mirror of
https://github.com/RPCS3/llvm-mirror.git
synced 2025-01-08 12:21:04 +00:00
eee649c09f
"is is" -> "is", "if if" -> "if", "or or" -> "or" llvm-svn: 329878
398 lines
16 KiB
C++
398 lines
16 KiB
C++
//===---- llvm/Analysis/ScalarEvolutionExpander.h - SCEV Exprs --*- C++ -*-===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file defines the classes used to generate code from scalar expressions.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#ifndef LLVM_ANALYSIS_SCALAREVOLUTIONEXPANDER_H
|
|
#define LLVM_ANALYSIS_SCALAREVOLUTIONEXPANDER_H
|
|
|
|
#include "llvm/ADT/DenseMap.h"
|
|
#include "llvm/ADT/DenseSet.h"
|
|
#include "llvm/ADT/Optional.h"
|
|
#include "llvm/Analysis/ScalarEvolutionExpressions.h"
|
|
#include "llvm/Analysis/ScalarEvolutionNormalization.h"
|
|
#include "llvm/Analysis/TargetFolder.h"
|
|
#include "llvm/IR/IRBuilder.h"
|
|
#include "llvm/IR/ValueHandle.h"
|
|
|
|
namespace llvm {
|
|
class TargetTransformInfo;
|
|
|
|
/// Return true if the given expression is safe to expand in the sense that
|
|
/// all materialized values are safe to speculate anywhere their operands are
|
|
/// defined.
|
|
bool isSafeToExpand(const SCEV *S, ScalarEvolution &SE);
|
|
|
|
/// Return true if the given expression is safe to expand in the sense that
|
|
/// all materialized values are defined and safe to speculate at the specified
|
|
/// location and their operands are defined at this location.
|
|
bool isSafeToExpandAt(const SCEV *S, const Instruction *InsertionPoint,
|
|
ScalarEvolution &SE);
|
|
|
|
/// This class uses information about analyze scalars to rewrite expressions
|
|
/// in canonical form.
|
|
///
|
|
/// Clients should create an instance of this class when rewriting is needed,
|
|
/// and destroy it when finished to allow the release of the associated
|
|
/// memory.
|
|
class SCEVExpander : public SCEVVisitor<SCEVExpander, Value*> {
|
|
ScalarEvolution &SE;
|
|
const DataLayout &DL;
|
|
|
|
// New instructions receive a name to identify them with the current pass.
|
|
const char* IVName;
|
|
|
|
// InsertedExpressions caches Values for reuse, so must track RAUW.
|
|
DenseMap<std::pair<const SCEV *, Instruction *>, TrackingVH<Value>>
|
|
InsertedExpressions;
|
|
|
|
// InsertedValues only flags inserted instructions so needs no RAUW.
|
|
DenseSet<AssertingVH<Value>> InsertedValues;
|
|
DenseSet<AssertingVH<Value>> InsertedPostIncValues;
|
|
|
|
/// A memoization of the "relevant" loop for a given SCEV.
|
|
DenseMap<const SCEV *, const Loop *> RelevantLoops;
|
|
|
|
/// Addrecs referring to any of the given loops are expanded in post-inc
|
|
/// mode. For example, expanding {1,+,1}<L> in post-inc mode returns the add
|
|
/// instruction that adds one to the phi for {0,+,1}<L>, as opposed to a new
|
|
/// phi starting at 1. This is only supported in non-canonical mode.
|
|
PostIncLoopSet PostIncLoops;
|
|
|
|
/// When this is non-null, addrecs expanded in the loop it indicates should
|
|
/// be inserted with increments at IVIncInsertPos.
|
|
const Loop *IVIncInsertLoop;
|
|
|
|
/// When expanding addrecs in the IVIncInsertLoop loop, insert the IV
|
|
/// increment at this position.
|
|
Instruction *IVIncInsertPos;
|
|
|
|
/// Phis that complete an IV chain. Reuse
|
|
DenseSet<AssertingVH<PHINode>> ChainedPhis;
|
|
|
|
/// When true, expressions are expanded in "canonical" form. In particular,
|
|
/// addrecs are expanded as arithmetic based on a canonical induction
|
|
/// variable. When false, expression are expanded in a more literal form.
|
|
bool CanonicalMode;
|
|
|
|
/// When invoked from LSR, the expander is in "strength reduction" mode. The
|
|
/// only difference is that phi's are only reused if they are already in
|
|
/// "expanded" form.
|
|
bool LSRMode;
|
|
|
|
typedef IRBuilder<TargetFolder> BuilderType;
|
|
BuilderType Builder;
|
|
|
|
// RAII object that stores the current insertion point and restores it when
|
|
// the object is destroyed. This includes the debug location. Duplicated
|
|
// from InsertPointGuard to add SetInsertPoint() which is used to updated
|
|
// InsertPointGuards stack when insert points are moved during SCEV
|
|
// expansion.
|
|
class SCEVInsertPointGuard {
|
|
IRBuilderBase &Builder;
|
|
AssertingVH<BasicBlock> Block;
|
|
BasicBlock::iterator Point;
|
|
DebugLoc DbgLoc;
|
|
SCEVExpander *SE;
|
|
|
|
SCEVInsertPointGuard(const SCEVInsertPointGuard &) = delete;
|
|
SCEVInsertPointGuard &operator=(const SCEVInsertPointGuard &) = delete;
|
|
|
|
public:
|
|
SCEVInsertPointGuard(IRBuilderBase &B, SCEVExpander *SE)
|
|
: Builder(B), Block(B.GetInsertBlock()), Point(B.GetInsertPoint()),
|
|
DbgLoc(B.getCurrentDebugLocation()), SE(SE) {
|
|
SE->InsertPointGuards.push_back(this);
|
|
}
|
|
|
|
~SCEVInsertPointGuard() {
|
|
// These guards should always created/destroyed in FIFO order since they
|
|
// are used to guard lexically scoped blocks of code in
|
|
// ScalarEvolutionExpander.
|
|
assert(SE->InsertPointGuards.back() == this);
|
|
SE->InsertPointGuards.pop_back();
|
|
Builder.restoreIP(IRBuilderBase::InsertPoint(Block, Point));
|
|
Builder.SetCurrentDebugLocation(DbgLoc);
|
|
}
|
|
|
|
BasicBlock::iterator GetInsertPoint() const { return Point; }
|
|
void SetInsertPoint(BasicBlock::iterator I) { Point = I; }
|
|
};
|
|
|
|
/// Stack of pointers to saved insert points, used to keep insert points
|
|
/// consistent when instructions are moved.
|
|
SmallVector<SCEVInsertPointGuard *, 8> InsertPointGuards;
|
|
|
|
#ifndef NDEBUG
|
|
const char *DebugType;
|
|
#endif
|
|
|
|
friend struct SCEVVisitor<SCEVExpander, Value*>;
|
|
|
|
public:
|
|
/// Construct a SCEVExpander in "canonical" mode.
|
|
explicit SCEVExpander(ScalarEvolution &se, const DataLayout &DL,
|
|
const char *name)
|
|
: SE(se), DL(DL), IVName(name), IVIncInsertLoop(nullptr),
|
|
IVIncInsertPos(nullptr), CanonicalMode(true), LSRMode(false),
|
|
Builder(se.getContext(), TargetFolder(DL)) {
|
|
#ifndef NDEBUG
|
|
DebugType = "";
|
|
#endif
|
|
}
|
|
|
|
~SCEVExpander() {
|
|
// Make sure the insert point guard stack is consistent.
|
|
assert(InsertPointGuards.empty());
|
|
}
|
|
|
|
#ifndef NDEBUG
|
|
void setDebugType(const char* s) { DebugType = s; }
|
|
#endif
|
|
|
|
/// Erase the contents of the InsertedExpressions map so that users trying
|
|
/// to expand the same expression into multiple BasicBlocks or different
|
|
/// places within the same BasicBlock can do so.
|
|
void clear() {
|
|
InsertedExpressions.clear();
|
|
InsertedValues.clear();
|
|
InsertedPostIncValues.clear();
|
|
ChainedPhis.clear();
|
|
}
|
|
|
|
/// Return true for expressions that may incur non-trivial cost to evaluate
|
|
/// at runtime.
|
|
///
|
|
/// At is an optional parameter which specifies point in code where user is
|
|
/// going to expand this expression. Sometimes this knowledge can lead to a
|
|
/// more accurate cost estimation.
|
|
bool isHighCostExpansion(const SCEV *Expr, Loop *L,
|
|
const Instruction *At = nullptr) {
|
|
SmallPtrSet<const SCEV *, 8> Processed;
|
|
return isHighCostExpansionHelper(Expr, L, At, Processed);
|
|
}
|
|
|
|
/// This method returns the canonical induction variable of the specified
|
|
/// type for the specified loop (inserting one if there is none). A
|
|
/// canonical induction variable starts at zero and steps by one on each
|
|
/// iteration.
|
|
PHINode *getOrInsertCanonicalInductionVariable(const Loop *L, Type *Ty);
|
|
|
|
/// Return the induction variable increment's IV operand.
|
|
Instruction *getIVIncOperand(Instruction *IncV, Instruction *InsertPos,
|
|
bool allowScale);
|
|
|
|
/// Utility for hoisting an IV increment.
|
|
bool hoistIVInc(Instruction *IncV, Instruction *InsertPos);
|
|
|
|
/// replace congruent phis with their most canonical representative. Return
|
|
/// the number of phis eliminated.
|
|
unsigned replaceCongruentIVs(Loop *L, const DominatorTree *DT,
|
|
SmallVectorImpl<WeakTrackingVH> &DeadInsts,
|
|
const TargetTransformInfo *TTI = nullptr);
|
|
|
|
/// Insert code to directly compute the specified SCEV expression into the
|
|
/// program. The inserted code is inserted into the specified block.
|
|
Value *expandCodeFor(const SCEV *SH, Type *Ty, Instruction *I);
|
|
|
|
/// Insert code to directly compute the specified SCEV expression into the
|
|
/// program. The inserted code is inserted into the SCEVExpander's current
|
|
/// insertion point. If a type is specified, the result will be expanded to
|
|
/// have that type, with a cast if necessary.
|
|
Value *expandCodeFor(const SCEV *SH, Type *Ty = nullptr);
|
|
|
|
|
|
/// Generates a code sequence that evaluates this predicate. The inserted
|
|
/// instructions will be at position \p Loc. The result will be of type i1
|
|
/// and will have a value of 0 when the predicate is false and 1 otherwise.
|
|
Value *expandCodeForPredicate(const SCEVPredicate *Pred, Instruction *Loc);
|
|
|
|
/// A specialized variant of expandCodeForPredicate, handling the case when
|
|
/// we are expanding code for a SCEVEqualPredicate.
|
|
Value *expandEqualPredicate(const SCEVEqualPredicate *Pred,
|
|
Instruction *Loc);
|
|
|
|
/// Generates code that evaluates if the \p AR expression will overflow.
|
|
Value *generateOverflowCheck(const SCEVAddRecExpr *AR, Instruction *Loc,
|
|
bool Signed);
|
|
|
|
/// A specialized variant of expandCodeForPredicate, handling the case when
|
|
/// we are expanding code for a SCEVWrapPredicate.
|
|
Value *expandWrapPredicate(const SCEVWrapPredicate *P, Instruction *Loc);
|
|
|
|
/// A specialized variant of expandCodeForPredicate, handling the case when
|
|
/// we are expanding code for a SCEVUnionPredicate.
|
|
Value *expandUnionPredicate(const SCEVUnionPredicate *Pred,
|
|
Instruction *Loc);
|
|
|
|
/// Set the current IV increment loop and position.
|
|
void setIVIncInsertPos(const Loop *L, Instruction *Pos) {
|
|
assert(!CanonicalMode &&
|
|
"IV increment positions are not supported in CanonicalMode");
|
|
IVIncInsertLoop = L;
|
|
IVIncInsertPos = Pos;
|
|
}
|
|
|
|
/// Enable post-inc expansion for addrecs referring to the given
|
|
/// loops. Post-inc expansion is only supported in non-canonical mode.
|
|
void setPostInc(const PostIncLoopSet &L) {
|
|
assert(!CanonicalMode &&
|
|
"Post-inc expansion is not supported in CanonicalMode");
|
|
PostIncLoops = L;
|
|
}
|
|
|
|
/// Disable all post-inc expansion.
|
|
void clearPostInc() {
|
|
PostIncLoops.clear();
|
|
|
|
// When we change the post-inc loop set, cached expansions may no
|
|
// longer be valid.
|
|
InsertedPostIncValues.clear();
|
|
}
|
|
|
|
/// Disable the behavior of expanding expressions in canonical form rather
|
|
/// than in a more literal form. Non-canonical mode is useful for late
|
|
/// optimization passes.
|
|
void disableCanonicalMode() { CanonicalMode = false; }
|
|
|
|
void enableLSRMode() { LSRMode = true; }
|
|
|
|
/// Set the current insertion point. This is useful if multiple calls to
|
|
/// expandCodeFor() are going to be made with the same insert point and the
|
|
/// insert point may be moved during one of the expansions (e.g. if the
|
|
/// insert point is not a block terminator).
|
|
void setInsertPoint(Instruction *IP) {
|
|
assert(IP);
|
|
Builder.SetInsertPoint(IP);
|
|
}
|
|
|
|
/// Clear the current insertion point. This is useful if the instruction
|
|
/// that had been serving as the insertion point may have been deleted.
|
|
void clearInsertPoint() {
|
|
Builder.ClearInsertionPoint();
|
|
}
|
|
|
|
/// Return true if the specified instruction was inserted by the code
|
|
/// rewriter. If so, the client should not modify the instruction.
|
|
bool isInsertedInstruction(Instruction *I) const {
|
|
return InsertedValues.count(I) || InsertedPostIncValues.count(I);
|
|
}
|
|
|
|
void setChainedPhi(PHINode *PN) { ChainedPhis.insert(PN); }
|
|
|
|
/// Try to find existing LLVM IR value for S available at the point At.
|
|
Value *getExactExistingExpansion(const SCEV *S, const Instruction *At,
|
|
Loop *L);
|
|
|
|
/// Try to find the ValueOffsetPair for S. The function is mainly used to
|
|
/// check whether S can be expanded cheaply. If this returns a non-None
|
|
/// value, we know we can codegen the `ValueOffsetPair` into a suitable
|
|
/// expansion identical with S so that S can be expanded cheaply.
|
|
///
|
|
/// L is a hint which tells in which loop to look for the suitable value.
|
|
/// On success return value which is equivalent to the expanded S at point
|
|
/// At. Return nullptr if value was not found.
|
|
///
|
|
/// Note that this function does not perform an exhaustive search. I.e if it
|
|
/// didn't find any value it does not mean that there is no such value.
|
|
///
|
|
Optional<ScalarEvolution::ValueOffsetPair>
|
|
getRelatedExistingExpansion(const SCEV *S, const Instruction *At, Loop *L);
|
|
|
|
private:
|
|
LLVMContext &getContext() const { return SE.getContext(); }
|
|
|
|
/// Recursive helper function for isHighCostExpansion.
|
|
bool isHighCostExpansionHelper(const SCEV *S, Loop *L,
|
|
const Instruction *At,
|
|
SmallPtrSetImpl<const SCEV *> &Processed);
|
|
|
|
/// Insert the specified binary operator, doing a small amount of work to
|
|
/// avoid inserting an obviously redundant operation.
|
|
Value *InsertBinop(Instruction::BinaryOps Opcode, Value *LHS, Value *RHS);
|
|
|
|
/// Arrange for there to be a cast of V to Ty at IP, reusing an existing
|
|
/// cast if a suitable one exists, moving an existing cast if a suitable one
|
|
/// exists but isn't in the right place, or creating a new one.
|
|
Value *ReuseOrCreateCast(Value *V, Type *Ty,
|
|
Instruction::CastOps Op,
|
|
BasicBlock::iterator IP);
|
|
|
|
/// Insert a cast of V to the specified type, which must be possible with a
|
|
/// noop cast, doing what we can to share the casts.
|
|
Value *InsertNoopCastOfTo(Value *V, Type *Ty);
|
|
|
|
/// Expand a SCEVAddExpr with a pointer type into a GEP instead of using
|
|
/// ptrtoint+arithmetic+inttoptr.
|
|
Value *expandAddToGEP(const SCEV *const *op_begin,
|
|
const SCEV *const *op_end,
|
|
PointerType *PTy, Type *Ty, Value *V);
|
|
|
|
/// Find a previous Value in ExprValueMap for expand.
|
|
ScalarEvolution::ValueOffsetPair
|
|
FindValueInExprValueMap(const SCEV *S, const Instruction *InsertPt);
|
|
|
|
Value *expand(const SCEV *S);
|
|
|
|
/// Determine the most "relevant" loop for the given SCEV.
|
|
const Loop *getRelevantLoop(const SCEV *);
|
|
|
|
Value *visitConstant(const SCEVConstant *S) {
|
|
return S->getValue();
|
|
}
|
|
|
|
Value *visitTruncateExpr(const SCEVTruncateExpr *S);
|
|
|
|
Value *visitZeroExtendExpr(const SCEVZeroExtendExpr *S);
|
|
|
|
Value *visitSignExtendExpr(const SCEVSignExtendExpr *S);
|
|
|
|
Value *visitAddExpr(const SCEVAddExpr *S);
|
|
|
|
Value *visitMulExpr(const SCEVMulExpr *S);
|
|
|
|
Value *visitUDivExpr(const SCEVUDivExpr *S);
|
|
|
|
Value *visitAddRecExpr(const SCEVAddRecExpr *S);
|
|
|
|
Value *visitSMaxExpr(const SCEVSMaxExpr *S);
|
|
|
|
Value *visitUMaxExpr(const SCEVUMaxExpr *S);
|
|
|
|
Value *visitUnknown(const SCEVUnknown *S) {
|
|
return S->getValue();
|
|
}
|
|
|
|
void rememberInstruction(Value *I);
|
|
|
|
bool isNormalAddRecExprPHI(PHINode *PN, Instruction *IncV, const Loop *L);
|
|
|
|
bool isExpandedAddRecExprPHI(PHINode *PN, Instruction *IncV, const Loop *L);
|
|
|
|
Value *expandAddRecExprLiterally(const SCEVAddRecExpr *);
|
|
PHINode *getAddRecExprPHILiterally(const SCEVAddRecExpr *Normalized,
|
|
const Loop *L,
|
|
Type *ExpandTy,
|
|
Type *IntTy,
|
|
Type *&TruncTy,
|
|
bool &InvertStep);
|
|
Value *expandIVInc(PHINode *PN, Value *StepV, const Loop *L,
|
|
Type *ExpandTy, Type *IntTy, bool useSubtract);
|
|
|
|
void hoistBeforePos(DominatorTree *DT, Instruction *InstToHoist,
|
|
Instruction *Pos, PHINode *LoopPhi);
|
|
|
|
void fixupInsertPoints(Instruction *I);
|
|
};
|
|
}
|
|
|
|
#endif
|