mirror of
https://github.com/RPCS3/llvm-mirror.git
synced 2024-12-29 15:04:57 +00:00
a2cec41172
llvm-svn: 120504
317 lines
11 KiB
C++
317 lines
11 KiB
C++
//===-- LiveIntervalUnion.cpp - Live interval union data structure --------===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// LiveIntervalUnion represents a coalesced set of live intervals. This may be
|
|
// used during coalescing to represent a congruence class, or during register
|
|
// allocation to model liveness of a physical register.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#define DEBUG_TYPE "regalloc"
|
|
#include "LiveIntervalUnion.h"
|
|
#include "llvm/ADT/SparseBitVector.h"
|
|
#include "llvm/Support/Debug.h"
|
|
#include "llvm/Support/raw_ostream.h"
|
|
#include <algorithm>
|
|
using namespace llvm;
|
|
|
|
// Find the first segment in the range [SegBegin,Segments.end()) that
|
|
// intersects with LS. If no intersection is found, return the first SI
|
|
// such that SI.start >= LS.End.
|
|
//
|
|
// This logic is tied to the underlying LiveSegments data structure. For now, we
|
|
// use set::upper_bound to find the nearest starting position,
|
|
// then reverse iterate to find the first overlap.
|
|
//
|
|
// Upon entry we have SegBegin.Start < LS.End
|
|
// SegBegin |--...
|
|
// \ .
|
|
// LS ...-|
|
|
//
|
|
// After set::upper_bound, we have SI.start >= LS.start:
|
|
// SI |--...
|
|
// /
|
|
// LS |--...
|
|
//
|
|
// Assuming intervals are disjoint, if an intersection exists, it must be the
|
|
// segment found or the one immediately preceeding it. We continue reverse
|
|
// iterating to return the first overlapping segment.
|
|
LiveIntervalUnion::SegmentIter
|
|
LiveIntervalUnion::upperBound(SegmentIter SegBegin,
|
|
const LiveSegment &LS) {
|
|
assert(LS.End > SegBegin->Start && "segment iterator precondition");
|
|
|
|
// Get the next LIU segment such that segI->Start is not less than seg.Start
|
|
//
|
|
// FIXME: Once we have a B+tree, we can make good use of SegBegin as a hint to
|
|
// upper_bound. For now, we're forced to search again from the root each time.
|
|
SegmentIter SI = Segments.upper_bound(LS);
|
|
while (SI != SegBegin) {
|
|
--SI;
|
|
if (LS.Start >= SI->End)
|
|
return ++SI;
|
|
}
|
|
return SI;
|
|
}
|
|
|
|
// Merge a LiveInterval's segments. Guarantee no overlaps.
|
|
//
|
|
// After implementing B+tree, segments will be coalesced.
|
|
void LiveIntervalUnion::unify(LiveInterval &VirtReg) {
|
|
|
|
// Insert each of the virtual register's live segments into the map.
|
|
SegmentIter SegPos = Segments.begin();
|
|
for (LiveInterval::iterator VirtRegI = VirtReg.begin(),
|
|
VirtRegEnd = VirtReg.end();
|
|
VirtRegI != VirtRegEnd; ++VirtRegI ) {
|
|
|
|
LiveSegment Seg(*VirtRegI, &VirtReg);
|
|
SegPos = Segments.insert(SegPos, Seg);
|
|
|
|
assert(*SegPos == Seg && "need equal val for equal key");
|
|
#ifndef NDEBUG
|
|
// Check for overlap (inductively).
|
|
if (SegPos != Segments.begin()) {
|
|
assert(llvm::prior(SegPos)->End <= Seg.Start && "overlapping segments" );
|
|
}
|
|
SegmentIter NextPos = llvm::next(SegPos);
|
|
if (NextPos != Segments.end())
|
|
assert(Seg.End <= NextPos->Start && "overlapping segments" );
|
|
#endif // NDEBUG
|
|
}
|
|
}
|
|
|
|
// Remove a live virtual register's segments from this union.
|
|
void LiveIntervalUnion::extract(const LiveInterval &VirtReg) {
|
|
|
|
// Remove each of the virtual register's live segments from the map.
|
|
SegmentIter SegPos = Segments.begin();
|
|
for (LiveInterval::const_iterator VirtRegI = VirtReg.begin(),
|
|
VirtRegEnd = VirtReg.end();
|
|
VirtRegI != VirtRegEnd; ++VirtRegI) {
|
|
|
|
LiveSegment Seg(*VirtRegI, const_cast<LiveInterval*>(&VirtReg));
|
|
SegPos = upperBound(SegPos, Seg);
|
|
assert(SegPos != Segments.end() && "missing VirtReg segment");
|
|
|
|
Segments.erase(SegPos++);
|
|
}
|
|
}
|
|
|
|
raw_ostream& llvm::operator<<(raw_ostream& OS, const LiveSegment &LS) {
|
|
return OS << '[' << LS.Start << ',' << LS.End << ':' <<
|
|
LS.VirtReg->reg << ")";
|
|
}
|
|
|
|
void LiveSegment::dump() const {
|
|
dbgs() << *this << "\n";
|
|
}
|
|
|
|
void
|
|
LiveIntervalUnion::print(raw_ostream &OS,
|
|
const AbstractRegisterDescription *RegDesc) const {
|
|
OS << "LIU ";
|
|
if (RegDesc != NULL)
|
|
OS << RegDesc->getName(RepReg);
|
|
else {
|
|
OS << RepReg;
|
|
}
|
|
for (LiveSegments::const_iterator SI = Segments.begin(),
|
|
SegEnd = Segments.end(); SI != SegEnd; ++SI) {
|
|
dbgs() << " " << *SI;
|
|
}
|
|
OS << "\n";
|
|
}
|
|
|
|
void LiveIntervalUnion::dump(const AbstractRegisterDescription *RegDesc) const {
|
|
print(dbgs(), RegDesc);
|
|
}
|
|
|
|
#ifndef NDEBUG
|
|
// Verify the live intervals in this union and add them to the visited set.
|
|
void LiveIntervalUnion::verify(LiveVirtRegBitSet& VisitedVRegs) {
|
|
SegmentIter SI = Segments.begin();
|
|
SegmentIter SegEnd = Segments.end();
|
|
if (SI == SegEnd) return;
|
|
VisitedVRegs.set(SI->VirtReg->reg);
|
|
for (++SI; SI != SegEnd; ++SI) {
|
|
VisitedVRegs.set(SI->VirtReg->reg);
|
|
assert(llvm::prior(SI)->End <= SI->Start && "overlapping segments" );
|
|
}
|
|
}
|
|
#endif //!NDEBUG
|
|
|
|
// Private interface accessed by Query.
|
|
//
|
|
// Find a pair of segments that intersect, one in the live virtual register
|
|
// (LiveInterval), and the other in this LiveIntervalUnion. The caller (Query)
|
|
// is responsible for advancing the LiveIntervalUnion segments to find a
|
|
// "notable" intersection, which requires query-specific logic.
|
|
//
|
|
// This design assumes only a fast mechanism for intersecting a single live
|
|
// virtual register segment with a set of LiveIntervalUnion segments. This may
|
|
// be ok since most virtual registers have very few segments. If we had a data
|
|
// structure that optimizd MxN intersection of segments, then we would bypass
|
|
// the loop that advances within the LiveInterval.
|
|
//
|
|
// If no intersection exists, set VirtRegI = VirtRegEnd, and set SI to the first
|
|
// segment whose start point is greater than LiveInterval's end point.
|
|
//
|
|
// Assumes that segments are sorted by start position in both
|
|
// LiveInterval and LiveSegments.
|
|
void LiveIntervalUnion::Query::findIntersection(InterferenceResult &IR) const {
|
|
|
|
// Search until reaching the end of the LiveUnion segments.
|
|
LiveInterval::iterator VirtRegEnd = VirtReg->end();
|
|
SegmentIter LiveUnionEnd = LiveUnion->end();
|
|
while (IR.LiveUnionI != LiveUnionEnd) {
|
|
|
|
// Slowly advance the live virtual reg iterator until we surpass the next
|
|
// segment in LiveUnion.
|
|
//
|
|
// Note: If this is ever used for coalescing of fixed registers and we have
|
|
// a live vreg with thousands of segments, then change this code to use
|
|
// upperBound instead.
|
|
while (IR.VirtRegI != VirtRegEnd &&
|
|
IR.VirtRegI->end <= IR.LiveUnionI->Start)
|
|
++IR.VirtRegI;
|
|
if (IR.VirtRegI == VirtRegEnd)
|
|
break; // Retain current (nonoverlapping) LiveUnionI
|
|
|
|
// VirtRegI may have advanced far beyond LiveUnionI,
|
|
// do a fast intersection test to "catch up"
|
|
LiveSegment Seg(*IR.VirtRegI, VirtReg);
|
|
IR.LiveUnionI = LiveUnion->upperBound(IR.LiveUnionI, Seg);
|
|
|
|
// Check if no LiveUnionI exists with VirtRegI->Start < LiveUnionI.end
|
|
if (IR.LiveUnionI == LiveUnionEnd)
|
|
break;
|
|
if (IR.LiveUnionI->Start < IR.VirtRegI->end) {
|
|
assert(overlap(*IR.VirtRegI, *IR.LiveUnionI) &&
|
|
"upperBound postcondition");
|
|
break;
|
|
}
|
|
}
|
|
if (IR.LiveUnionI == LiveUnionEnd)
|
|
IR.VirtRegI = VirtRegEnd;
|
|
}
|
|
|
|
// Find the first intersection, and cache interference info
|
|
// (retain segment iterators into both VirtReg and LiveUnion).
|
|
LiveIntervalUnion::InterferenceResult
|
|
LiveIntervalUnion::Query::firstInterference() {
|
|
if (FirstInterference != LiveIntervalUnion::InterferenceResult()) {
|
|
return FirstInterference;
|
|
}
|
|
FirstInterference = InterferenceResult(VirtReg->begin(), LiveUnion->begin());
|
|
findIntersection(FirstInterference);
|
|
return FirstInterference;
|
|
}
|
|
|
|
// Treat the result as an iterator and advance to the next interfering pair
|
|
// of segments. This is a plain iterator with no filter.
|
|
bool LiveIntervalUnion::Query::nextInterference(InterferenceResult &IR) const {
|
|
assert(isInterference(IR) && "iteration past end of interferences");
|
|
|
|
// Advance either the VirtReg or LiveUnion segment to ensure that we visit all
|
|
// unique overlapping pairs.
|
|
if (IR.VirtRegI->end < IR.LiveUnionI->End) {
|
|
if (++IR.VirtRegI == VirtReg->end())
|
|
return false;
|
|
}
|
|
else {
|
|
if (++IR.LiveUnionI == LiveUnion->end()) {
|
|
IR.VirtRegI = VirtReg->end();
|
|
return false;
|
|
}
|
|
}
|
|
// Short-circuit findIntersection() if possible.
|
|
if (overlap(*IR.VirtRegI, *IR.LiveUnionI))
|
|
return true;
|
|
|
|
// Find the next intersection.
|
|
findIntersection(IR);
|
|
return isInterference(IR);
|
|
}
|
|
|
|
// Scan the vector of interfering virtual registers in this union. Assume it's
|
|
// quite small.
|
|
bool LiveIntervalUnion::Query::isSeenInterference(LiveInterval *VirtReg) const {
|
|
SmallVectorImpl<LiveInterval*>::const_iterator I =
|
|
std::find(InterferingVRegs.begin(), InterferingVRegs.end(), VirtReg);
|
|
return I != InterferingVRegs.end();
|
|
}
|
|
|
|
// Count the number of virtual registers in this union that interfere with this
|
|
// query's live virtual register.
|
|
//
|
|
// The number of times that we either advance IR.VirtRegI or call
|
|
// LiveUnion.upperBound() will be no more than the number of holes in
|
|
// VirtReg. So each invocation of collectInterferingVRegs() takes
|
|
// time proportional to |VirtReg Holes| * time(LiveUnion.upperBound()).
|
|
//
|
|
// For comments on how to speed it up, see Query::findIntersection().
|
|
unsigned LiveIntervalUnion::Query::
|
|
collectInterferingVRegs(unsigned MaxInterferingRegs) {
|
|
InterferenceResult IR = firstInterference();
|
|
LiveInterval::iterator VirtRegEnd = VirtReg->end();
|
|
SegmentIter LiveUnionEnd = LiveUnion->end();
|
|
LiveInterval *RecentInterferingVReg = NULL;
|
|
while (IR.LiveUnionI != LiveUnionEnd) {
|
|
// Advance the union's iterator to reach an unseen interfering vreg.
|
|
do {
|
|
if (IR.LiveUnionI->VirtReg == RecentInterferingVReg)
|
|
continue;
|
|
|
|
if (!isSeenInterference(IR.LiveUnionI->VirtReg))
|
|
break;
|
|
|
|
// Cache the most recent interfering vreg to bypass isSeenInterference.
|
|
RecentInterferingVReg = IR.LiveUnionI->VirtReg;
|
|
|
|
} while( ++IR.LiveUnionI != LiveUnionEnd);
|
|
if (IR.LiveUnionI == LiveUnionEnd)
|
|
break;
|
|
|
|
// Advance the VirtReg iterator until surpassing the next segment in
|
|
// LiveUnion.
|
|
//
|
|
// Note: If this is ever used for coalescing of fixed registers and we have
|
|
// a live virtual register with thousands of segments, then use upperBound
|
|
// instead.
|
|
while (IR.VirtRegI != VirtRegEnd &&
|
|
IR.VirtRegI->end <= IR.LiveUnionI->Start)
|
|
++IR.VirtRegI;
|
|
if (IR.VirtRegI == VirtRegEnd)
|
|
break;
|
|
|
|
// Check for intersection with the union's segment.
|
|
if (overlap(*IR.VirtRegI, *IR.LiveUnionI)) {
|
|
|
|
if (!IR.LiveUnionI->VirtReg->isSpillable())
|
|
SeenUnspillableVReg = true;
|
|
|
|
InterferingVRegs.push_back(IR.LiveUnionI->VirtReg);
|
|
if (InterferingVRegs.size() == MaxInterferingRegs)
|
|
return MaxInterferingRegs;
|
|
|
|
// Cache the most recent interfering vreg to bypass isSeenInterference.
|
|
RecentInterferingVReg = IR.LiveUnionI->VirtReg;
|
|
++IR.LiveUnionI;
|
|
continue;
|
|
}
|
|
// VirtRegI may have advanced far beyond LiveUnionI,
|
|
// do a fast intersection test to "catch up"
|
|
LiveSegment Seg(*IR.VirtRegI, VirtReg);
|
|
IR.LiveUnionI = LiveUnion->upperBound(IR.LiveUnionI, Seg);
|
|
}
|
|
SeenAllInterferences = true;
|
|
return InterferingVRegs.size();
|
|
}
|