNonNegative(N);
|
|
|
|
// Do not proceed if the Numerator may be negative
|
|
if (!IsNumeratorNonNegative)
|
|
return;
|
|
|
|
const SCEV *D = SE->getSCEV(DValue);
|
|
D = SE->getSCEVAtScope(D, ICmpLoop);
|
|
|
|
if (UsedAsNumerator) {
|
|
auto LT = IsSigned ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT;
|
|
if (SE->isKnownPredicate(LT, N, D)) {
|
|
replaceRemWithNumerator(Rem);
|
|
return;
|
|
}
|
|
|
|
auto *T = Rem->getType();
|
|
const auto *NLessOne = SE->getMinusSCEV(N, SE->getOne(T));
|
|
if (SE->isKnownPredicate(LT, NLessOne, D)) {
|
|
replaceRemWithNumeratorOrZero(Rem);
|
|
return;
|
|
}
|
|
}
|
|
|
|
// Try to replace SRem with URem, if both N and D are known non-negative.
|
|
// Since we had already check N, we only need to check D now
|
|
if (!IsSigned || !SE->isKnownNonNegative(D))
|
|
return;
|
|
|
|
replaceSRemWithURem(Rem);
|
|
}
|
|
|
|
static bool willNotOverflow(ScalarEvolution *SE, Instruction::BinaryOps BinOp,
|
|
bool Signed, const SCEV *LHS, const SCEV *RHS) {
|
|
const SCEV *(ScalarEvolution::*Operation)(const SCEV *, const SCEV *,
|
|
SCEV::NoWrapFlags, unsigned);
|
|
switch (BinOp) {
|
|
default:
|
|
llvm_unreachable("Unsupported binary op");
|
|
case Instruction::Add:
|
|
Operation = &ScalarEvolution::getAddExpr;
|
|
break;
|
|
case Instruction::Sub:
|
|
Operation = &ScalarEvolution::getMinusSCEV;
|
|
break;
|
|
case Instruction::Mul:
|
|
Operation = &ScalarEvolution::getMulExpr;
|
|
break;
|
|
}
|
|
|
|
const SCEV *(ScalarEvolution::*Extension)(const SCEV *, Type *, unsigned) =
|
|
Signed ? &ScalarEvolution::getSignExtendExpr
|
|
: &ScalarEvolution::getZeroExtendExpr;
|
|
|
|
// Check ext(LHS op RHS) == ext(LHS) op ext(RHS)
|
|
auto *NarrowTy = cast<IntegerType>(LHS->getType());
|
|
auto *WideTy =
|
|
IntegerType::get(NarrowTy->getContext(), NarrowTy->getBitWidth() * 2);
|
|
|
|
const SCEV *A =
|
|
(SE->*Extension)((SE->*Operation)(LHS, RHS, SCEV::FlagAnyWrap, 0),
|
|
WideTy, 0);
|
|
const SCEV *B =
|
|
(SE->*Operation)((SE->*Extension)(LHS, WideTy, 0),
|
|
(SE->*Extension)(RHS, WideTy, 0), SCEV::FlagAnyWrap, 0);
|
|
return A == B;
|
|
}
|
|
|
|
bool SimplifyIndvar::eliminateOverflowIntrinsic(WithOverflowInst *WO) {
|
|
const SCEV *LHS = SE->getSCEV(WO->getLHS());
|
|
const SCEV *RHS = SE->getSCEV(WO->getRHS());
|
|
if (!willNotOverflow(SE, WO->getBinaryOp(), WO->isSigned(), LHS, RHS))
|
|
return false;
|
|
|
|
// Proved no overflow, nuke the overflow check and, if possible, the overflow
|
|
// intrinsic as well.
|
|
|
|
BinaryOperator *NewResult = BinaryOperator::Create(
|
|
WO->getBinaryOp(), WO->getLHS(), WO->getRHS(), "", WO);
|
|
|
|
if (WO->isSigned())
|
|
NewResult->setHasNoSignedWrap(true);
|
|
else
|
|
NewResult->setHasNoUnsignedWrap(true);
|
|
|
|
SmallVector<ExtractValueInst *, 4> ToDelete;
|
|
|
|
for (auto *U : WO->users()) {
|
|
if (auto *EVI = dyn_cast<ExtractValueInst>(U)) {
|
|
if (EVI->getIndices()[0] == 1)
|
|
EVI->replaceAllUsesWith(ConstantInt::getFalse(WO->getContext()));
|
|
else {
|
|
assert(EVI->getIndices()[0] == 0 && "Only two possibilities!");
|
|
EVI->replaceAllUsesWith(NewResult);
|
|
}
|
|
ToDelete.push_back(EVI);
|
|
}
|
|
}
|
|
|
|
for (auto *EVI : ToDelete)
|
|
EVI->eraseFromParent();
|
|
|
|
if (WO->use_empty())
|
|
WO->eraseFromParent();
|
|
|
|
Changed = true;
|
|
return true;
|
|
}
|
|
|
|
bool SimplifyIndvar::eliminateSaturatingIntrinsic(SaturatingInst *SI) {
|
|
const SCEV *LHS = SE->getSCEV(SI->getLHS());
|
|
const SCEV *RHS = SE->getSCEV(SI->getRHS());
|
|
if (!willNotOverflow(SE, SI->getBinaryOp(), SI->isSigned(), LHS, RHS))
|
|
return false;
|
|
|
|
BinaryOperator *BO = BinaryOperator::Create(
|
|
SI->getBinaryOp(), SI->getLHS(), SI->getRHS(), SI->getName(), SI);
|
|
if (SI->isSigned())
|
|
BO->setHasNoSignedWrap();
|
|
else
|
|
BO->setHasNoUnsignedWrap();
|
|
|
|
SI->replaceAllUsesWith(BO);
|
|
DeadInsts.emplace_back(SI);
|
|
Changed = true;
|
|
return true;
|
|
}
|
|
|
|
bool SimplifyIndvar::eliminateTrunc(TruncInst *TI) {
|
|
// It is always legal to replace
|
|
// icmp <pred> i32 trunc(iv), n
|
|
// with
|
|
// icmp <pred> i64 sext(trunc(iv)), sext(n), if pred is signed predicate.
|
|
// Or with
|
|
// icmp <pred> i64 zext(trunc(iv)), zext(n), if pred is unsigned predicate.
|
|
// Or with either of these if pred is an equality predicate.
|
|
//
|
|
// If we can prove that iv == sext(trunc(iv)) or iv == zext(trunc(iv)) for
|
|
// every comparison which uses trunc, it means that we can replace each of
|
|
// them with comparison of iv against sext/zext(n). We no longer need trunc
|
|
// after that.
|
|
//
|
|
// TODO: Should we do this if we can widen *some* comparisons, but not all
|
|
// of them? Sometimes it is enough to enable other optimizations, but the
|
|
// trunc instruction will stay in the loop.
|
|
Value *IV = TI->getOperand(0);
|
|
Type *IVTy = IV->getType();
|
|
const SCEV *IVSCEV = SE->getSCEV(IV);
|
|
const SCEV *TISCEV = SE->getSCEV(TI);
|
|
|
|
// Check if iv == zext(trunc(iv)) and if iv == sext(trunc(iv)). If so, we can
|
|
// get rid of trunc
|
|
bool DoesSExtCollapse = false;
|
|
bool DoesZExtCollapse = false;
|
|
if (IVSCEV == SE->getSignExtendExpr(TISCEV, IVTy))
|
|
DoesSExtCollapse = true;
|
|
if (IVSCEV == SE->getZeroExtendExpr(TISCEV, IVTy))
|
|
DoesZExtCollapse = true;
|
|
|
|
// If neither sext nor zext does collapse, it is not profitable to do any
|
|
// transform. Bail.
|
|
if (!DoesSExtCollapse && !DoesZExtCollapse)
|
|
return false;
|
|
|
|
// Collect users of the trunc that look like comparisons against invariants.
|
|
// Bail if we find something different.
|
|
SmallVector<ICmpInst *, 4> ICmpUsers;
|
|
for (auto *U : TI->users()) {
|
|
// We don't care about users in unreachable blocks.
|
|
if (isa<Instruction>(U) &&
|
|
!DT->isReachableFromEntry(cast<Instruction>(U)->getParent()))
|
|
continue;
|
|
ICmpInst *ICI = dyn_cast<ICmpInst>(U);
|
|
if (!ICI) return false;
|
|
assert(L->contains(ICI->getParent()) && "LCSSA form broken?");
|
|
if (!(ICI->getOperand(0) == TI && L->isLoopInvariant(ICI->getOperand(1))) &&
|
|
!(ICI->getOperand(1) == TI && L->isLoopInvariant(ICI->getOperand(0))))
|
|
return false;
|
|
// If we cannot get rid of trunc, bail.
|
|
if (ICI->isSigned() && !DoesSExtCollapse)
|
|
return false;
|
|
if (ICI->isUnsigned() && !DoesZExtCollapse)
|
|
return false;
|
|
// For equality, either signed or unsigned works.
|
|
ICmpUsers.push_back(ICI);
|
|
}
|
|
|
|
auto CanUseZExt = [&](ICmpInst *ICI) {
|
|
// Unsigned comparison can be widened as unsigned.
|
|
if (ICI->isUnsigned())
|
|
return true;
|
|
// Is it profitable to do zext?
|
|
if (!DoesZExtCollapse)
|
|
return false;
|
|
// For equality, we can safely zext both parts.
|
|
if (ICI->isEquality())
|
|
return true;
|
|
// Otherwise we can only use zext when comparing two non-negative or two
|
|
// negative values. But in practice, we will never pass DoesZExtCollapse
|
|
// check for a negative value, because zext(trunc(x)) is non-negative. So
|
|
// it only make sense to check for non-negativity here.
|
|
const SCEV *SCEVOP1 = SE->getSCEV(ICI->getOperand(0));
|
|
const SCEV *SCEVOP2 = SE->getSCEV(ICI->getOperand(1));
|
|
return SE->isKnownNonNegative(SCEVOP1) && SE->isKnownNonNegative(SCEVOP2);
|
|
};
|
|
// Replace all comparisons against trunc with comparisons against IV.
|
|
for (auto *ICI : ICmpUsers) {
|
|
bool IsSwapped = L->isLoopInvariant(ICI->getOperand(0));
|
|
auto *Op1 = IsSwapped ? ICI->getOperand(0) : ICI->getOperand(1);
|
|
Instruction *Ext = nullptr;
|
|
// For signed/unsigned predicate, replace the old comparison with comparison
|
|
// of immediate IV against sext/zext of the invariant argument. If we can
|
|
// use either sext or zext (i.e. we are dealing with equality predicate),
|
|
// then prefer zext as a more canonical form.
|
|
// TODO: If we see a signed comparison which can be turned into unsigned,
|
|
// we can do it here for canonicalization purposes.
|
|
ICmpInst::Predicate Pred = ICI->getPredicate();
|
|
if (IsSwapped) Pred = ICmpInst::getSwappedPredicate(Pred);
|
|
if (CanUseZExt(ICI)) {
|
|
assert(DoesZExtCollapse && "Unprofitable zext?");
|
|
Ext = new ZExtInst(Op1, IVTy, "zext", ICI);
|
|
Pred = ICmpInst::getUnsignedPredicate(Pred);
|
|
} else {
|
|
assert(DoesSExtCollapse && "Unprofitable sext?");
|
|
Ext = new SExtInst(Op1, IVTy, "sext", ICI);
|
|
assert(Pred == ICmpInst::getSignedPredicate(Pred) && "Must be signed!");
|
|
}
|
|
bool Changed;
|
|
L->makeLoopInvariant(Ext, Changed);
|
|
(void)Changed;
|
|
ICmpInst *NewICI = new ICmpInst(ICI, Pred, IV, Ext);
|
|
ICI->replaceAllUsesWith(NewICI);
|
|
DeadInsts.emplace_back(ICI);
|
|
}
|
|
|
|
// Trunc no longer needed.
|
|
TI->replaceAllUsesWith(UndefValue::get(TI->getType()));
|
|
DeadInsts.emplace_back(TI);
|
|
return true;
|
|
}
|
|
|
|
/// Eliminate an operation that consumes a simple IV and has no observable
|
|
/// side-effect given the range of IV values. IVOperand is guaranteed SCEVable,
|
|
/// but UseInst may not be.
|
|
bool SimplifyIndvar::eliminateIVUser(Instruction *UseInst,
|
|
Instruction *IVOperand) {
|
|
if (ICmpInst *ICmp = dyn_cast<ICmpInst>(UseInst)) {
|
|
eliminateIVComparison(ICmp, IVOperand);
|
|
return true;
|
|
}
|
|
if (BinaryOperator *Bin = dyn_cast<BinaryOperator>(UseInst)) {
|
|
bool IsSRem = Bin->getOpcode() == Instruction::SRem;
|
|
if (IsSRem || Bin->getOpcode() == Instruction::URem) {
|
|
simplifyIVRemainder(Bin, IVOperand, IsSRem);
|
|
return true;
|
|
}
|
|
|
|
if (Bin->getOpcode() == Instruction::SDiv)
|
|
return eliminateSDiv(Bin);
|
|
}
|
|
|
|
if (auto *WO = dyn_cast<WithOverflowInst>(UseInst))
|
|
if (eliminateOverflowIntrinsic(WO))
|
|
return true;
|
|
|
|
if (auto *SI = dyn_cast<SaturatingInst>(UseInst))
|
|
if (eliminateSaturatingIntrinsic(SI))
|
|
return true;
|
|
|
|
if (auto *TI = dyn_cast<TruncInst>(UseInst))
|
|
if (eliminateTrunc(TI))
|
|
return true;
|
|
|
|
if (eliminateIdentitySCEV(UseInst, IVOperand))
|
|
return true;
|
|
|
|
return false;
|
|
}
|
|
|
|
static Instruction *GetLoopInvariantInsertPosition(Loop *L, Instruction *Hint) {
|
|
if (auto *BB = L->getLoopPreheader())
|
|
return BB->getTerminator();
|
|
|
|
return Hint;
|
|
}
|
|
|
|
/// Replace the UseInst with a loop invariant expression if it is safe.
|
|
bool SimplifyIndvar::replaceIVUserWithLoopInvariant(Instruction *I) {
|
|
if (!SE->isSCEVable(I->getType()))
|
|
return false;
|
|
|
|
// Get the symbolic expression for this instruction.
|
|
const SCEV *S = SE->getSCEV(I);
|
|
|
|
if (!SE->isLoopInvariant(S, L))
|
|
return false;
|
|
|
|
// Do not generate something ridiculous even if S is loop invariant.
|
|
if (Rewriter.isHighCostExpansion(S, L, SCEVCheapExpansionBudget, TTI, I))
|
|
return false;
|
|
|
|
auto *IP = GetLoopInvariantInsertPosition(L, I);
|
|
|
|
if (!isSafeToExpandAt(S, IP, *SE)) {
|
|
LLVM_DEBUG(dbgs() << "INDVARS: Can not replace IV user: " << *I
|
|
<< " with non-speculable loop invariant: " << *S << '\n');
|
|
return false;
|
|
}
|
|
|
|
auto *Invariant = Rewriter.expandCodeFor(S, I->getType(), IP);
|
|
|
|
I->replaceAllUsesWith(Invariant);
|
|
LLVM_DEBUG(dbgs() << "INDVARS: Replace IV user: " << *I
|
|
<< " with loop invariant: " << *S << '\n');
|
|
++NumFoldedUser;
|
|
Changed = true;
|
|
DeadInsts.emplace_back(I);
|
|
return true;
|
|
}
|
|
|
|
/// Eliminate any operation that SCEV can prove is an identity function.
|
|
bool SimplifyIndvar::eliminateIdentitySCEV(Instruction *UseInst,
|
|
Instruction *IVOperand) {
|
|
if (!SE->isSCEVable(UseInst->getType()) ||
|
|
(UseInst->getType() != IVOperand->getType()) ||
|
|
(SE->getSCEV(UseInst) != SE->getSCEV(IVOperand)))
|
|
return false;
|
|
|
|
// getSCEV(X) == getSCEV(Y) does not guarantee that X and Y are related in the
|
|
// dominator tree, even if X is an operand to Y. For instance, in
|
|
//
|
|
// %iv = phi i32 {0,+,1}
|
|
// br %cond, label %left, label %merge
|
|
//
|
|
// left:
|
|
// %X = add i32 %iv, 0
|
|
// br label %merge
|
|
//
|
|
// merge:
|
|
// %M = phi (%X, %iv)
|
|
//
|
|
// getSCEV(%M) == getSCEV(%X) == {0,+,1}, but %X does not dominate %M, and
|
|
// %M.replaceAllUsesWith(%X) would be incorrect.
|
|
|
|
if (isa<PHINode>(UseInst))
|
|
// If UseInst is not a PHI node then we know that IVOperand dominates
|
|
// UseInst directly from the legality of SSA.
|
|
if (!DT || !DT->dominates(IVOperand, UseInst))
|
|
return false;
|
|
|
|
if (!LI->replacementPreservesLCSSAForm(UseInst, IVOperand))
|
|
return false;
|
|
|
|
LLVM_DEBUG(dbgs() << "INDVARS: Eliminated identity: " << *UseInst << '\n');
|
|
|
|
UseInst->replaceAllUsesWith(IVOperand);
|
|
++NumElimIdentity;
|
|
Changed = true;
|
|
DeadInsts.emplace_back(UseInst);
|
|
return true;
|
|
}
|
|
|
|
/// Annotate BO with nsw / nuw if it provably does not signed-overflow /
|
|
/// unsigned-overflow. Returns true if anything changed, false otherwise.
|
|
bool SimplifyIndvar::strengthenOverflowingOperation(BinaryOperator *BO,
|
|
Value *IVOperand) {
|
|
// Fastpath: we don't have any work to do if `BO` is `nuw` and `nsw`.
|
|
if (BO->hasNoUnsignedWrap() && BO->hasNoSignedWrap())
|
|
return false;
|
|
|
|
if (BO->getOpcode() != Instruction::Add &&
|
|
BO->getOpcode() != Instruction::Sub &&
|
|
BO->getOpcode() != Instruction::Mul)
|
|
return false;
|
|
|
|
const SCEV *LHS = SE->getSCEV(BO->getOperand(0));
|
|
const SCEV *RHS = SE->getSCEV(BO->getOperand(1));
|
|
bool Changed = false;
|
|
|
|
if (!BO->hasNoUnsignedWrap() &&
|
|
willNotOverflow(SE, BO->getOpcode(), /* Signed */ false, LHS, RHS)) {
|
|
BO->setHasNoUnsignedWrap();
|
|
SE->forgetValue(BO);
|
|
Changed = true;
|
|
}
|
|
|
|
if (!BO->hasNoSignedWrap() &&
|
|
willNotOverflow(SE, BO->getOpcode(), /* Signed */ true, LHS, RHS)) {
|
|
BO->setHasNoSignedWrap();
|
|
SE->forgetValue(BO);
|
|
Changed = true;
|
|
}
|
|
|
|
return Changed;
|
|
}
|
|
|
|
/// Annotate the Shr in (X << IVOperand) >> C as exact using the
|
|
/// information from the IV's range. Returns true if anything changed, false
|
|
/// otherwise.
|
|
bool SimplifyIndvar::strengthenRightShift(BinaryOperator *BO,
|
|
Value *IVOperand) {
|
|
using namespace llvm::PatternMatch;
|
|
|
|
if (BO->getOpcode() == Instruction::Shl) {
|
|
bool Changed = false;
|
|
ConstantRange IVRange = SE->getUnsignedRange(SE->getSCEV(IVOperand));
|
|
for (auto *U : BO->users()) {
|
|
const APInt *C;
|
|
if (match(U,
|
|
m_AShr(m_Shl(m_Value(), m_Specific(IVOperand)), m_APInt(C))) ||
|
|
match(U,
|
|
m_LShr(m_Shl(m_Value(), m_Specific(IVOperand)), m_APInt(C)))) {
|
|
BinaryOperator *Shr = cast<BinaryOperator>(U);
|
|
if (!Shr->isExact() && IVRange.getUnsignedMin().uge(*C)) {
|
|
Shr->setIsExact(true);
|
|
Changed = true;
|
|
}
|
|
}
|
|
}
|
|
return Changed;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
/// Add all uses of Def to the current IV's worklist.
|
|
static void pushIVUsers(
|
|
Instruction *Def, Loop *L,
|
|
SmallPtrSet<Instruction*,16> &Simplified,
|
|
SmallVectorImpl< std::pair<Instruction*,Instruction*> > &SimpleIVUsers) {
|
|
|
|
for (User *U : Def->users()) {
|
|
Instruction *UI = cast<Instruction>(U);
|
|
|
|
// Avoid infinite or exponential worklist processing.
|
|
// Also ensure unique worklist users.
|
|
// If Def is a LoopPhi, it may not be in the Simplified set, so check for
|
|
// self edges first.
|
|
if (UI == Def)
|
|
continue;
|
|
|
|
// Only change the current Loop, do not change the other parts (e.g. other
|
|
// Loops).
|
|
if (!L->contains(UI))
|
|
continue;
|
|
|
|
// Do not push the same instruction more than once.
|
|
if (!Simplified.insert(UI).second)
|
|
continue;
|
|
|
|
SimpleIVUsers.push_back(std::make_pair(UI, Def));
|
|
}
|
|
}
|
|
|
|
/// Return true if this instruction generates a simple SCEV
|
|
/// expression in terms of that IV.
|
|
///
|
|
/// This is similar to IVUsers' isInteresting() but processes each instruction
|
|
/// non-recursively when the operand is already known to be a simpleIVUser.
|
|
///
|
|
static bool isSimpleIVUser(Instruction *I, const Loop *L, ScalarEvolution *SE) {
|
|
if (!SE->isSCEVable(I->getType()))
|
|
return false;
|
|
|
|
// Get the symbolic expression for this instruction.
|
|
const SCEV *S = SE->getSCEV(I);
|
|
|
|
// Only consider affine recurrences.
|
|
const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S);
|
|
if (AR && AR->getLoop() == L)
|
|
return true;
|
|
|
|
return false;
|
|
}
|
|
|
|
/// Iteratively perform simplification on a worklist of users
|
|
/// of the specified induction variable. Each successive simplification may push
|
|
/// more users which may themselves be candidates for simplification.
|
|
///
|
|
/// This algorithm does not require IVUsers analysis. Instead, it simplifies
|
|
/// instructions in-place during analysis. Rather than rewriting induction
|
|
/// variables bottom-up from their users, it transforms a chain of IVUsers
|
|
/// top-down, updating the IR only when it encounters a clear optimization
|
|
/// opportunity.
|
|
///
|
|
/// Once DisableIVRewrite is default, LSR will be the only client of IVUsers.
|
|
///
|
|
void SimplifyIndvar::simplifyUsers(PHINode *CurrIV, IVVisitor *V) {
|
|
if (!SE->isSCEVable(CurrIV->getType()))
|
|
return;
|
|
|
|
// Instructions processed by SimplifyIndvar for CurrIV.
|
|
SmallPtrSet<Instruction*,16> Simplified;
|
|
|
|
// Use-def pairs if IV users waiting to be processed for CurrIV.
|
|
SmallVector<std::pair<Instruction*, Instruction*>, 8> SimpleIVUsers;
|
|
|
|
// Push users of the current LoopPhi. In rare cases, pushIVUsers may be
|
|
// called multiple times for the same LoopPhi. This is the proper thing to
|
|
// do for loop header phis that use each other.
|
|
pushIVUsers(CurrIV, L, Simplified, SimpleIVUsers);
|
|
|
|
while (!SimpleIVUsers.empty()) {
|
|
std::pair<Instruction*, Instruction*> UseOper =
|
|
SimpleIVUsers.pop_back_val();
|
|
Instruction *UseInst = UseOper.first;
|
|
|
|
// If a user of the IndVar is trivially dead, we prefer just to mark it dead
|
|
// rather than try to do some complex analysis or transformation (such as
|
|
// widening) basing on it.
|
|
// TODO: Propagate TLI and pass it here to handle more cases.
|
|
if (isInstructionTriviallyDead(UseInst, /* TLI */ nullptr)) {
|
|
DeadInsts.emplace_back(UseInst);
|
|
continue;
|
|
}
|
|
|
|
// Bypass back edges to avoid extra work.
|
|
if (UseInst == CurrIV) continue;
|
|
|
|
// Try to replace UseInst with a loop invariant before any other
|
|
// simplifications.
|
|
if (replaceIVUserWithLoopInvariant(UseInst))
|
|
continue;
|
|
|
|
Instruction *IVOperand = UseOper.second;
|
|
for (unsigned N = 0; IVOperand; ++N) {
|
|
assert(N <= Simplified.size() && "runaway iteration");
|
|
|
|
Value *NewOper = foldIVUser(UseInst, IVOperand);
|
|
if (!NewOper)
|
|
break; // done folding
|
|
IVOperand = dyn_cast<Instruction>(NewOper);
|
|
}
|
|
if (!IVOperand)
|
|
continue;
|
|
|
|
if (eliminateIVUser(UseInst, IVOperand)) {
|
|
pushIVUsers(IVOperand, L, Simplified, SimpleIVUsers);
|
|
continue;
|
|
}
|
|
|
|
if (BinaryOperator *BO = dyn_cast<BinaryOperator>(UseInst)) {
|
|
if ((isa<OverflowingBinaryOperator>(BO) &&
|
|
strengthenOverflowingOperation(BO, IVOperand)) ||
|
|
(isa<ShlOperator>(BO) && strengthenRightShift(BO, IVOperand))) {
|
|
// re-queue uses of the now modified binary operator and fall
|
|
// through to the checks that remain.
|
|
pushIVUsers(IVOperand, L, Simplified, SimpleIVUsers);
|
|
}
|
|
}
|
|
|
|
CastInst *Cast = dyn_cast<CastInst>(UseInst);
|
|
if (V && Cast) {
|
|
V->visitCast(Cast);
|
|
continue;
|
|
}
|
|
if (isSimpleIVUser(UseInst, L, SE)) {
|
|
pushIVUsers(UseInst, L, Simplified, SimpleIVUsers);
|
|
}
|
|
}
|
|
}
|
|
|
|
namespace llvm {
|
|
|
|
void IVVisitor::anchor() { }
|
|
|
|
/// Simplify instructions that use this induction variable
|
|
/// by using ScalarEvolution to analyze the IV's recurrence.
|
|
bool simplifyUsersOfIV(PHINode *CurrIV, ScalarEvolution *SE, DominatorTree *DT,
|
|
LoopInfo *LI, const TargetTransformInfo *TTI,
|
|
SmallVectorImpl<WeakTrackingVH> &Dead,
|
|
SCEVExpander &Rewriter, IVVisitor *V) {
|
|
SimplifyIndvar SIV(LI->getLoopFor(CurrIV->getParent()), SE, DT, LI, TTI,
|
|
Rewriter, Dead);
|
|
SIV.simplifyUsers(CurrIV, V);
|
|
return SIV.hasChanged();
|
|
}
|
|
|
|
/// Simplify users of induction variables within this
|
|
/// loop. This does not actually change or add IVs.
|
|
bool simplifyLoopIVs(Loop *L, ScalarEvolution *SE, DominatorTree *DT,
|
|
LoopInfo *LI, const TargetTransformInfo *TTI,
|
|
SmallVectorImpl<WeakTrackingVH> &Dead) {
|
|
SCEVExpander Rewriter(*SE, SE->getDataLayout(), "indvars");
|
|
#ifndef NDEBUG
|
|
Rewriter.setDebugType(DEBUG_TYPE);
|
|
#endif
|
|
bool Changed = false;
|
|
for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ++I) {
|
|
Changed |=
|
|
simplifyUsersOfIV(cast<PHINode>(I), SE, DT, LI, TTI, Dead, Rewriter);
|
|
}
|
|
return Changed;
|
|
}
|
|
|
|
} // namespace llvm
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Widen Induction Variables - Extend the width of an IV to cover its
|
|
// widest uses.
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
class WidenIV {
|
|
// Parameters
|
|
PHINode *OrigPhi;
|
|
Type *WideType;
|
|
|
|
// Context
|
|
LoopInfo *LI;
|
|
Loop *L;
|
|
ScalarEvolution *SE;
|
|
DominatorTree *DT;
|
|
|
|
// Does the module have any calls to the llvm.experimental.guard intrinsic
|
|
// at all? If not we can avoid scanning instructions looking for guards.
|
|
bool HasGuards;
|
|
|
|
bool UsePostIncrementRanges;
|
|
|
|
// Statistics
|
|
unsigned NumElimExt = 0;
|
|
unsigned NumWidened = 0;
|
|
|
|
// Result
|
|
PHINode *WidePhi = nullptr;
|
|
Instruction *WideInc = nullptr;
|
|
const SCEV *WideIncExpr = nullptr;
|
|
SmallVectorImpl<WeakTrackingVH> &DeadInsts;
|
|
|
|
SmallPtrSet<Instruction *,16> Widened;
|
|
|
|
enum ExtendKind { ZeroExtended, SignExtended, Unknown };
|
|
|
|
// A map tracking the kind of extension used to widen each narrow IV
|
|
// and narrow IV user.
|
|
// Key: pointer to a narrow IV or IV user.
|
|
// Value: the kind of extension used to widen this Instruction.
|
|
DenseMap<AssertingVH<Instruction>, ExtendKind> ExtendKindMap;
|
|
|
|
using DefUserPair = std::pair<AssertingVH<Value>, AssertingVH<Instruction>>;
|
|
|
|
// A map with control-dependent ranges for post increment IV uses. The key is
|
|
// a pair of IV def and a use of this def denoting the context. The value is
|
|
// a ConstantRange representing possible values of the def at the given
|
|
// context.
|
|
DenseMap<DefUserPair, ConstantRange> PostIncRangeInfos;
|
|
|
|
Optional<ConstantRange> getPostIncRangeInfo(Value *Def,
|
|
Instruction *UseI) {
|
|
DefUserPair Key(Def, UseI);
|
|
auto It = PostIncRangeInfos.find(Key);
|
|
return It == PostIncRangeInfos.end()
|
|
? Optional<ConstantRange>(None)
|
|
: Optional<ConstantRange>(It->second);
|
|
}
|
|
|
|
void calculatePostIncRanges(PHINode *OrigPhi);
|
|
void calculatePostIncRange(Instruction *NarrowDef, Instruction *NarrowUser);
|
|
|
|
void updatePostIncRangeInfo(Value *Def, Instruction *UseI, ConstantRange R) {
|
|
DefUserPair Key(Def, UseI);
|
|
auto It = PostIncRangeInfos.find(Key);
|
|
if (It == PostIncRangeInfos.end())
|
|
PostIncRangeInfos.insert({Key, R});
|
|
else
|
|
It->second = R.intersectWith(It->second);
|
|
}
|
|
|
|
public:
|
|
/// Record a link in the Narrow IV def-use chain along with the WideIV that
|
|
/// computes the same value as the Narrow IV def. This avoids caching Use*
|
|
/// pointers.
|
|
struct NarrowIVDefUse {
|
|
Instruction *NarrowDef = nullptr;
|
|
Instruction *NarrowUse = nullptr;
|
|
Instruction *WideDef = nullptr;
|
|
|
|
// True if the narrow def is never negative. Tracking this information lets
|
|
// us use a sign extension instead of a zero extension or vice versa, when
|
|
// profitable and legal.
|
|
bool NeverNegative = false;
|
|
|
|
NarrowIVDefUse(Instruction *ND, Instruction *NU, Instruction *WD,
|
|
bool NeverNegative)
|
|
: NarrowDef(ND), NarrowUse(NU), WideDef(WD),
|
|
NeverNegative(NeverNegative) {}
|
|
};
|
|
|
|
WidenIV(const WideIVInfo &WI, LoopInfo *LInfo, ScalarEvolution *SEv,
|
|
DominatorTree *DTree, SmallVectorImpl<WeakTrackingVH> &DI,
|
|
bool HasGuards, bool UsePostIncrementRanges = true);
|
|
|
|
PHINode *createWideIV(SCEVExpander &Rewriter);
|
|
|
|
unsigned getNumElimExt() { return NumElimExt; };
|
|
unsigned getNumWidened() { return NumWidened; };
|
|
|
|
protected:
|
|
Value *createExtendInst(Value *NarrowOper, Type *WideType, bool IsSigned,
|
|
Instruction *Use);
|
|
|
|
Instruction *cloneIVUser(NarrowIVDefUse DU, const SCEVAddRecExpr *WideAR);
|
|
Instruction *cloneArithmeticIVUser(NarrowIVDefUse DU,
|
|
const SCEVAddRecExpr *WideAR);
|
|
Instruction *cloneBitwiseIVUser(NarrowIVDefUse DU);
|
|
|
|
ExtendKind getExtendKind(Instruction *I);
|
|
|
|
using WidenedRecTy = std::pair<const SCEVAddRecExpr *, ExtendKind>;
|
|
|
|
WidenedRecTy getWideRecurrence(NarrowIVDefUse DU);
|
|
|
|
WidenedRecTy getExtendedOperandRecurrence(NarrowIVDefUse DU);
|
|
|
|
const SCEV *getSCEVByOpCode(const SCEV *LHS, const SCEV *RHS,
|
|
unsigned OpCode) const;
|
|
|
|
Instruction *widenIVUse(NarrowIVDefUse DU, SCEVExpander &Rewriter);
|
|
|
|
bool widenLoopCompare(NarrowIVDefUse DU);
|
|
bool widenWithVariantUse(NarrowIVDefUse DU);
|
|
|
|
void pushNarrowIVUsers(Instruction *NarrowDef, Instruction *WideDef);
|
|
|
|
private:
|
|
SmallVector<NarrowIVDefUse, 8> NarrowIVUsers;
|
|
};
|
|
|
|
|
|
/// Determine the insertion point for this user. By default, insert immediately
|
|
/// before the user. SCEVExpander or LICM will hoist loop invariants out of the
|
|
/// loop. For PHI nodes, there may be multiple uses, so compute the nearest
|
|
/// common dominator for the incoming blocks. A nullptr can be returned if no
|
|
/// viable location is found: it may happen if User is a PHI and Def only comes
|
|
/// to this PHI from unreachable blocks.
|
|
static Instruction *getInsertPointForUses(Instruction *User, Value *Def,
|
|
DominatorTree *DT, LoopInfo *LI) {
|
|
PHINode *PHI = dyn_cast<PHINode>(User);
|
|
if (!PHI)
|
|
return User;
|
|
|
|
Instruction *InsertPt = nullptr;
|
|
for (unsigned i = 0, e = PHI->getNumIncomingValues(); i != e; ++i) {
|
|
if (PHI->getIncomingValue(i) != Def)
|
|
continue;
|
|
|
|
BasicBlock *InsertBB = PHI->getIncomingBlock(i);
|
|
|
|
if (!DT->isReachableFromEntry(InsertBB))
|
|
continue;
|
|
|
|
if (!InsertPt) {
|
|
InsertPt = InsertBB->getTerminator();
|
|
continue;
|
|
}
|
|
InsertBB = DT->findNearestCommonDominator(InsertPt->getParent(), InsertBB);
|
|
InsertPt = InsertBB->getTerminator();
|
|
}
|
|
|
|
// If we have skipped all inputs, it means that Def only comes to Phi from
|
|
// unreachable blocks.
|
|
if (!InsertPt)
|
|
return nullptr;
|
|
|
|
auto *DefI = dyn_cast<Instruction>(Def);
|
|
if (!DefI)
|
|
return InsertPt;
|
|
|
|
assert(DT->dominates(DefI, InsertPt) && "def does not dominate all uses");
|
|
|
|
auto *L = LI->getLoopFor(DefI->getParent());
|
|
assert(!L || L->contains(LI->getLoopFor(InsertPt->getParent())));
|
|
|
|
for (auto *DTN = (*DT)[InsertPt->getParent()]; DTN; DTN = DTN->getIDom())
|
|
if (LI->getLoopFor(DTN->getBlock()) == L)
|
|
return DTN->getBlock()->getTerminator();
|
|
|
|
llvm_unreachable("DefI dominates InsertPt!");
|
|
}
|
|
|
|
WidenIV::WidenIV(const WideIVInfo &WI, LoopInfo *LInfo, ScalarEvolution *SEv,
|
|
DominatorTree *DTree, SmallVectorImpl<WeakTrackingVH> &DI,
|
|
bool HasGuards, bool UsePostIncrementRanges)
|
|
: OrigPhi(WI.NarrowIV), WideType(WI.WidestNativeType), LI(LInfo),
|
|
L(LI->getLoopFor(OrigPhi->getParent())), SE(SEv), DT(DTree),
|
|
HasGuards(HasGuards), UsePostIncrementRanges(UsePostIncrementRanges),
|
|
DeadInsts(DI) {
|
|
assert(L->getHeader() == OrigPhi->getParent() && "Phi must be an IV");
|
|
ExtendKindMap[OrigPhi] = WI.IsSigned ? SignExtended : ZeroExtended;
|
|
}
|
|
|
|
Value *WidenIV::createExtendInst(Value *NarrowOper, Type *WideType,
|
|
bool IsSigned, Instruction *Use) {
|
|
// Set the debug location and conservative insertion point.
|
|
IRBuilder<> Builder(Use);
|
|
// Hoist the insertion point into loop preheaders as far as possible.
|
|
for (const Loop *L = LI->getLoopFor(Use->getParent());
|
|
L && L->getLoopPreheader() && L->isLoopInvariant(NarrowOper);
|
|
L = L->getParentLoop())
|
|
Builder.SetInsertPoint(L->getLoopPreheader()->getTerminator());
|
|
|
|
return IsSigned ? Builder.CreateSExt(NarrowOper, WideType) :
|
|
Builder.CreateZExt(NarrowOper, WideType);
|
|
}
|
|
|
|
/// Instantiate a wide operation to replace a narrow operation. This only needs
|
|
/// to handle operations that can evaluation to SCEVAddRec. It can safely return
|
|
/// 0 for any operation we decide not to clone.
|
|
Instruction *WidenIV::cloneIVUser(WidenIV::NarrowIVDefUse DU,
|
|
const SCEVAddRecExpr *WideAR) {
|
|
unsigned Opcode = DU.NarrowUse->getOpcode();
|
|
switch (Opcode) {
|
|
default:
|
|
return nullptr;
|
|
case Instruction::Add:
|
|
case Instruction::Mul:
|
|
case Instruction::UDiv:
|
|
case Instruction::Sub:
|
|
return cloneArithmeticIVUser(DU, WideAR);
|
|
|
|
case Instruction::And:
|
|
case Instruction::Or:
|
|
case Instruction::Xor:
|
|
case Instruction::Shl:
|
|
case Instruction::LShr:
|
|
case Instruction::AShr:
|
|
return cloneBitwiseIVUser(DU);
|
|
}
|
|
}
|
|
|
|
Instruction *WidenIV::cloneBitwiseIVUser(WidenIV::NarrowIVDefUse DU) {
|
|
Instruction *NarrowUse = DU.NarrowUse;
|
|
Instruction *NarrowDef = DU.NarrowDef;
|
|
Instruction *WideDef = DU.WideDef;
|
|
|
|
LLVM_DEBUG(dbgs() << "Cloning bitwise IVUser: " << *NarrowUse << "\n");
|
|
|
|
// Replace NarrowDef operands with WideDef. Otherwise, we don't know anything
|
|
// about the narrow operand yet so must insert a [sz]ext. It is probably loop
|
|
// invariant and will be folded or hoisted. If it actually comes from a
|
|
// widened IV, it should be removed during a future call to widenIVUse.
|
|
bool IsSigned = getExtendKind(NarrowDef) == SignExtended;
|
|
Value *LHS = (NarrowUse->getOperand(0) == NarrowDef)
|
|
? WideDef
|
|
: createExtendInst(NarrowUse->getOperand(0), WideType,
|
|
IsSigned, NarrowUse);
|
|
Value *RHS = (NarrowUse->getOperand(1) == NarrowDef)
|
|
? WideDef
|
|
: createExtendInst(NarrowUse->getOperand(1), WideType,
|
|
IsSigned, NarrowUse);
|
|
|
|
auto *NarrowBO = cast<BinaryOperator>(NarrowUse);
|
|
auto *WideBO = BinaryOperator::Create(NarrowBO->getOpcode(), LHS, RHS,
|
|
NarrowBO->getName());
|
|
IRBuilder<> Builder(NarrowUse);
|
|
Builder.Insert(WideBO);
|
|
WideBO->copyIRFlags(NarrowBO);
|
|
return WideBO;
|
|
}
|
|
|
|
Instruction *WidenIV::cloneArithmeticIVUser(WidenIV::NarrowIVDefUse DU,
|
|
const SCEVAddRecExpr *WideAR) {
|
|
Instruction *NarrowUse = DU.NarrowUse;
|
|
Instruction *NarrowDef = DU.NarrowDef;
|
|
Instruction *WideDef = DU.WideDef;
|
|
|
|
LLVM_DEBUG(dbgs() << "Cloning arithmetic IVUser: " << *NarrowUse << "\n");
|
|
|
|
unsigned IVOpIdx = (NarrowUse->getOperand(0) == NarrowDef) ? 0 : 1;
|
|
|
|
// We're trying to find X such that
|
|
//
|
|
// Widen(NarrowDef `op` NonIVNarrowDef) == WideAR == WideDef `op.wide` X
|
|
//
|
|
// We guess two solutions to X, sext(NonIVNarrowDef) and zext(NonIVNarrowDef),
|
|
// and check using SCEV if any of them are correct.
|
|
|
|
// Returns true if extending NonIVNarrowDef according to `SignExt` is a
|
|
// correct solution to X.
|
|
auto GuessNonIVOperand = [&](bool SignExt) {
|
|
const SCEV *WideLHS;
|
|
const SCEV *WideRHS;
|
|
|
|
auto GetExtend = [this, SignExt](const SCEV *S, Type *Ty) {
|
|
if (SignExt)
|
|
return SE->getSignExtendExpr(S, Ty);
|
|
return SE->getZeroExtendExpr(S, Ty);
|
|
};
|
|
|
|
if (IVOpIdx == 0) {
|
|
WideLHS = SE->getSCEV(WideDef);
|
|
const SCEV *NarrowRHS = SE->getSCEV(NarrowUse->getOperand(1));
|
|
WideRHS = GetExtend(NarrowRHS, WideType);
|
|
} else {
|
|
const SCEV *NarrowLHS = SE->getSCEV(NarrowUse->getOperand(0));
|
|
WideLHS = GetExtend(NarrowLHS, WideType);
|
|
WideRHS = SE->getSCEV(WideDef);
|
|
}
|
|
|
|
// WideUse is "WideDef `op.wide` X" as described in the comment.
|
|
const SCEV *WideUse = nullptr;
|
|
|
|
switch (NarrowUse->getOpcode()) {
|
|
default:
|
|
llvm_unreachable("No other possibility!");
|
|
|
|
case Instruction::Add:
|
|
WideUse = SE->getAddExpr(WideLHS, WideRHS);
|
|
break;
|
|
|
|
case Instruction::Mul:
|
|
WideUse = SE->getMulExpr(WideLHS, WideRHS);
|
|
break;
|
|
|
|
case Instruction::UDiv:
|
|
WideUse = SE->getUDivExpr(WideLHS, WideRHS);
|
|
break;
|
|
|
|
case Instruction::Sub:
|
|
WideUse = SE->getMinusSCEV(WideLHS, WideRHS);
|
|
break;
|
|
}
|
|
|
|
return WideUse == WideAR;
|
|
};
|
|
|
|
bool SignExtend = getExtendKind(NarrowDef) == SignExtended;
|
|
if (!GuessNonIVOperand(SignExtend)) {
|
|
SignExtend = !SignExtend;
|
|
if (!GuessNonIVOperand(SignExtend))
|
|
return nullptr;
|
|
}
|
|
|
|
Value *LHS = (NarrowUse->getOperand(0) == NarrowDef)
|
|
? WideDef
|
|
: createExtendInst(NarrowUse->getOperand(0), WideType,
|
|
SignExtend, NarrowUse);
|
|
Value *RHS = (NarrowUse->getOperand(1) == NarrowDef)
|
|
? WideDef
|
|
: createExtendInst(NarrowUse->getOperand(1), WideType,
|
|
SignExtend, NarrowUse);
|
|
|
|
auto *NarrowBO = cast<BinaryOperator>(NarrowUse);
|
|
auto *WideBO = BinaryOperator::Create(NarrowBO->getOpcode(), LHS, RHS,
|
|
NarrowBO->getName());
|
|
|
|
IRBuilder<> Builder(NarrowUse);
|
|
Builder.Insert(WideBO);
|
|
WideBO->copyIRFlags(NarrowBO);
|
|
return WideBO;
|
|
}
|
|
|
|
WidenIV::ExtendKind WidenIV::getExtendKind(Instruction *I) {
|
|
auto It = ExtendKindMap.find(I);
|
|
assert(It != ExtendKindMap.end() && "Instruction not yet extended!");
|
|
return It->second;
|
|
}
|
|
|
|
const SCEV *WidenIV::getSCEVByOpCode(const SCEV *LHS, const SCEV *RHS,
|
|
unsigned OpCode) const {
|
|
if (OpCode == Instruction::Add)
|
|
return SE->getAddExpr(LHS, RHS);
|
|
if (OpCode == Instruction::Sub)
|
|
return SE->getMinusSCEV(LHS, RHS);
|
|
if (OpCode == Instruction::Mul)
|
|
return SE->getMulExpr(LHS, RHS);
|
|
|
|
llvm_unreachable("Unsupported opcode.");
|
|
}
|
|
|
|
/// No-wrap operations can transfer sign extension of their result to their
|
|
/// operands. Generate the SCEV value for the widened operation without
|
|
/// actually modifying the IR yet. If the expression after extending the
|
|
/// operands is an AddRec for this loop, return the AddRec and the kind of
|
|
/// extension used.
|
|
WidenIV::WidenedRecTy
|
|
WidenIV::getExtendedOperandRecurrence(WidenIV::NarrowIVDefUse DU) {
|
|
// Handle the common case of add<nsw/nuw>
|
|
const unsigned OpCode = DU.NarrowUse->getOpcode();
|
|
// Only Add/Sub/Mul instructions supported yet.
|
|
if (OpCode != Instruction::Add && OpCode != Instruction::Sub &&
|
|
OpCode != Instruction::Mul)
|
|
return {nullptr, Unknown};
|
|
|
|
// One operand (NarrowDef) has already been extended to WideDef. Now determine
|
|
// if extending the other will lead to a recurrence.
|
|
const unsigned ExtendOperIdx =
|
|
DU.NarrowUse->getOperand(0) == DU.NarrowDef ? 1 : 0;
|
|
assert(DU.NarrowUse->getOperand(1-ExtendOperIdx) == DU.NarrowDef && "bad DU");
|
|
|
|
const SCEV *ExtendOperExpr = nullptr;
|
|
const OverflowingBinaryOperator *OBO =
|
|
cast<OverflowingBinaryOperator>(DU.NarrowUse);
|
|
ExtendKind ExtKind = getExtendKind(DU.NarrowDef);
|
|
if (ExtKind == SignExtended && OBO->hasNoSignedWrap())
|
|
ExtendOperExpr = SE->getSignExtendExpr(
|
|
SE->getSCEV(DU.NarrowUse->getOperand(ExtendOperIdx)), WideType);
|
|
else if(ExtKind == ZeroExtended && OBO->hasNoUnsignedWrap())
|
|
ExtendOperExpr = SE->getZeroExtendExpr(
|
|
SE->getSCEV(DU.NarrowUse->getOperand(ExtendOperIdx)), WideType);
|
|
else
|
|
return {nullptr, Unknown};
|
|
|
|
// When creating this SCEV expr, don't apply the current operations NSW or NUW
|
|
// flags. This instruction may be guarded by control flow that the no-wrap
|
|
// behavior depends on. Non-control-equivalent instructions can be mapped to
|
|
// the same SCEV expression, and it would be incorrect to transfer NSW/NUW
|
|
// semantics to those operations.
|
|
const SCEV *lhs = SE->getSCEV(DU.WideDef);
|
|
const SCEV *rhs = ExtendOperExpr;
|
|
|
|
// Let's swap operands to the initial order for the case of non-commutative
|
|
// operations, like SUB. See PR21014.
|
|
if (ExtendOperIdx == 0)
|
|
std::swap(lhs, rhs);
|
|
const SCEVAddRecExpr *AddRec =
|
|
dyn_cast<SCEVAddRecExpr>(getSCEVByOpCode(lhs, rhs, OpCode));
|
|
|
|
if (!AddRec || AddRec->getLoop() != L)
|
|
return {nullptr, Unknown};
|
|
|
|
return {AddRec, ExtKind};
|
|
}
|
|
|
|
/// Is this instruction potentially interesting for further simplification after
|
|
/// widening it's type? In other words, can the extend be safely hoisted out of
|
|
/// the loop with SCEV reducing the value to a recurrence on the same loop. If
|
|
/// so, return the extended recurrence and the kind of extension used. Otherwise
|
|
/// return {nullptr, Unknown}.
|
|
WidenIV::WidenedRecTy WidenIV::getWideRecurrence(WidenIV::NarrowIVDefUse DU) {
|
|
if (!SE->isSCEVable(DU.NarrowUse->getType()))
|
|
return {nullptr, Unknown};
|
|
|
|
const SCEV *NarrowExpr = SE->getSCEV(DU.NarrowUse);
|
|
if (SE->getTypeSizeInBits(NarrowExpr->getType()) >=
|
|
SE->getTypeSizeInBits(WideType)) {
|
|
// NarrowUse implicitly widens its operand. e.g. a gep with a narrow
|
|
// index. So don't follow this use.
|
|
return {nullptr, Unknown};
|
|
}
|
|
|
|
const SCEV *WideExpr;
|
|
ExtendKind ExtKind;
|
|
if (DU.NeverNegative) {
|
|
WideExpr = SE->getSignExtendExpr(NarrowExpr, WideType);
|
|
if (isa<SCEVAddRecExpr>(WideExpr))
|
|
ExtKind = SignExtended;
|
|
else {
|
|
WideExpr = SE->getZeroExtendExpr(NarrowExpr, WideType);
|
|
ExtKind = ZeroExtended;
|
|
}
|
|
} else if (getExtendKind(DU.NarrowDef) == SignExtended) {
|
|
WideExpr = SE->getSignExtendExpr(NarrowExpr, WideType);
|
|
ExtKind = SignExtended;
|
|
} else {
|
|
WideExpr = SE->getZeroExtendExpr(NarrowExpr, WideType);
|
|
ExtKind = ZeroExtended;
|
|
}
|
|
const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(WideExpr);
|
|
if (!AddRec || AddRec->getLoop() != L)
|
|
return {nullptr, Unknown};
|
|
return {AddRec, ExtKind};
|
|
}
|
|
|
|
/// This IV user cannot be widened. Replace this use of the original narrow IV
|
|
/// with a truncation of the new wide IV to isolate and eliminate the narrow IV.
|
|
static void truncateIVUse(WidenIV::NarrowIVDefUse DU, DominatorTree *DT,
|
|
LoopInfo *LI) {
|
|
auto *InsertPt = getInsertPointForUses(DU.NarrowUse, DU.NarrowDef, DT, LI);
|
|
if (!InsertPt)
|
|
return;
|
|
LLVM_DEBUG(dbgs() << "INDVARS: Truncate IV " << *DU.WideDef << " for user "
|
|
<< *DU.NarrowUse << "\n");
|
|
IRBuilder<> Builder(InsertPt);
|
|
Value *Trunc = Builder.CreateTrunc(DU.WideDef, DU.NarrowDef->getType());
|
|
DU.NarrowUse->replaceUsesOfWith(DU.NarrowDef, Trunc);
|
|
}
|
|
|
|
/// If the narrow use is a compare instruction, then widen the compare
|
|
// (and possibly the other operand). The extend operation is hoisted into the
|
|
// loop preheader as far as possible.
|
|
bool WidenIV::widenLoopCompare(WidenIV::NarrowIVDefUse DU) {
|
|
ICmpInst *Cmp = dyn_cast<ICmpInst>(DU.NarrowUse);
|
|
if (!Cmp)
|
|
return false;
|
|
|
|
// We can legally widen the comparison in the following two cases:
|
|
//
|
|
// - The signedness of the IV extension and comparison match
|
|
//
|
|
// - The narrow IV is always positive (and thus its sign extension is equal
|
|
// to its zero extension). For instance, let's say we're zero extending
|
|
// %narrow for the following use
|
|
//
|
|
// icmp slt i32 %narrow, %val ... (A)
|
|
//
|
|
// and %narrow is always positive. Then
|
|
//
|
|
// (A) == icmp slt i32 sext(%narrow), sext(%val)
|
|
// == icmp slt i32 zext(%narrow), sext(%val)
|
|
bool IsSigned = getExtendKind(DU.NarrowDef) == SignExtended;
|
|
if (!(DU.NeverNegative || IsSigned == Cmp->isSigned()))
|
|
return false;
|
|
|
|
Value *Op = Cmp->getOperand(Cmp->getOperand(0) == DU.NarrowDef ? 1 : 0);
|
|
unsigned CastWidth = SE->getTypeSizeInBits(Op->getType());
|
|
unsigned IVWidth = SE->getTypeSizeInBits(WideType);
|
|
assert(CastWidth <= IVWidth && "Unexpected width while widening compare.");
|
|
|
|
// Widen the compare instruction.
|
|
auto *InsertPt = getInsertPointForUses(DU.NarrowUse, DU.NarrowDef, DT, LI);
|
|
if (!InsertPt)
|
|
return false;
|
|
IRBuilder<> Builder(InsertPt);
|
|
DU.NarrowUse->replaceUsesOfWith(DU.NarrowDef, DU.WideDef);
|
|
|
|
// Widen the other operand of the compare, if necessary.
|
|
if (CastWidth < IVWidth) {
|
|
Value *ExtOp = createExtendInst(Op, WideType, Cmp->isSigned(), Cmp);
|
|
DU.NarrowUse->replaceUsesOfWith(Op, ExtOp);
|
|
}
|
|
return true;
|
|
}
|
|
|
|
// The widenIVUse avoids generating trunc by evaluating the use as AddRec, this
|
|
// will not work when:
|
|
// 1) SCEV traces back to an instruction inside the loop that SCEV can not
|
|
// expand, eg. add %indvar, (load %addr)
|
|
// 2) SCEV finds a loop variant, eg. add %indvar, %loopvariant
|
|
// While SCEV fails to avoid trunc, we can still try to use instruction
|
|
// combining approach to prove trunc is not required. This can be further
|
|
// extended with other instruction combining checks, but for now we handle the
|
|
// following case (sub can be "add" and "mul", "nsw + sext" can be "nus + zext")
|
|
//
|
|
// Src:
|
|
// %c = sub nsw %b, %indvar
|
|
// %d = sext %c to i64
|
|
// Dst:
|
|
// %indvar.ext1 = sext %indvar to i64
|
|
// %m = sext %b to i64
|
|
// %d = sub nsw i64 %m, %indvar.ext1
|
|
// Therefore, as long as the result of add/sub/mul is extended to wide type, no
|
|
// trunc is required regardless of how %b is generated. This pattern is common
|
|
// when calculating address in 64 bit architecture
|
|
bool WidenIV::widenWithVariantUse(WidenIV::NarrowIVDefUse DU) {
|
|
Instruction *NarrowUse = DU.NarrowUse;
|
|
Instruction *NarrowDef = DU.NarrowDef;
|
|
Instruction *WideDef = DU.WideDef;
|
|
|
|
// Handle the common case of add<nsw/nuw>
|
|
const unsigned OpCode = NarrowUse->getOpcode();
|
|
// Only Add/Sub/Mul instructions are supported.
|
|
if (OpCode != Instruction::Add && OpCode != Instruction::Sub &&
|
|
OpCode != Instruction::Mul)
|
|
return false;
|
|
|
|
// The operand that is not defined by NarrowDef of DU. Let's call it the
|
|
// other operand.
|
|
assert((NarrowUse->getOperand(0) == NarrowDef ||
|
|
NarrowUse->getOperand(1) == NarrowDef) &&
|
|
"bad DU");
|
|
|
|
const OverflowingBinaryOperator *OBO =
|
|
cast<OverflowingBinaryOperator>(NarrowUse);
|
|
ExtendKind ExtKind = getExtendKind(NarrowDef);
|
|
bool CanSignExtend = ExtKind == SignExtended && OBO->hasNoSignedWrap();
|
|
bool CanZeroExtend = ExtKind == ZeroExtended && OBO->hasNoUnsignedWrap();
|
|
auto AnotherOpExtKind = ExtKind;
|
|
|
|
// Check that all uses are either s/zext, or narrow def (in case of we are
|
|
// widening the IV increment).
|
|
SmallVector<Instruction *, 4> ExtUsers;
|
|
for (Use &U : NarrowUse->uses()) {
|
|
if (U.getUser() == NarrowDef)
|
|
continue;
|
|
Instruction *User = nullptr;
|
|
if (ExtKind == SignExtended)
|
|
User = dyn_cast<SExtInst>(U.getUser());
|
|
else
|
|
User = dyn_cast<ZExtInst>(U.getUser());
|
|
if (!User || User->getType() != WideType)
|
|
return false;
|
|
ExtUsers.push_back(User);
|
|
}
|
|
if (ExtUsers.empty()) {
|
|
DeadInsts.emplace_back(NarrowUse);
|
|
return true;
|
|
}
|
|
|
|
// We'll prove some facts that should be true in the context of ext users. If
|
|
// there is no users, we are done now. If there are some, pick their common
|
|
// dominator as context.
|
|
Instruction *Context = nullptr;
|
|
for (auto *Ext : ExtUsers) {
|
|
if (!Context || DT->dominates(Ext, Context))
|
|
Context = Ext;
|
|
else if (!DT->dominates(Context, Ext))
|
|
// For users that don't have dominance relation, use common dominator.
|
|
Context =
|
|
DT->findNearestCommonDominator(Context->getParent(), Ext->getParent())
|
|
->getTerminator();
|
|
}
|
|
assert(Context && "Context not found?");
|
|
|
|
if (!CanSignExtend && !CanZeroExtend) {
|
|
// Because InstCombine turns 'sub nuw' to 'add' losing the no-wrap flag, we
|
|
// will most likely not see it. Let's try to prove it.
|
|
if (OpCode != Instruction::Add)
|
|
return false;
|
|
if (ExtKind != ZeroExtended)
|
|
return false;
|
|
const SCEV *LHS = SE->getSCEV(OBO->getOperand(0));
|
|
const SCEV *RHS = SE->getSCEV(OBO->getOperand(1));
|
|
if (!SE->isKnownNegative(RHS))
|
|
return false;
|
|
bool ProvedSubNUW = SE->isKnownPredicateAt(
|
|
ICmpInst::ICMP_UGE, LHS, SE->getNegativeSCEV(RHS), Context);
|
|
if (!ProvedSubNUW)
|
|
return false;
|
|
// In fact, our 'add' is 'sub nuw'. We will need to widen the 2nd operand as
|
|
// neg(zext(neg(op))), which is basically sext(op).
|
|
AnotherOpExtKind = SignExtended;
|
|
}
|
|
|
|
// Verifying that Defining operand is an AddRec
|
|
const SCEV *Op1 = SE->getSCEV(WideDef);
|
|
const SCEVAddRecExpr *AddRecOp1 = dyn_cast<SCEVAddRecExpr>(Op1);
|
|
if (!AddRecOp1 || AddRecOp1->getLoop() != L)
|
|
return false;
|
|
|
|
LLVM_DEBUG(dbgs() << "Cloning arithmetic IVUser: " << *NarrowUse << "\n");
|
|
|
|
// Generating a widening use instruction.
|
|
Value *LHS = (NarrowUse->getOperand(0) == NarrowDef)
|
|
? WideDef
|
|
: createExtendInst(NarrowUse->getOperand(0), WideType,
|
|
AnotherOpExtKind, NarrowUse);
|
|
Value *RHS = (NarrowUse->getOperand(1) == NarrowDef)
|
|
? WideDef
|
|
: createExtendInst(NarrowUse->getOperand(1), WideType,
|
|
AnotherOpExtKind, NarrowUse);
|
|
|
|
auto *NarrowBO = cast<BinaryOperator>(NarrowUse);
|
|
auto *WideBO = BinaryOperator::Create(NarrowBO->getOpcode(), LHS, RHS,
|
|
NarrowBO->getName());
|
|
IRBuilder<> Builder(NarrowUse);
|
|
Builder.Insert(WideBO);
|
|
WideBO->copyIRFlags(NarrowBO);
|
|
ExtendKindMap[NarrowUse] = ExtKind;
|
|
|
|
for (Instruction *User : ExtUsers) {
|
|
assert(User->getType() == WideType && "Checked before!");
|
|
LLVM_DEBUG(dbgs() << "INDVARS: eliminating " << *User << " replaced by "
|
|
<< *WideBO << "\n");
|
|
++NumElimExt;
|
|
User->replaceAllUsesWith(WideBO);
|
|
DeadInsts.emplace_back(User);
|
|
}
|
|
return true;
|
|
}
|
|
|
|
/// Determine whether an individual user of the narrow IV can be widened. If so,
|
|
/// return the wide clone of the user.
|
|
Instruction *WidenIV::widenIVUse(WidenIV::NarrowIVDefUse DU, SCEVExpander &Rewriter) {
|
|
assert(ExtendKindMap.count(DU.NarrowDef) &&
|
|
"Should already know the kind of extension used to widen NarrowDef");
|
|
|
|
// Stop traversing the def-use chain at inner-loop phis or post-loop phis.
|
|
if (PHINode *UsePhi = dyn_cast<PHINode>(DU.NarrowUse)) {
|
|
if (LI->getLoopFor(UsePhi->getParent()) != L) {
|
|
// For LCSSA phis, sink the truncate outside the loop.
|
|
// After SimplifyCFG most loop exit targets have a single predecessor.
|
|
// Otherwise fall back to a truncate within the loop.
|
|
if (UsePhi->getNumOperands() != 1)
|
|
truncateIVUse(DU, DT, LI);
|
|
else {
|
|
// Widening the PHI requires us to insert a trunc. The logical place
|
|
// for this trunc is in the same BB as the PHI. This is not possible if
|
|
// the BB is terminated by a catchswitch.
|
|
if (isa<CatchSwitchInst>(UsePhi->getParent()->getTerminator()))
|
|
return nullptr;
|
|
|
|
PHINode *WidePhi =
|
|
PHINode::Create(DU.WideDef->getType(), 1, UsePhi->getName() + ".wide",
|
|
UsePhi);
|
|
WidePhi->addIncoming(DU.WideDef, UsePhi->getIncomingBlock(0));
|
|
IRBuilder<> Builder(&*WidePhi->getParent()->getFirstInsertionPt());
|
|
Value *Trunc = Builder.CreateTrunc(WidePhi, DU.NarrowDef->getType());
|
|
UsePhi->replaceAllUsesWith(Trunc);
|
|
DeadInsts.emplace_back(UsePhi);
|
|
LLVM_DEBUG(dbgs() << "INDVARS: Widen lcssa phi " << *UsePhi << " to "
|
|
<< *WidePhi << "\n");
|
|
}
|
|
return nullptr;
|
|
}
|
|
}
|
|
|
|
// This narrow use can be widened by a sext if it's non-negative or its narrow
|
|
// def was widended by a sext. Same for zext.
|
|
auto canWidenBySExt = [&]() {
|
|
return DU.NeverNegative || getExtendKind(DU.NarrowDef) == SignExtended;
|
|
};
|
|
auto canWidenByZExt = [&]() {
|
|
return DU.NeverNegative || getExtendKind(DU.NarrowDef) == ZeroExtended;
|
|
};
|
|
|
|
// Our raison d'etre! Eliminate sign and zero extension.
|
|
if ((isa<SExtInst>(DU.NarrowUse) && canWidenBySExt()) ||
|
|
(isa<ZExtInst>(DU.NarrowUse) && canWidenByZExt())) {
|
|
Value *NewDef = DU.WideDef;
|
|
if (DU.NarrowUse->getType() != WideType) {
|
|
unsigned CastWidth = SE->getTypeSizeInBits(DU.NarrowUse->getType());
|
|
unsigned IVWidth = SE->getTypeSizeInBits(WideType);
|
|
if (CastWidth < IVWidth) {
|
|
// The cast isn't as wide as the IV, so insert a Trunc.
|
|
IRBuilder<> Builder(DU.NarrowUse);
|
|
NewDef = Builder.CreateTrunc(DU.WideDef, DU.NarrowUse->getType());
|
|
}
|
|
else {
|
|
// A wider extend was hidden behind a narrower one. This may induce
|
|
// another round of IV widening in which the intermediate IV becomes
|
|
// dead. It should be very rare.
|
|
LLVM_DEBUG(dbgs() << "INDVARS: New IV " << *WidePhi
|
|
<< " not wide enough to subsume " << *DU.NarrowUse
|
|
<< "\n");
|
|
DU.NarrowUse->replaceUsesOfWith(DU.NarrowDef, DU.WideDef);
|
|
NewDef = DU.NarrowUse;
|
|
}
|
|
}
|
|
if (NewDef != DU.NarrowUse) {
|
|
LLVM_DEBUG(dbgs() << "INDVARS: eliminating " << *DU.NarrowUse
|
|
<< " replaced by " << *DU.WideDef << "\n");
|
|
++NumElimExt;
|
|
DU.NarrowUse->replaceAllUsesWith(NewDef);
|
|
DeadInsts.emplace_back(DU.NarrowUse);
|
|
}
|
|
// Now that the extend is gone, we want to expose it's uses for potential
|
|
// further simplification. We don't need to directly inform SimplifyIVUsers
|
|
// of the new users, because their parent IV will be processed later as a
|
|
// new loop phi. If we preserved IVUsers analysis, we would also want to
|
|
// push the uses of WideDef here.
|
|
|
|
// No further widening is needed. The deceased [sz]ext had done it for us.
|
|
return nullptr;
|
|
}
|
|
|
|
// Does this user itself evaluate to a recurrence after widening?
|
|
WidenedRecTy WideAddRec = getExtendedOperandRecurrence(DU);
|
|
if (!WideAddRec.first)
|
|
WideAddRec = getWideRecurrence(DU);
|
|
|
|
assert((WideAddRec.first == nullptr) == (WideAddRec.second == Unknown));
|
|
if (!WideAddRec.first) {
|
|
// If use is a loop condition, try to promote the condition instead of
|
|
// truncating the IV first.
|
|
if (widenLoopCompare(DU))
|
|
return nullptr;
|
|
|
|
// We are here about to generate a truncate instruction that may hurt
|
|
// performance because the scalar evolution expression computed earlier
|
|
// in WideAddRec.first does not indicate a polynomial induction expression.
|
|
// In that case, look at the operands of the use instruction to determine
|
|
// if we can still widen the use instead of truncating its operand.
|
|
if (widenWithVariantUse(DU))
|
|
return nullptr;
|
|
|
|
// This user does not evaluate to a recurrence after widening, so don't
|
|
// follow it. Instead insert a Trunc to kill off the original use,
|
|
// eventually isolating the original narrow IV so it can be removed.
|
|
truncateIVUse(DU, DT, LI);
|
|
return nullptr;
|
|
}
|
|
// Assume block terminators cannot evaluate to a recurrence. We can't to
|
|
// insert a Trunc after a terminator if there happens to be a critical edge.
|
|
assert(DU.NarrowUse != DU.NarrowUse->getParent()->getTerminator() &&
|
|
"SCEV is not expected to evaluate a block terminator");
|
|
|
|
// Reuse the IV increment that SCEVExpander created as long as it dominates
|
|
// NarrowUse.
|
|
Instruction *WideUse = nullptr;
|
|
if (WideAddRec.first == WideIncExpr &&
|
|
Rewriter.hoistIVInc(WideInc, DU.NarrowUse))
|
|
WideUse = WideInc;
|
|
else {
|
|
WideUse = cloneIVUser(DU, WideAddRec.first);
|
|
if (!WideUse)
|
|
return nullptr;
|
|
}
|
|
// Evaluation of WideAddRec ensured that the narrow expression could be
|
|
// extended outside the loop without overflow. This suggests that the wide use
|
|
// evaluates to the same expression as the extended narrow use, but doesn't
|
|
// absolutely guarantee it. Hence the following failsafe check. In rare cases
|
|
// where it fails, we simply throw away the newly created wide use.
|
|
if (WideAddRec.first != SE->getSCEV(WideUse)) {
|
|
LLVM_DEBUG(dbgs() << "Wide use expression mismatch: " << *WideUse << ": "
|
|
<< *SE->getSCEV(WideUse) << " != " << *WideAddRec.first
|
|
<< "\n");
|
|
DeadInsts.emplace_back(WideUse);
|
|
return nullptr;
|
|
}
|
|
|
|
// if we reached this point then we are going to replace
|
|
// DU.NarrowUse with WideUse. Reattach DbgValue then.
|
|
replaceAllDbgUsesWith(*DU.NarrowUse, *WideUse, *WideUse, *DT);
|
|
|
|
ExtendKindMap[DU.NarrowUse] = WideAddRec.second;
|
|
// Returning WideUse pushes it on the worklist.
|
|
return WideUse;
|
|
}
|
|
|
|
/// Add eligible users of NarrowDef to NarrowIVUsers.
|
|
void WidenIV::pushNarrowIVUsers(Instruction *NarrowDef, Instruction *WideDef) {
|
|
const SCEV *NarrowSCEV = SE->getSCEV(NarrowDef);
|
|
bool NonNegativeDef =
|
|
SE->isKnownPredicate(ICmpInst::ICMP_SGE, NarrowSCEV,
|
|
SE->getZero(NarrowSCEV->getType()));
|
|
for (User *U : NarrowDef->users()) {
|
|
Instruction *NarrowUser = cast<Instruction>(U);
|
|
|
|
// Handle data flow merges and bizarre phi cycles.
|
|
if (!Widened.insert(NarrowUser).second)
|
|
continue;
|
|
|
|
bool NonNegativeUse = false;
|
|
if (!NonNegativeDef) {
|
|
// We might have a control-dependent range information for this context.
|
|
if (auto RangeInfo = getPostIncRangeInfo(NarrowDef, NarrowUser))
|
|
NonNegativeUse = RangeInfo->getSignedMin().isNonNegative();
|
|
}
|
|
|
|
NarrowIVUsers.emplace_back(NarrowDef, NarrowUser, WideDef,
|
|
NonNegativeDef || NonNegativeUse);
|
|
}
|
|
}
|
|
|
|
/// Process a single induction variable. First use the SCEVExpander to create a
|
|
/// wide induction variable that evaluates to the same recurrence as the
|
|
/// original narrow IV. Then use a worklist to forward traverse the narrow IV's
|
|
/// def-use chain. After widenIVUse has processed all interesting IV users, the
|
|
/// narrow IV will be isolated for removal by DeleteDeadPHIs.
|
|
///
|
|
/// It would be simpler to delete uses as they are processed, but we must avoid
|
|
/// invalidating SCEV expressions.
|
|
PHINode *WidenIV::createWideIV(SCEVExpander &Rewriter) {
|
|
// Is this phi an induction variable?
|
|
const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(OrigPhi));
|
|
if (!AddRec)
|
|
return nullptr;
|
|
|
|
// Widen the induction variable expression.
|
|
const SCEV *WideIVExpr = getExtendKind(OrigPhi) == SignExtended
|
|
? SE->getSignExtendExpr(AddRec, WideType)
|
|
: SE->getZeroExtendExpr(AddRec, WideType);
|
|
|
|
assert(SE->getEffectiveSCEVType(WideIVExpr->getType()) == WideType &&
|
|
"Expect the new IV expression to preserve its type");
|
|
|
|
// Can the IV be extended outside the loop without overflow?
|
|
AddRec = dyn_cast<SCEVAddRecExpr>(WideIVExpr);
|
|
if (!AddRec || AddRec->getLoop() != L)
|
|
return nullptr;
|
|
|
|
// An AddRec must have loop-invariant operands. Since this AddRec is
|
|
// materialized by a loop header phi, the expression cannot have any post-loop
|
|
// operands, so they must dominate the loop header.
|
|
assert(
|
|
SE->properlyDominates(AddRec->getStart(), L->getHeader()) &&
|
|
SE->properlyDominates(AddRec->getStepRecurrence(*SE), L->getHeader()) &&
|
|
"Loop header phi recurrence inputs do not dominate the loop");
|
|
|
|
// Iterate over IV uses (including transitive ones) looking for IV increments
|
|
// of the form 'add nsw %iv, <const>'. For each increment and each use of
|
|
// the increment calculate control-dependent range information basing on
|
|
// dominating conditions inside of the loop (e.g. a range check inside of the
|
|
// loop). Calculated ranges are stored in PostIncRangeInfos map.
|
|
//
|
|
// Control-dependent range information is later used to prove that a narrow
|
|
// definition is not negative (see pushNarrowIVUsers). It's difficult to do
|
|
// this on demand because when pushNarrowIVUsers needs this information some
|
|
// of the dominating conditions might be already widened.
|
|
if (UsePostIncrementRanges)
|
|
calculatePostIncRanges(OrigPhi);
|
|
|
|
// The rewriter provides a value for the desired IV expression. This may
|
|
// either find an existing phi or materialize a new one. Either way, we
|
|
// expect a well-formed cyclic phi-with-increments. i.e. any operand not part
|
|
// of the phi-SCC dominates the loop entry.
|
|
Instruction *InsertPt = &*L->getHeader()->getFirstInsertionPt();
|
|
Value *ExpandInst = Rewriter.expandCodeFor(AddRec, WideType, InsertPt);
|
|
// If the wide phi is not a phi node, for example a cast node, like bitcast,
|
|
// inttoptr, ptrtoint, just skip for now.
|
|
if (!(WidePhi = dyn_cast<PHINode>(ExpandInst))) {
|
|
// if the cast node is an inserted instruction without any user, we should
|
|
// remove it to make sure the pass don't touch the function as we can not
|
|
// wide the phi.
|
|
if (ExpandInst->hasNUses(0) &&
|
|
Rewriter.isInsertedInstruction(cast<Instruction>(ExpandInst)))
|
|
DeadInsts.emplace_back(ExpandInst);
|
|
return nullptr;
|
|
}
|
|
|
|
// Remembering the WideIV increment generated by SCEVExpander allows
|
|
// widenIVUse to reuse it when widening the narrow IV's increment. We don't
|
|
// employ a general reuse mechanism because the call above is the only call to
|
|
// SCEVExpander. Henceforth, we produce 1-to-1 narrow to wide uses.
|
|
if (BasicBlock *LatchBlock = L->getLoopLatch()) {
|
|
WideInc =
|
|
cast<Instruction>(WidePhi->getIncomingValueForBlock(LatchBlock));
|
|
WideIncExpr = SE->getSCEV(WideInc);
|
|
// Propagate the debug location associated with the original loop increment
|
|
// to the new (widened) increment.
|
|
auto *OrigInc =
|
|
cast<Instruction>(OrigPhi->getIncomingValueForBlock(LatchBlock));
|
|
WideInc->setDebugLoc(OrigInc->getDebugLoc());
|
|
}
|
|
|
|
LLVM_DEBUG(dbgs() << "Wide IV: " << *WidePhi << "\n");
|
|
++NumWidened;
|
|
|
|
// Traverse the def-use chain using a worklist starting at the original IV.
|
|
assert(Widened.empty() && NarrowIVUsers.empty() && "expect initial state" );
|
|
|
|
Widened.insert(OrigPhi);
|
|
pushNarrowIVUsers(OrigPhi, WidePhi);
|
|
|
|
while (!NarrowIVUsers.empty()) {
|
|
WidenIV::NarrowIVDefUse DU = NarrowIVUsers.pop_back_val();
|
|
|
|
// Process a def-use edge. This may replace the use, so don't hold a
|
|
// use_iterator across it.
|
|
Instruction *WideUse = widenIVUse(DU, Rewriter);
|
|
|
|
// Follow all def-use edges from the previous narrow use.
|
|
if (WideUse)
|
|
pushNarrowIVUsers(DU.NarrowUse, WideUse);
|
|
|
|
// widenIVUse may have removed the def-use edge.
|
|
if (DU.NarrowDef->use_empty())
|
|
DeadInsts.emplace_back(DU.NarrowDef);
|
|
}
|
|
|
|
// Attach any debug information to the new PHI.
|
|
replaceAllDbgUsesWith(*OrigPhi, *WidePhi, *WidePhi, *DT);
|
|
|
|
return WidePhi;
|
|
}
|
|
|
|
/// Calculates control-dependent range for the given def at the given context
|
|
/// by looking at dominating conditions inside of the loop
|
|
void WidenIV::calculatePostIncRange(Instruction *NarrowDef,
|
|
Instruction *NarrowUser) {
|
|
using namespace llvm::PatternMatch;
|
|
|
|
Value *NarrowDefLHS;
|
|
const APInt *NarrowDefRHS;
|
|
if (!match(NarrowDef, m_NSWAdd(m_Value(NarrowDefLHS),
|
|
m_APInt(NarrowDefRHS))) ||
|
|
!NarrowDefRHS->isNonNegative())
|
|
return;
|
|
|
|
auto UpdateRangeFromCondition = [&] (Value *Condition,
|
|
bool TrueDest) {
|
|
CmpInst::Predicate Pred;
|
|
Value *CmpRHS;
|
|
if (!match(Condition, m_ICmp(Pred, m_Specific(NarrowDefLHS),
|
|
m_Value(CmpRHS))))
|
|
return;
|
|
|
|
CmpInst::Predicate P =
|
|
TrueDest ? Pred : CmpInst::getInversePredicate(Pred);
|
|
|
|
auto CmpRHSRange = SE->getSignedRange(SE->getSCEV(CmpRHS));
|
|
auto CmpConstrainedLHSRange =
|
|
ConstantRange::makeAllowedICmpRegion(P, CmpRHSRange);
|
|
auto NarrowDefRange = CmpConstrainedLHSRange.addWithNoWrap(
|
|
*NarrowDefRHS, OverflowingBinaryOperator::NoSignedWrap);
|
|
|
|
updatePostIncRangeInfo(NarrowDef, NarrowUser, NarrowDefRange);
|
|
};
|
|
|
|
auto UpdateRangeFromGuards = [&](Instruction *Ctx) {
|
|
if (!HasGuards)
|
|
return;
|
|
|
|
for (Instruction &I : make_range(Ctx->getIterator().getReverse(),
|
|
Ctx->getParent()->rend())) {
|
|
Value *C = nullptr;
|
|
if (match(&I, m_Intrinsic<Intrinsic::experimental_guard>(m_Value(C))))
|
|
UpdateRangeFromCondition(C, /*TrueDest=*/true);
|
|
}
|
|
};
|
|
|
|
UpdateRangeFromGuards(NarrowUser);
|
|
|
|
BasicBlock *NarrowUserBB = NarrowUser->getParent();
|
|
// If NarrowUserBB is statically unreachable asking dominator queries may
|
|
// yield surprising results. (e.g. the block may not have a dom tree node)
|
|
if (!DT->isReachableFromEntry(NarrowUserBB))
|
|
return;
|
|
|
|
for (auto *DTB = (*DT)[NarrowUserBB]->getIDom();
|
|
L->contains(DTB->getBlock());
|
|
DTB = DTB->getIDom()) {
|
|
auto *BB = DTB->getBlock();
|
|
auto *TI = BB->getTerminator();
|
|
UpdateRangeFromGuards(TI);
|
|
|
|
auto *BI = dyn_cast<BranchInst>(TI);
|
|
if (!BI || !BI->isConditional())
|
|
continue;
|
|
|
|
auto *TrueSuccessor = BI->getSuccessor(0);
|
|
auto *FalseSuccessor = BI->getSuccessor(1);
|
|
|
|
auto DominatesNarrowUser = [this, NarrowUser] (BasicBlockEdge BBE) {
|
|
return BBE.isSingleEdge() &&
|
|
DT->dominates(BBE, NarrowUser->getParent());
|
|
};
|
|
|
|
if (DominatesNarrowUser(BasicBlockEdge(BB, TrueSuccessor)))
|
|
UpdateRangeFromCondition(BI->getCondition(), /*TrueDest=*/true);
|
|
|
|
if (DominatesNarrowUser(BasicBlockEdge(BB, FalseSuccessor)))
|
|
UpdateRangeFromCondition(BI->getCondition(), /*TrueDest=*/false);
|
|
}
|
|
}
|
|
|
|
/// Calculates PostIncRangeInfos map for the given IV
|
|
void WidenIV::calculatePostIncRanges(PHINode *OrigPhi) {
|
|
SmallPtrSet<Instruction *, 16> Visited;
|
|
SmallVector<Instruction *, 6> Worklist;
|
|
Worklist.push_back(OrigPhi);
|
|
Visited.insert(OrigPhi);
|
|
|
|
while (!Worklist.empty()) {
|
|
Instruction *NarrowDef = Worklist.pop_back_val();
|
|
|
|
for (Use &U : NarrowDef->uses()) {
|
|
auto *NarrowUser = cast<Instruction>(U.getUser());
|
|
|
|
// Don't go looking outside the current loop.
|
|
auto *NarrowUserLoop = (*LI)[NarrowUser->getParent()];
|
|
if (!NarrowUserLoop || !L->contains(NarrowUserLoop))
|
|
continue;
|
|
|
|
if (!Visited.insert(NarrowUser).second)
|
|
continue;
|
|
|
|
Worklist.push_back(NarrowUser);
|
|
|
|
calculatePostIncRange(NarrowDef, NarrowUser);
|
|
}
|
|
}
|
|
}
|
|
|
|
PHINode *llvm::createWideIV(WideIVInfo &WI,
|
|
LoopInfo *LI, ScalarEvolution *SE, SCEVExpander &Rewriter,
|
|
DominatorTree *DT, SmallVectorImpl<WeakTrackingVH> &DeadInsts,
|
|
unsigned &NumElimExt, unsigned &NumWidened,
|
|
bool HasGuards, bool UsePostIncrementRanges) {
|
|
WidenIV Widener(WI, LI, SE, DT, DeadInsts, HasGuards, UsePostIncrementRanges);
|
|
PHINode *WidePHI = Widener.createWideIV(Rewriter);
|
|
NumElimExt = Widener.getNumElimExt();
|
|
NumWidened = Widener.getNumWidened();
|
|
return WidePHI;
|
|
}
|