mirror of
https://github.com/RPCS3/llvm-mirror.git
synced 2024-12-15 07:39:31 +00:00
91722d430e
getFrameInfo() never returns nullptr so we should use a reference instead of a pointer. llvm-svn: 277017
1712 lines
61 KiB
C++
1712 lines
61 KiB
C++
//===---- ScheduleDAGInstrs.cpp - MachineInstr Rescheduling ---------------===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This implements the ScheduleDAGInstrs class, which implements re-scheduling
|
|
// of MachineInstrs.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "llvm/CodeGen/ScheduleDAGInstrs.h"
|
|
#include "llvm/ADT/IntEqClasses.h"
|
|
#include "llvm/ADT/SmallPtrSet.h"
|
|
#include "llvm/ADT/SmallSet.h"
|
|
#include "llvm/Analysis/AliasAnalysis.h"
|
|
#include "llvm/Analysis/ValueTracking.h"
|
|
#include "llvm/CodeGen/LiveIntervalAnalysis.h"
|
|
#include "llvm/CodeGen/MachineFunctionPass.h"
|
|
#include "llvm/CodeGen/MachineFrameInfo.h"
|
|
#include "llvm/CodeGen/MachineInstrBuilder.h"
|
|
#include "llvm/CodeGen/MachineMemOperand.h"
|
|
#include "llvm/CodeGen/MachineRegisterInfo.h"
|
|
#include "llvm/CodeGen/PseudoSourceValue.h"
|
|
#include "llvm/CodeGen/RegisterPressure.h"
|
|
#include "llvm/CodeGen/ScheduleDFS.h"
|
|
#include "llvm/IR/Function.h"
|
|
#include "llvm/IR/Type.h"
|
|
#include "llvm/IR/Operator.h"
|
|
#include "llvm/Support/CommandLine.h"
|
|
#include "llvm/Support/Debug.h"
|
|
#include "llvm/Support/Format.h"
|
|
#include "llvm/Support/raw_ostream.h"
|
|
#include "llvm/Target/TargetInstrInfo.h"
|
|
#include "llvm/Target/TargetMachine.h"
|
|
#include "llvm/Target/TargetRegisterInfo.h"
|
|
#include "llvm/Target/TargetSubtargetInfo.h"
|
|
|
|
using namespace llvm;
|
|
|
|
#define DEBUG_TYPE "misched"
|
|
|
|
static cl::opt<bool> EnableAASchedMI("enable-aa-sched-mi", cl::Hidden,
|
|
cl::ZeroOrMore, cl::init(false),
|
|
cl::desc("Enable use of AA during MI DAG construction"));
|
|
|
|
static cl::opt<bool> UseTBAA("use-tbaa-in-sched-mi", cl::Hidden,
|
|
cl::init(true), cl::desc("Enable use of TBAA during MI DAG construction"));
|
|
|
|
// Note: the two options below might be used in tuning compile time vs
|
|
// output quality. Setting HugeRegion so large that it will never be
|
|
// reached means best-effort, but may be slow.
|
|
|
|
// When Stores and Loads maps (or NonAliasStores and NonAliasLoads)
|
|
// together hold this many SUs, a reduction of maps will be done.
|
|
static cl::opt<unsigned> HugeRegion("dag-maps-huge-region", cl::Hidden,
|
|
cl::init(1000), cl::desc("The limit to use while constructing the DAG "
|
|
"prior to scheduling, at which point a trade-off "
|
|
"is made to avoid excessive compile time."));
|
|
|
|
static cl::opt<unsigned> ReductionSize(
|
|
"dag-maps-reduction-size", cl::Hidden,
|
|
cl::desc("A huge scheduling region will have maps reduced by this many "
|
|
"nodes at a time. Defaults to HugeRegion / 2."));
|
|
|
|
static unsigned getReductionSize() {
|
|
// Always reduce a huge region with half of the elements, except
|
|
// when user sets this number explicitly.
|
|
if (ReductionSize.getNumOccurrences() == 0)
|
|
return HugeRegion / 2;
|
|
return ReductionSize;
|
|
}
|
|
|
|
static void dumpSUList(ScheduleDAGInstrs::SUList &L) {
|
|
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
|
|
dbgs() << "{ ";
|
|
for (auto *su : L) {
|
|
dbgs() << "SU(" << su->NodeNum << ")";
|
|
if (su != L.back())
|
|
dbgs() << ", ";
|
|
}
|
|
dbgs() << "}\n";
|
|
#endif
|
|
}
|
|
|
|
ScheduleDAGInstrs::ScheduleDAGInstrs(MachineFunction &mf,
|
|
const MachineLoopInfo *mli,
|
|
bool RemoveKillFlags)
|
|
: ScheduleDAG(mf), MLI(mli), MFI(mf.getFrameInfo()),
|
|
RemoveKillFlags(RemoveKillFlags), CanHandleTerminators(false),
|
|
TrackLaneMasks(false), AAForDep(nullptr), BarrierChain(nullptr),
|
|
UnknownValue(UndefValue::get(
|
|
Type::getVoidTy(mf.getFunction()->getContext()))),
|
|
FirstDbgValue(nullptr) {
|
|
DbgValues.clear();
|
|
|
|
const TargetSubtargetInfo &ST = mf.getSubtarget();
|
|
SchedModel.init(ST.getSchedModel(), &ST, TII);
|
|
}
|
|
|
|
/// getUnderlyingObjectFromInt - This is the function that does the work of
|
|
/// looking through basic ptrtoint+arithmetic+inttoptr sequences.
|
|
static const Value *getUnderlyingObjectFromInt(const Value *V) {
|
|
do {
|
|
if (const Operator *U = dyn_cast<Operator>(V)) {
|
|
// If we find a ptrtoint, we can transfer control back to the
|
|
// regular getUnderlyingObjectFromInt.
|
|
if (U->getOpcode() == Instruction::PtrToInt)
|
|
return U->getOperand(0);
|
|
// If we find an add of a constant, a multiplied value, or a phi, it's
|
|
// likely that the other operand will lead us to the base
|
|
// object. We don't have to worry about the case where the
|
|
// object address is somehow being computed by the multiply,
|
|
// because our callers only care when the result is an
|
|
// identifiable object.
|
|
if (U->getOpcode() != Instruction::Add ||
|
|
(!isa<ConstantInt>(U->getOperand(1)) &&
|
|
Operator::getOpcode(U->getOperand(1)) != Instruction::Mul &&
|
|
!isa<PHINode>(U->getOperand(1))))
|
|
return V;
|
|
V = U->getOperand(0);
|
|
} else {
|
|
return V;
|
|
}
|
|
assert(V->getType()->isIntegerTy() && "Unexpected operand type!");
|
|
} while (1);
|
|
}
|
|
|
|
/// getUnderlyingObjects - This is a wrapper around GetUnderlyingObjects
|
|
/// and adds support for basic ptrtoint+arithmetic+inttoptr sequences.
|
|
static void getUnderlyingObjects(const Value *V,
|
|
SmallVectorImpl<Value *> &Objects,
|
|
const DataLayout &DL) {
|
|
SmallPtrSet<const Value *, 16> Visited;
|
|
SmallVector<const Value *, 4> Working(1, V);
|
|
do {
|
|
V = Working.pop_back_val();
|
|
|
|
SmallVector<Value *, 4> Objs;
|
|
GetUnderlyingObjects(const_cast<Value *>(V), Objs, DL);
|
|
|
|
for (SmallVectorImpl<Value *>::iterator I = Objs.begin(), IE = Objs.end();
|
|
I != IE; ++I) {
|
|
V = *I;
|
|
if (!Visited.insert(V).second)
|
|
continue;
|
|
if (Operator::getOpcode(V) == Instruction::IntToPtr) {
|
|
const Value *O =
|
|
getUnderlyingObjectFromInt(cast<User>(V)->getOperand(0));
|
|
if (O->getType()->isPointerTy()) {
|
|
Working.push_back(O);
|
|
continue;
|
|
}
|
|
}
|
|
Objects.push_back(const_cast<Value *>(V));
|
|
}
|
|
} while (!Working.empty());
|
|
}
|
|
|
|
/// getUnderlyingObjectsForInstr - If this machine instr has memory reference
|
|
/// information and it can be tracked to a normal reference to a known
|
|
/// object, return the Value for that object.
|
|
static void getUnderlyingObjectsForInstr(const MachineInstr *MI,
|
|
const MachineFrameInfo &MFI,
|
|
UnderlyingObjectsVector &Objects,
|
|
const DataLayout &DL) {
|
|
auto allMMOsOkay = [&]() {
|
|
for (const MachineMemOperand *MMO : MI->memoperands()) {
|
|
if (MMO->isVolatile())
|
|
return false;
|
|
|
|
if (const PseudoSourceValue *PSV = MMO->getPseudoValue()) {
|
|
// Function that contain tail calls don't have unique PseudoSourceValue
|
|
// objects. Two PseudoSourceValues might refer to the same or
|
|
// overlapping locations. The client code calling this function assumes
|
|
// this is not the case. So return a conservative answer of no known
|
|
// object.
|
|
if (MFI.hasTailCall())
|
|
return false;
|
|
|
|
// For now, ignore PseudoSourceValues which may alias LLVM IR values
|
|
// because the code that uses this function has no way to cope with
|
|
// such aliases.
|
|
if (PSV->isAliased(&MFI))
|
|
return false;
|
|
|
|
bool MayAlias = PSV->mayAlias(&MFI);
|
|
Objects.push_back(UnderlyingObjectsVector::value_type(PSV, MayAlias));
|
|
} else if (const Value *V = MMO->getValue()) {
|
|
SmallVector<Value *, 4> Objs;
|
|
getUnderlyingObjects(V, Objs, DL);
|
|
|
|
for (Value *V : Objs) {
|
|
if (!isIdentifiedObject(V))
|
|
return false;
|
|
|
|
Objects.push_back(UnderlyingObjectsVector::value_type(V, true));
|
|
}
|
|
} else
|
|
return false;
|
|
}
|
|
return true;
|
|
};
|
|
|
|
if (!allMMOsOkay())
|
|
Objects.clear();
|
|
}
|
|
|
|
void ScheduleDAGInstrs::startBlock(MachineBasicBlock *bb) {
|
|
BB = bb;
|
|
}
|
|
|
|
void ScheduleDAGInstrs::finishBlock() {
|
|
// Subclasses should no longer refer to the old block.
|
|
BB = nullptr;
|
|
}
|
|
|
|
/// Initialize the DAG and common scheduler state for the current scheduling
|
|
/// region. This does not actually create the DAG, only clears it. The
|
|
/// scheduling driver may call BuildSchedGraph multiple times per scheduling
|
|
/// region.
|
|
void ScheduleDAGInstrs::enterRegion(MachineBasicBlock *bb,
|
|
MachineBasicBlock::iterator begin,
|
|
MachineBasicBlock::iterator end,
|
|
unsigned regioninstrs) {
|
|
assert(bb == BB && "startBlock should set BB");
|
|
RegionBegin = begin;
|
|
RegionEnd = end;
|
|
NumRegionInstrs = regioninstrs;
|
|
}
|
|
|
|
/// Close the current scheduling region. Don't clear any state in case the
|
|
/// driver wants to refer to the previous scheduling region.
|
|
void ScheduleDAGInstrs::exitRegion() {
|
|
// Nothing to do.
|
|
}
|
|
|
|
/// addSchedBarrierDeps - Add dependencies from instructions in the current
|
|
/// list of instructions being scheduled to scheduling barrier by adding
|
|
/// the exit SU to the register defs and use list. This is because we want to
|
|
/// make sure instructions which define registers that are either used by
|
|
/// the terminator or are live-out are properly scheduled. This is
|
|
/// especially important when the definition latency of the return value(s)
|
|
/// are too high to be hidden by the branch or when the liveout registers
|
|
/// used by instructions in the fallthrough block.
|
|
void ScheduleDAGInstrs::addSchedBarrierDeps() {
|
|
MachineInstr *ExitMI = RegionEnd != BB->end() ? &*RegionEnd : nullptr;
|
|
ExitSU.setInstr(ExitMI);
|
|
bool AllDepKnown = ExitMI &&
|
|
(ExitMI->isCall() || ExitMI->isBarrier());
|
|
if (ExitMI && AllDepKnown) {
|
|
// If it's a call or a barrier, add dependencies on the defs and uses of
|
|
// instruction.
|
|
for (unsigned i = 0, e = ExitMI->getNumOperands(); i != e; ++i) {
|
|
const MachineOperand &MO = ExitMI->getOperand(i);
|
|
if (!MO.isReg() || MO.isDef()) continue;
|
|
unsigned Reg = MO.getReg();
|
|
if (Reg == 0) continue;
|
|
|
|
if (TRI->isPhysicalRegister(Reg))
|
|
Uses.insert(PhysRegSUOper(&ExitSU, -1, Reg));
|
|
else if (MO.readsReg()) // ignore undef operands
|
|
addVRegUseDeps(&ExitSU, i);
|
|
}
|
|
} else {
|
|
// For others, e.g. fallthrough, conditional branch, assume the exit
|
|
// uses all the registers that are livein to the successor blocks.
|
|
assert(Uses.empty() && "Uses in set before adding deps?");
|
|
for (MachineBasicBlock::succ_iterator SI = BB->succ_begin(),
|
|
SE = BB->succ_end(); SI != SE; ++SI)
|
|
for (const auto &LI : (*SI)->liveins()) {
|
|
if (!Uses.contains(LI.PhysReg))
|
|
Uses.insert(PhysRegSUOper(&ExitSU, -1, LI.PhysReg));
|
|
}
|
|
}
|
|
}
|
|
|
|
/// MO is an operand of SU's instruction that defines a physical register. Add
|
|
/// data dependencies from SU to any uses of the physical register.
|
|
void ScheduleDAGInstrs::addPhysRegDataDeps(SUnit *SU, unsigned OperIdx) {
|
|
const MachineOperand &MO = SU->getInstr()->getOperand(OperIdx);
|
|
assert(MO.isDef() && "expect physreg def");
|
|
|
|
// Ask the target if address-backscheduling is desirable, and if so how much.
|
|
const TargetSubtargetInfo &ST = MF.getSubtarget();
|
|
|
|
for (MCRegAliasIterator Alias(MO.getReg(), TRI, true);
|
|
Alias.isValid(); ++Alias) {
|
|
if (!Uses.contains(*Alias))
|
|
continue;
|
|
for (Reg2SUnitsMap::iterator I = Uses.find(*Alias); I != Uses.end(); ++I) {
|
|
SUnit *UseSU = I->SU;
|
|
if (UseSU == SU)
|
|
continue;
|
|
|
|
// Adjust the dependence latency using operand def/use information,
|
|
// then allow the target to perform its own adjustments.
|
|
int UseOp = I->OpIdx;
|
|
MachineInstr *RegUse = nullptr;
|
|
SDep Dep;
|
|
if (UseOp < 0)
|
|
Dep = SDep(SU, SDep::Artificial);
|
|
else {
|
|
// Set the hasPhysRegDefs only for physreg defs that have a use within
|
|
// the scheduling region.
|
|
SU->hasPhysRegDefs = true;
|
|
Dep = SDep(SU, SDep::Data, *Alias);
|
|
RegUse = UseSU->getInstr();
|
|
}
|
|
Dep.setLatency(
|
|
SchedModel.computeOperandLatency(SU->getInstr(), OperIdx, RegUse,
|
|
UseOp));
|
|
|
|
ST.adjustSchedDependency(SU, UseSU, Dep);
|
|
UseSU->addPred(Dep);
|
|
}
|
|
}
|
|
}
|
|
|
|
/// addPhysRegDeps - Add register dependencies (data, anti, and output) from
|
|
/// this SUnit to following instructions in the same scheduling region that
|
|
/// depend the physical register referenced at OperIdx.
|
|
void ScheduleDAGInstrs::addPhysRegDeps(SUnit *SU, unsigned OperIdx) {
|
|
MachineInstr *MI = SU->getInstr();
|
|
MachineOperand &MO = MI->getOperand(OperIdx);
|
|
|
|
// Optionally add output and anti dependencies. For anti
|
|
// dependencies we use a latency of 0 because for a multi-issue
|
|
// target we want to allow the defining instruction to issue
|
|
// in the same cycle as the using instruction.
|
|
// TODO: Using a latency of 1 here for output dependencies assumes
|
|
// there's no cost for reusing registers.
|
|
SDep::Kind Kind = MO.isUse() ? SDep::Anti : SDep::Output;
|
|
for (MCRegAliasIterator Alias(MO.getReg(), TRI, true);
|
|
Alias.isValid(); ++Alias) {
|
|
if (!Defs.contains(*Alias))
|
|
continue;
|
|
for (Reg2SUnitsMap::iterator I = Defs.find(*Alias); I != Defs.end(); ++I) {
|
|
SUnit *DefSU = I->SU;
|
|
if (DefSU == &ExitSU)
|
|
continue;
|
|
if (DefSU != SU &&
|
|
(Kind != SDep::Output || !MO.isDead() ||
|
|
!DefSU->getInstr()->registerDefIsDead(*Alias))) {
|
|
if (Kind == SDep::Anti)
|
|
DefSU->addPred(SDep(SU, Kind, /*Reg=*/*Alias));
|
|
else {
|
|
SDep Dep(SU, Kind, /*Reg=*/*Alias);
|
|
Dep.setLatency(
|
|
SchedModel.computeOutputLatency(MI, OperIdx, DefSU->getInstr()));
|
|
DefSU->addPred(Dep);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
if (!MO.isDef()) {
|
|
SU->hasPhysRegUses = true;
|
|
// Either insert a new Reg2SUnits entry with an empty SUnits list, or
|
|
// retrieve the existing SUnits list for this register's uses.
|
|
// Push this SUnit on the use list.
|
|
Uses.insert(PhysRegSUOper(SU, OperIdx, MO.getReg()));
|
|
if (RemoveKillFlags)
|
|
MO.setIsKill(false);
|
|
}
|
|
else {
|
|
addPhysRegDataDeps(SU, OperIdx);
|
|
unsigned Reg = MO.getReg();
|
|
|
|
// clear this register's use list
|
|
if (Uses.contains(Reg))
|
|
Uses.eraseAll(Reg);
|
|
|
|
if (!MO.isDead()) {
|
|
Defs.eraseAll(Reg);
|
|
} else if (SU->isCall) {
|
|
// Calls will not be reordered because of chain dependencies (see
|
|
// below). Since call operands are dead, calls may continue to be added
|
|
// to the DefList making dependence checking quadratic in the size of
|
|
// the block. Instead, we leave only one call at the back of the
|
|
// DefList.
|
|
Reg2SUnitsMap::RangePair P = Defs.equal_range(Reg);
|
|
Reg2SUnitsMap::iterator B = P.first;
|
|
Reg2SUnitsMap::iterator I = P.second;
|
|
for (bool isBegin = I == B; !isBegin; /* empty */) {
|
|
isBegin = (--I) == B;
|
|
if (!I->SU->isCall)
|
|
break;
|
|
I = Defs.erase(I);
|
|
}
|
|
}
|
|
|
|
// Defs are pushed in the order they are visited and never reordered.
|
|
Defs.insert(PhysRegSUOper(SU, OperIdx, Reg));
|
|
}
|
|
}
|
|
|
|
LaneBitmask ScheduleDAGInstrs::getLaneMaskForMO(const MachineOperand &MO) const
|
|
{
|
|
unsigned Reg = MO.getReg();
|
|
// No point in tracking lanemasks if we don't have interesting subregisters.
|
|
const TargetRegisterClass &RC = *MRI.getRegClass(Reg);
|
|
if (!RC.HasDisjunctSubRegs)
|
|
return ~0u;
|
|
|
|
unsigned SubReg = MO.getSubReg();
|
|
if (SubReg == 0)
|
|
return RC.getLaneMask();
|
|
return TRI->getSubRegIndexLaneMask(SubReg);
|
|
}
|
|
|
|
/// addVRegDefDeps - Add register output and data dependencies from this SUnit
|
|
/// to instructions that occur later in the same scheduling region if they read
|
|
/// from or write to the virtual register defined at OperIdx.
|
|
///
|
|
/// TODO: Hoist loop induction variable increments. This has to be
|
|
/// reevaluated. Generally, IV scheduling should be done before coalescing.
|
|
void ScheduleDAGInstrs::addVRegDefDeps(SUnit *SU, unsigned OperIdx) {
|
|
MachineInstr *MI = SU->getInstr();
|
|
MachineOperand &MO = MI->getOperand(OperIdx);
|
|
unsigned Reg = MO.getReg();
|
|
|
|
LaneBitmask DefLaneMask;
|
|
LaneBitmask KillLaneMask;
|
|
if (TrackLaneMasks) {
|
|
bool IsKill = MO.getSubReg() == 0 || MO.isUndef();
|
|
DefLaneMask = getLaneMaskForMO(MO);
|
|
// If we have a <read-undef> flag, none of the lane values comes from an
|
|
// earlier instruction.
|
|
KillLaneMask = IsKill ? ~0u : DefLaneMask;
|
|
|
|
// Clear undef flag, we'll re-add it later once we know which subregister
|
|
// Def is first.
|
|
MO.setIsUndef(false);
|
|
} else {
|
|
DefLaneMask = ~0u;
|
|
KillLaneMask = ~0u;
|
|
}
|
|
|
|
if (MO.isDead()) {
|
|
assert(CurrentVRegUses.find(Reg) == CurrentVRegUses.end() &&
|
|
"Dead defs should have no uses");
|
|
} else {
|
|
// Add data dependence to all uses we found so far.
|
|
const TargetSubtargetInfo &ST = MF.getSubtarget();
|
|
for (VReg2SUnitOperIdxMultiMap::iterator I = CurrentVRegUses.find(Reg),
|
|
E = CurrentVRegUses.end(); I != E; /*empty*/) {
|
|
LaneBitmask LaneMask = I->LaneMask;
|
|
// Ignore uses of other lanes.
|
|
if ((LaneMask & KillLaneMask) == 0) {
|
|
++I;
|
|
continue;
|
|
}
|
|
|
|
if ((LaneMask & DefLaneMask) != 0) {
|
|
SUnit *UseSU = I->SU;
|
|
MachineInstr *Use = UseSU->getInstr();
|
|
SDep Dep(SU, SDep::Data, Reg);
|
|
Dep.setLatency(SchedModel.computeOperandLatency(MI, OperIdx, Use,
|
|
I->OperandIndex));
|
|
ST.adjustSchedDependency(SU, UseSU, Dep);
|
|
UseSU->addPred(Dep);
|
|
}
|
|
|
|
LaneMask &= ~KillLaneMask;
|
|
// If we found a Def for all lanes of this use, remove it from the list.
|
|
if (LaneMask != 0) {
|
|
I->LaneMask = LaneMask;
|
|
++I;
|
|
} else
|
|
I = CurrentVRegUses.erase(I);
|
|
}
|
|
}
|
|
|
|
// Shortcut: Singly defined vregs do not have output/anti dependencies.
|
|
if (MRI.hasOneDef(Reg))
|
|
return;
|
|
|
|
// Add output dependence to the next nearest defs of this vreg.
|
|
//
|
|
// Unless this definition is dead, the output dependence should be
|
|
// transitively redundant with antidependencies from this definition's
|
|
// uses. We're conservative for now until we have a way to guarantee the uses
|
|
// are not eliminated sometime during scheduling. The output dependence edge
|
|
// is also useful if output latency exceeds def-use latency.
|
|
LaneBitmask LaneMask = DefLaneMask;
|
|
for (VReg2SUnit &V2SU : make_range(CurrentVRegDefs.find(Reg),
|
|
CurrentVRegDefs.end())) {
|
|
// Ignore defs for other lanes.
|
|
if ((V2SU.LaneMask & LaneMask) == 0)
|
|
continue;
|
|
// Add an output dependence.
|
|
SUnit *DefSU = V2SU.SU;
|
|
// Ignore additional defs of the same lanes in one instruction. This can
|
|
// happen because lanemasks are shared for targets with too many
|
|
// subregisters. We also use some representration tricks/hacks where we
|
|
// add super-register defs/uses, to imply that although we only access parts
|
|
// of the reg we care about the full one.
|
|
if (DefSU == SU)
|
|
continue;
|
|
SDep Dep(SU, SDep::Output, Reg);
|
|
Dep.setLatency(
|
|
SchedModel.computeOutputLatency(MI, OperIdx, DefSU->getInstr()));
|
|
DefSU->addPred(Dep);
|
|
|
|
// Update current definition. This can get tricky if the def was about a
|
|
// bigger lanemask before. We then have to shrink it and create a new
|
|
// VReg2SUnit for the non-overlapping part.
|
|
LaneBitmask OverlapMask = V2SU.LaneMask & LaneMask;
|
|
LaneBitmask NonOverlapMask = V2SU.LaneMask & ~LaneMask;
|
|
V2SU.SU = SU;
|
|
V2SU.LaneMask = OverlapMask;
|
|
if (NonOverlapMask != 0)
|
|
CurrentVRegDefs.insert(VReg2SUnit(Reg, NonOverlapMask, DefSU));
|
|
}
|
|
// If there was no CurrentVRegDefs entry for some lanes yet, create one.
|
|
if (LaneMask != 0)
|
|
CurrentVRegDefs.insert(VReg2SUnit(Reg, LaneMask, SU));
|
|
}
|
|
|
|
/// addVRegUseDeps - Add a register data dependency if the instruction that
|
|
/// defines the virtual register used at OperIdx is mapped to an SUnit. Add a
|
|
/// register antidependency from this SUnit to instructions that occur later in
|
|
/// the same scheduling region if they write the virtual register.
|
|
///
|
|
/// TODO: Handle ExitSU "uses" properly.
|
|
void ScheduleDAGInstrs::addVRegUseDeps(SUnit *SU, unsigned OperIdx) {
|
|
const MachineInstr *MI = SU->getInstr();
|
|
const MachineOperand &MO = MI->getOperand(OperIdx);
|
|
unsigned Reg = MO.getReg();
|
|
|
|
// Remember the use. Data dependencies will be added when we find the def.
|
|
LaneBitmask LaneMask = TrackLaneMasks ? getLaneMaskForMO(MO) : ~0u;
|
|
CurrentVRegUses.insert(VReg2SUnitOperIdx(Reg, LaneMask, OperIdx, SU));
|
|
|
|
// Add antidependences to the following defs of the vreg.
|
|
for (VReg2SUnit &V2SU : make_range(CurrentVRegDefs.find(Reg),
|
|
CurrentVRegDefs.end())) {
|
|
// Ignore defs for unrelated lanes.
|
|
LaneBitmask PrevDefLaneMask = V2SU.LaneMask;
|
|
if ((PrevDefLaneMask & LaneMask) == 0)
|
|
continue;
|
|
if (V2SU.SU == SU)
|
|
continue;
|
|
|
|
V2SU.SU->addPred(SDep(SU, SDep::Anti, Reg));
|
|
}
|
|
}
|
|
|
|
/// Return true if MI is an instruction we are unable to reason about
|
|
/// (like a call or something with unmodeled side effects).
|
|
static inline bool isGlobalMemoryObject(AliasAnalysis *AA, MachineInstr *MI) {
|
|
return MI->isCall() || MI->hasUnmodeledSideEffects() ||
|
|
(MI->hasOrderedMemoryRef() && !MI->isInvariantLoad(AA));
|
|
}
|
|
|
|
/// This returns true if the two MIs need a chain edge between them.
|
|
/// This is called on normal stores and loads.
|
|
static bool MIsNeedChainEdge(AliasAnalysis *AA, const MachineFrameInfo *MFI,
|
|
const DataLayout &DL, MachineInstr *MIa,
|
|
MachineInstr *MIb) {
|
|
const MachineFunction *MF = MIa->getParent()->getParent();
|
|
const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo();
|
|
|
|
assert ((MIa->mayStore() || MIb->mayStore()) &&
|
|
"Dependency checked between two loads");
|
|
|
|
// Let the target decide if memory accesses cannot possibly overlap.
|
|
if (TII->areMemAccessesTriviallyDisjoint(*MIa, *MIb, AA))
|
|
return false;
|
|
|
|
// To this point analysis is generic. From here on we do need AA.
|
|
if (!AA)
|
|
return true;
|
|
|
|
// FIXME: Need to handle multiple memory operands to support all targets.
|
|
if (!MIa->hasOneMemOperand() || !MIb->hasOneMemOperand())
|
|
return true;
|
|
|
|
MachineMemOperand *MMOa = *MIa->memoperands_begin();
|
|
MachineMemOperand *MMOb = *MIb->memoperands_begin();
|
|
|
|
if (!MMOa->getValue() || !MMOb->getValue())
|
|
return true;
|
|
|
|
// The following interface to AA is fashioned after DAGCombiner::isAlias
|
|
// and operates with MachineMemOperand offset with some important
|
|
// assumptions:
|
|
// - LLVM fundamentally assumes flat address spaces.
|
|
// - MachineOperand offset can *only* result from legalization and
|
|
// cannot affect queries other than the trivial case of overlap
|
|
// checking.
|
|
// - These offsets never wrap and never step outside
|
|
// of allocated objects.
|
|
// - There should never be any negative offsets here.
|
|
//
|
|
// FIXME: Modify API to hide this math from "user"
|
|
// FIXME: Even before we go to AA we can reason locally about some
|
|
// memory objects. It can save compile time, and possibly catch some
|
|
// corner cases not currently covered.
|
|
|
|
assert ((MMOa->getOffset() >= 0) && "Negative MachineMemOperand offset");
|
|
assert ((MMOb->getOffset() >= 0) && "Negative MachineMemOperand offset");
|
|
|
|
int64_t MinOffset = std::min(MMOa->getOffset(), MMOb->getOffset());
|
|
int64_t Overlapa = MMOa->getSize() + MMOa->getOffset() - MinOffset;
|
|
int64_t Overlapb = MMOb->getSize() + MMOb->getOffset() - MinOffset;
|
|
|
|
AliasResult AAResult =
|
|
AA->alias(MemoryLocation(MMOa->getValue(), Overlapa,
|
|
UseTBAA ? MMOa->getAAInfo() : AAMDNodes()),
|
|
MemoryLocation(MMOb->getValue(), Overlapb,
|
|
UseTBAA ? MMOb->getAAInfo() : AAMDNodes()));
|
|
|
|
return (AAResult != NoAlias);
|
|
}
|
|
|
|
/// Check whether two objects need a chain edge and add it if needed.
|
|
void ScheduleDAGInstrs::addChainDependency (SUnit *SUa, SUnit *SUb,
|
|
unsigned Latency) {
|
|
if (MIsNeedChainEdge(AAForDep, &MFI, MF.getDataLayout(), SUa->getInstr(),
|
|
SUb->getInstr())) {
|
|
SDep Dep(SUa, SDep::MayAliasMem);
|
|
Dep.setLatency(Latency);
|
|
SUb->addPred(Dep);
|
|
}
|
|
}
|
|
|
|
/// Create an SUnit for each real instruction, numbered in top-down topological
|
|
/// order. The instruction order A < B, implies that no edge exists from B to A.
|
|
///
|
|
/// Map each real instruction to its SUnit.
|
|
///
|
|
/// After initSUnits, the SUnits vector cannot be resized and the scheduler may
|
|
/// hang onto SUnit pointers. We may relax this in the future by using SUnit IDs
|
|
/// instead of pointers.
|
|
///
|
|
/// MachineScheduler relies on initSUnits numbering the nodes by their order in
|
|
/// the original instruction list.
|
|
void ScheduleDAGInstrs::initSUnits() {
|
|
// We'll be allocating one SUnit for each real instruction in the region,
|
|
// which is contained within a basic block.
|
|
SUnits.reserve(NumRegionInstrs);
|
|
|
|
for (MachineInstr &MI : llvm::make_range(RegionBegin, RegionEnd)) {
|
|
if (MI.isDebugValue())
|
|
continue;
|
|
|
|
SUnit *SU = newSUnit(&MI);
|
|
MISUnitMap[&MI] = SU;
|
|
|
|
SU->isCall = MI.isCall();
|
|
SU->isCommutable = MI.isCommutable();
|
|
|
|
// Assign the Latency field of SU using target-provided information.
|
|
SU->Latency = SchedModel.computeInstrLatency(SU->getInstr());
|
|
|
|
// If this SUnit uses a reserved or unbuffered resource, mark it as such.
|
|
//
|
|
// Reserved resources block an instruction from issuing and stall the
|
|
// entire pipeline. These are identified by BufferSize=0.
|
|
//
|
|
// Unbuffered resources prevent execution of subsequent instructions that
|
|
// require the same resources. This is used for in-order execution pipelines
|
|
// within an out-of-order core. These are identified by BufferSize=1.
|
|
if (SchedModel.hasInstrSchedModel()) {
|
|
const MCSchedClassDesc *SC = getSchedClass(SU);
|
|
for (TargetSchedModel::ProcResIter
|
|
PI = SchedModel.getWriteProcResBegin(SC),
|
|
PE = SchedModel.getWriteProcResEnd(SC); PI != PE; ++PI) {
|
|
switch (SchedModel.getProcResource(PI->ProcResourceIdx)->BufferSize) {
|
|
case 0:
|
|
SU->hasReservedResource = true;
|
|
break;
|
|
case 1:
|
|
SU->isUnbuffered = true;
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
void ScheduleDAGInstrs::collectVRegUses(SUnit *SU) {
|
|
const MachineInstr *MI = SU->getInstr();
|
|
for (const MachineOperand &MO : MI->operands()) {
|
|
if (!MO.isReg())
|
|
continue;
|
|
if (!MO.readsReg())
|
|
continue;
|
|
if (TrackLaneMasks && !MO.isUse())
|
|
continue;
|
|
|
|
unsigned Reg = MO.getReg();
|
|
if (!TargetRegisterInfo::isVirtualRegister(Reg))
|
|
continue;
|
|
|
|
// Ignore re-defs.
|
|
if (TrackLaneMasks) {
|
|
bool FoundDef = false;
|
|
for (const MachineOperand &MO2 : MI->operands()) {
|
|
if (MO2.isReg() && MO2.isDef() && MO2.getReg() == Reg && !MO2.isDead()) {
|
|
FoundDef = true;
|
|
break;
|
|
}
|
|
}
|
|
if (FoundDef)
|
|
continue;
|
|
}
|
|
|
|
// Record this local VReg use.
|
|
VReg2SUnitMultiMap::iterator UI = VRegUses.find(Reg);
|
|
for (; UI != VRegUses.end(); ++UI) {
|
|
if (UI->SU == SU)
|
|
break;
|
|
}
|
|
if (UI == VRegUses.end())
|
|
VRegUses.insert(VReg2SUnit(Reg, 0, SU));
|
|
}
|
|
}
|
|
|
|
class ScheduleDAGInstrs::Value2SUsMap : public MapVector<ValueType, SUList> {
|
|
|
|
/// Current total number of SUs in map.
|
|
unsigned NumNodes;
|
|
|
|
/// 1 for loads, 0 for stores. (see comment in SUList)
|
|
unsigned TrueMemOrderLatency;
|
|
public:
|
|
|
|
Value2SUsMap(unsigned lat = 0) : NumNodes(0), TrueMemOrderLatency(lat) {}
|
|
|
|
/// To keep NumNodes up to date, insert() is used instead of
|
|
/// this operator w/ push_back().
|
|
ValueType &operator[](const SUList &Key) {
|
|
llvm_unreachable("Don't use. Use insert() instead."); };
|
|
|
|
/// Add SU to the SUList of V. If Map grows huge, reduce its size
|
|
/// by calling reduce().
|
|
void inline insert(SUnit *SU, ValueType V) {
|
|
MapVector::operator[](V).push_back(SU);
|
|
NumNodes++;
|
|
}
|
|
|
|
/// Clears the list of SUs mapped to V.
|
|
void inline clearList(ValueType V) {
|
|
iterator Itr = find(V);
|
|
if (Itr != end()) {
|
|
assert (NumNodes >= Itr->second.size());
|
|
NumNodes -= Itr->second.size();
|
|
|
|
Itr->second.clear();
|
|
}
|
|
}
|
|
|
|
/// Clears map from all contents.
|
|
void clear() {
|
|
MapVector<ValueType, SUList>::clear();
|
|
NumNodes = 0;
|
|
}
|
|
|
|
unsigned inline size() const { return NumNodes; }
|
|
|
|
/// Count the number of SUs in this map after a reduction.
|
|
void reComputeSize(void) {
|
|
NumNodes = 0;
|
|
for (auto &I : *this)
|
|
NumNodes += I.second.size();
|
|
}
|
|
|
|
unsigned inline getTrueMemOrderLatency() const {
|
|
return TrueMemOrderLatency;
|
|
}
|
|
|
|
void dump();
|
|
};
|
|
|
|
void ScheduleDAGInstrs::addChainDependencies(SUnit *SU,
|
|
Value2SUsMap &Val2SUsMap) {
|
|
for (auto &I : Val2SUsMap)
|
|
addChainDependencies(SU, I.second,
|
|
Val2SUsMap.getTrueMemOrderLatency());
|
|
}
|
|
|
|
void ScheduleDAGInstrs::addChainDependencies(SUnit *SU,
|
|
Value2SUsMap &Val2SUsMap,
|
|
ValueType V) {
|
|
Value2SUsMap::iterator Itr = Val2SUsMap.find(V);
|
|
if (Itr != Val2SUsMap.end())
|
|
addChainDependencies(SU, Itr->second,
|
|
Val2SUsMap.getTrueMemOrderLatency());
|
|
}
|
|
|
|
void ScheduleDAGInstrs::addBarrierChain(Value2SUsMap &map) {
|
|
assert (BarrierChain != nullptr);
|
|
|
|
for (auto &I : map) {
|
|
SUList &sus = I.second;
|
|
for (auto *SU : sus)
|
|
SU->addPredBarrier(BarrierChain);
|
|
}
|
|
map.clear();
|
|
}
|
|
|
|
void ScheduleDAGInstrs::insertBarrierChain(Value2SUsMap &map) {
|
|
assert (BarrierChain != nullptr);
|
|
|
|
// Go through all lists of SUs.
|
|
for (Value2SUsMap::iterator I = map.begin(), EE = map.end(); I != EE;) {
|
|
Value2SUsMap::iterator CurrItr = I++;
|
|
SUList &sus = CurrItr->second;
|
|
SUList::iterator SUItr = sus.begin(), SUEE = sus.end();
|
|
for (; SUItr != SUEE; ++SUItr) {
|
|
// Stop on BarrierChain or any instruction above it.
|
|
if ((*SUItr)->NodeNum <= BarrierChain->NodeNum)
|
|
break;
|
|
|
|
(*SUItr)->addPredBarrier(BarrierChain);
|
|
}
|
|
|
|
// Remove also the BarrierChain from list if present.
|
|
if (SUItr != SUEE && *SUItr == BarrierChain)
|
|
SUItr++;
|
|
|
|
// Remove all SUs that are now successors of BarrierChain.
|
|
if (SUItr != sus.begin())
|
|
sus.erase(sus.begin(), SUItr);
|
|
}
|
|
|
|
// Remove all entries with empty su lists.
|
|
map.remove_if([&](std::pair<ValueType, SUList> &mapEntry) {
|
|
return (mapEntry.second.empty()); });
|
|
|
|
// Recompute the size of the map (NumNodes).
|
|
map.reComputeSize();
|
|
}
|
|
|
|
/// If RegPressure is non-null, compute register pressure as a side effect. The
|
|
/// DAG builder is an efficient place to do it because it already visits
|
|
/// operands.
|
|
void ScheduleDAGInstrs::buildSchedGraph(AliasAnalysis *AA,
|
|
RegPressureTracker *RPTracker,
|
|
PressureDiffs *PDiffs,
|
|
LiveIntervals *LIS,
|
|
bool TrackLaneMasks) {
|
|
const TargetSubtargetInfo &ST = MF.getSubtarget();
|
|
bool UseAA = EnableAASchedMI.getNumOccurrences() > 0 ? EnableAASchedMI
|
|
: ST.useAA();
|
|
AAForDep = UseAA ? AA : nullptr;
|
|
|
|
BarrierChain = nullptr;
|
|
|
|
this->TrackLaneMasks = TrackLaneMasks;
|
|
MISUnitMap.clear();
|
|
ScheduleDAG::clearDAG();
|
|
|
|
// Create an SUnit for each real instruction.
|
|
initSUnits();
|
|
|
|
if (PDiffs)
|
|
PDiffs->init(SUnits.size());
|
|
|
|
// We build scheduling units by walking a block's instruction list
|
|
// from bottom to top.
|
|
|
|
// Each MIs' memory operand(s) is analyzed to a list of underlying
|
|
// objects. The SU is then inserted in the SUList(s) mapped from the
|
|
// Value(s). Each Value thus gets mapped to lists of SUs depending
|
|
// on it, stores and loads kept separately. Two SUs are trivially
|
|
// non-aliasing if they both depend on only identified Values and do
|
|
// not share any common Value.
|
|
Value2SUsMap Stores, Loads(1 /*TrueMemOrderLatency*/);
|
|
|
|
// Certain memory accesses are known to not alias any SU in Stores
|
|
// or Loads, and have therefore their own 'NonAlias'
|
|
// domain. E.g. spill / reload instructions never alias LLVM I/R
|
|
// Values. It would be nice to assume that this type of memory
|
|
// accesses always have a proper memory operand modelling, and are
|
|
// therefore never unanalyzable, but this is conservatively not
|
|
// done.
|
|
Value2SUsMap NonAliasStores, NonAliasLoads(1 /*TrueMemOrderLatency*/);
|
|
|
|
// Remove any stale debug info; sometimes BuildSchedGraph is called again
|
|
// without emitting the info from the previous call.
|
|
DbgValues.clear();
|
|
FirstDbgValue = nullptr;
|
|
|
|
assert(Defs.empty() && Uses.empty() &&
|
|
"Only BuildGraph should update Defs/Uses");
|
|
Defs.setUniverse(TRI->getNumRegs());
|
|
Uses.setUniverse(TRI->getNumRegs());
|
|
|
|
assert(CurrentVRegDefs.empty() && "nobody else should use CurrentVRegDefs");
|
|
assert(CurrentVRegUses.empty() && "nobody else should use CurrentVRegUses");
|
|
unsigned NumVirtRegs = MRI.getNumVirtRegs();
|
|
CurrentVRegDefs.setUniverse(NumVirtRegs);
|
|
CurrentVRegUses.setUniverse(NumVirtRegs);
|
|
|
|
VRegUses.clear();
|
|
VRegUses.setUniverse(NumVirtRegs);
|
|
|
|
// Model data dependencies between instructions being scheduled and the
|
|
// ExitSU.
|
|
addSchedBarrierDeps();
|
|
|
|
// Walk the list of instructions, from bottom moving up.
|
|
MachineInstr *DbgMI = nullptr;
|
|
for (MachineBasicBlock::iterator MII = RegionEnd, MIE = RegionBegin;
|
|
MII != MIE; --MII) {
|
|
MachineInstr &MI = *std::prev(MII);
|
|
if (DbgMI) {
|
|
DbgValues.push_back(std::make_pair(DbgMI, &MI));
|
|
DbgMI = nullptr;
|
|
}
|
|
|
|
if (MI.isDebugValue()) {
|
|
DbgMI = &MI;
|
|
continue;
|
|
}
|
|
SUnit *SU = MISUnitMap[&MI];
|
|
assert(SU && "No SUnit mapped to this MI");
|
|
|
|
if (RPTracker) {
|
|
collectVRegUses(SU);
|
|
|
|
RegisterOperands RegOpers;
|
|
RegOpers.collect(MI, *TRI, MRI, TrackLaneMasks, false);
|
|
if (TrackLaneMasks) {
|
|
SlotIndex SlotIdx = LIS->getInstructionIndex(MI);
|
|
RegOpers.adjustLaneLiveness(*LIS, MRI, SlotIdx);
|
|
}
|
|
if (PDiffs != nullptr)
|
|
PDiffs->addInstruction(SU->NodeNum, RegOpers, MRI);
|
|
|
|
RPTracker->recedeSkipDebugValues();
|
|
assert(&*RPTracker->getPos() == &MI && "RPTracker in sync");
|
|
RPTracker->recede(RegOpers);
|
|
}
|
|
|
|
assert(
|
|
(CanHandleTerminators || (!MI.isTerminator() && !MI.isPosition())) &&
|
|
"Cannot schedule terminators or labels!");
|
|
|
|
// Add register-based dependencies (data, anti, and output).
|
|
// For some instructions (calls, returns, inline-asm, etc.) there can
|
|
// be explicit uses and implicit defs, in which case the use will appear
|
|
// on the operand list before the def. Do two passes over the operand
|
|
// list to make sure that defs are processed before any uses.
|
|
bool HasVRegDef = false;
|
|
for (unsigned j = 0, n = MI.getNumOperands(); j != n; ++j) {
|
|
const MachineOperand &MO = MI.getOperand(j);
|
|
if (!MO.isReg() || !MO.isDef())
|
|
continue;
|
|
unsigned Reg = MO.getReg();
|
|
if (Reg == 0)
|
|
continue;
|
|
|
|
if (TRI->isPhysicalRegister(Reg))
|
|
addPhysRegDeps(SU, j);
|
|
else {
|
|
HasVRegDef = true;
|
|
addVRegDefDeps(SU, j);
|
|
}
|
|
}
|
|
// Now process all uses.
|
|
for (unsigned j = 0, n = MI.getNumOperands(); j != n; ++j) {
|
|
const MachineOperand &MO = MI.getOperand(j);
|
|
// Only look at use operands.
|
|
// We do not need to check for MO.readsReg() here because subsequent
|
|
// subregister defs will get output dependence edges and need no
|
|
// additional use dependencies.
|
|
if (!MO.isReg() || !MO.isUse())
|
|
continue;
|
|
unsigned Reg = MO.getReg();
|
|
if (Reg == 0)
|
|
continue;
|
|
|
|
if (TRI->isPhysicalRegister(Reg))
|
|
addPhysRegDeps(SU, j);
|
|
else if (MO.readsReg()) // ignore undef operands
|
|
addVRegUseDeps(SU, j);
|
|
}
|
|
|
|
// If we haven't seen any uses in this scheduling region, create a
|
|
// dependence edge to ExitSU to model the live-out latency. This is required
|
|
// for vreg defs with no in-region use, and prefetches with no vreg def.
|
|
//
|
|
// FIXME: NumDataSuccs would be more precise than NumSuccs here. This
|
|
// check currently relies on being called before adding chain deps.
|
|
if (SU->NumSuccs == 0 && SU->Latency > 1 && (HasVRegDef || MI.mayLoad())) {
|
|
SDep Dep(SU, SDep::Artificial);
|
|
Dep.setLatency(SU->Latency - 1);
|
|
ExitSU.addPred(Dep);
|
|
}
|
|
|
|
// Add memory dependencies (Note: isStoreToStackSlot and
|
|
// isLoadFromStackSLot are not usable after stack slots are lowered to
|
|
// actual addresses).
|
|
|
|
// This is a barrier event that acts as a pivotal node in the DAG.
|
|
if (isGlobalMemoryObject(AA, &MI)) {
|
|
|
|
// Become the barrier chain.
|
|
if (BarrierChain)
|
|
BarrierChain->addPredBarrier(SU);
|
|
BarrierChain = SU;
|
|
|
|
DEBUG(dbgs() << "Global memory object and new barrier chain: SU("
|
|
<< BarrierChain->NodeNum << ").\n";);
|
|
|
|
// Add dependencies against everything below it and clear maps.
|
|
addBarrierChain(Stores);
|
|
addBarrierChain(Loads);
|
|
addBarrierChain(NonAliasStores);
|
|
addBarrierChain(NonAliasLoads);
|
|
|
|
continue;
|
|
}
|
|
|
|
// If it's not a store or a variant load, we're done.
|
|
if (!MI.mayStore() && !(MI.mayLoad() && !MI.isInvariantLoad(AA)))
|
|
continue;
|
|
|
|
// Always add dependecy edge to BarrierChain if present.
|
|
if (BarrierChain)
|
|
BarrierChain->addPredBarrier(SU);
|
|
|
|
// Find the underlying objects for MI. The Objs vector is either
|
|
// empty, or filled with the Values of memory locations which this
|
|
// SU depends on. An empty vector means the memory location is
|
|
// unknown, and may alias anything.
|
|
UnderlyingObjectsVector Objs;
|
|
getUnderlyingObjectsForInstr(&MI, MFI, Objs, MF.getDataLayout());
|
|
|
|
if (MI.mayStore()) {
|
|
if (Objs.empty()) {
|
|
// An unknown store depends on all stores and loads.
|
|
addChainDependencies(SU, Stores);
|
|
addChainDependencies(SU, NonAliasStores);
|
|
addChainDependencies(SU, Loads);
|
|
addChainDependencies(SU, NonAliasLoads);
|
|
|
|
// Map this store to 'UnknownValue'.
|
|
Stores.insert(SU, UnknownValue);
|
|
} else {
|
|
// Add precise dependencies against all previously seen memory
|
|
// accesses mapped to the same Value(s).
|
|
for (const UnderlyingObject &UnderlObj : Objs) {
|
|
ValueType V = UnderlObj.getValue();
|
|
bool ThisMayAlias = UnderlObj.mayAlias();
|
|
|
|
// Add dependencies to previous stores and loads mapped to V.
|
|
addChainDependencies(SU, (ThisMayAlias ? Stores : NonAliasStores), V);
|
|
addChainDependencies(SU, (ThisMayAlias ? Loads : NonAliasLoads), V);
|
|
}
|
|
// Update the store map after all chains have been added to avoid adding
|
|
// self-loop edge if multiple underlying objects are present.
|
|
for (const UnderlyingObject &UnderlObj : Objs) {
|
|
ValueType V = UnderlObj.getValue();
|
|
bool ThisMayAlias = UnderlObj.mayAlias();
|
|
|
|
// Map this store to V.
|
|
(ThisMayAlias ? Stores : NonAliasStores).insert(SU, V);
|
|
}
|
|
// The store may have dependencies to unanalyzable loads and
|
|
// stores.
|
|
addChainDependencies(SU, Loads, UnknownValue);
|
|
addChainDependencies(SU, Stores, UnknownValue);
|
|
}
|
|
} else { // SU is a load.
|
|
if (Objs.empty()) {
|
|
// An unknown load depends on all stores.
|
|
addChainDependencies(SU, Stores);
|
|
addChainDependencies(SU, NonAliasStores);
|
|
|
|
Loads.insert(SU, UnknownValue);
|
|
} else {
|
|
for (const UnderlyingObject &UnderlObj : Objs) {
|
|
ValueType V = UnderlObj.getValue();
|
|
bool ThisMayAlias = UnderlObj.mayAlias();
|
|
|
|
// Add precise dependencies against all previously seen stores
|
|
// mapping to the same Value(s).
|
|
addChainDependencies(SU, (ThisMayAlias ? Stores : NonAliasStores), V);
|
|
|
|
// Map this load to V.
|
|
(ThisMayAlias ? Loads : NonAliasLoads).insert(SU, V);
|
|
}
|
|
// The load may have dependencies to unanalyzable stores.
|
|
addChainDependencies(SU, Stores, UnknownValue);
|
|
}
|
|
}
|
|
|
|
// Reduce maps if they grow huge.
|
|
if (Stores.size() + Loads.size() >= HugeRegion) {
|
|
DEBUG(dbgs() << "Reducing Stores and Loads maps.\n";);
|
|
reduceHugeMemNodeMaps(Stores, Loads, getReductionSize());
|
|
}
|
|
if (NonAliasStores.size() + NonAliasLoads.size() >= HugeRegion) {
|
|
DEBUG(dbgs() << "Reducing NonAliasStores and NonAliasLoads maps.\n";);
|
|
reduceHugeMemNodeMaps(NonAliasStores, NonAliasLoads, getReductionSize());
|
|
}
|
|
}
|
|
|
|
if (DbgMI)
|
|
FirstDbgValue = DbgMI;
|
|
|
|
Defs.clear();
|
|
Uses.clear();
|
|
CurrentVRegDefs.clear();
|
|
CurrentVRegUses.clear();
|
|
}
|
|
|
|
raw_ostream &llvm::operator<<(raw_ostream &OS, const PseudoSourceValue* PSV) {
|
|
PSV->printCustom(OS);
|
|
return OS;
|
|
}
|
|
|
|
void ScheduleDAGInstrs::Value2SUsMap::dump() {
|
|
for (auto &Itr : *this) {
|
|
if (Itr.first.is<const Value*>()) {
|
|
const Value *V = Itr.first.get<const Value*>();
|
|
if (isa<UndefValue>(V))
|
|
dbgs() << "Unknown";
|
|
else
|
|
V->printAsOperand(dbgs());
|
|
}
|
|
else if (Itr.first.is<const PseudoSourceValue*>())
|
|
dbgs() << Itr.first.get<const PseudoSourceValue*>();
|
|
else
|
|
llvm_unreachable("Unknown Value type.");
|
|
|
|
dbgs() << " : ";
|
|
dumpSUList(Itr.second);
|
|
}
|
|
}
|
|
|
|
/// Reduce maps in FIFO order, by N SUs. This is better than turning
|
|
/// every Nth memory SU into BarrierChain in buildSchedGraph(), since
|
|
/// it avoids unnecessary edges between seen SUs above the new
|
|
/// BarrierChain, and those below it.
|
|
void ScheduleDAGInstrs::reduceHugeMemNodeMaps(Value2SUsMap &stores,
|
|
Value2SUsMap &loads, unsigned N) {
|
|
DEBUG(dbgs() << "Before reduction:\nStoring SUnits:\n";
|
|
stores.dump();
|
|
dbgs() << "Loading SUnits:\n";
|
|
loads.dump());
|
|
|
|
// Insert all SU's NodeNums into a vector and sort it.
|
|
std::vector<unsigned> NodeNums;
|
|
NodeNums.reserve(stores.size() + loads.size());
|
|
for (auto &I : stores)
|
|
for (auto *SU : I.second)
|
|
NodeNums.push_back(SU->NodeNum);
|
|
for (auto &I : loads)
|
|
for (auto *SU : I.second)
|
|
NodeNums.push_back(SU->NodeNum);
|
|
std::sort(NodeNums.begin(), NodeNums.end());
|
|
|
|
// The N last elements in NodeNums will be removed, and the SU with
|
|
// the lowest NodeNum of them will become the new BarrierChain to
|
|
// let the not yet seen SUs have a dependency to the removed SUs.
|
|
assert (N <= NodeNums.size());
|
|
SUnit *newBarrierChain = &SUnits[*(NodeNums.end() - N)];
|
|
if (BarrierChain) {
|
|
// The aliasing and non-aliasing maps reduce independently of each
|
|
// other, but share a common BarrierChain. Check if the
|
|
// newBarrierChain is above the former one. If it is not, it may
|
|
// introduce a loop to use newBarrierChain, so keep the old one.
|
|
if (newBarrierChain->NodeNum < BarrierChain->NodeNum) {
|
|
BarrierChain->addPredBarrier(newBarrierChain);
|
|
BarrierChain = newBarrierChain;
|
|
DEBUG(dbgs() << "Inserting new barrier chain: SU("
|
|
<< BarrierChain->NodeNum << ").\n";);
|
|
}
|
|
else
|
|
DEBUG(dbgs() << "Keeping old barrier chain: SU("
|
|
<< BarrierChain->NodeNum << ").\n";);
|
|
}
|
|
else
|
|
BarrierChain = newBarrierChain;
|
|
|
|
insertBarrierChain(stores);
|
|
insertBarrierChain(loads);
|
|
|
|
DEBUG(dbgs() << "After reduction:\nStoring SUnits:\n";
|
|
stores.dump();
|
|
dbgs() << "Loading SUnits:\n";
|
|
loads.dump());
|
|
}
|
|
|
|
/// \brief Initialize register live-range state for updating kills.
|
|
void ScheduleDAGInstrs::startBlockForKills(MachineBasicBlock *BB) {
|
|
// Start with no live registers.
|
|
LiveRegs.reset();
|
|
|
|
// Examine the live-in regs of all successors.
|
|
for (MachineBasicBlock::succ_iterator SI = BB->succ_begin(),
|
|
SE = BB->succ_end(); SI != SE; ++SI) {
|
|
for (const auto &LI : (*SI)->liveins()) {
|
|
// Repeat, for reg and all subregs.
|
|
for (MCSubRegIterator SubRegs(LI.PhysReg, TRI, /*IncludeSelf=*/true);
|
|
SubRegs.isValid(); ++SubRegs)
|
|
LiveRegs.set(*SubRegs);
|
|
}
|
|
}
|
|
}
|
|
|
|
/// \brief If we change a kill flag on the bundle instruction implicit register
|
|
/// operands, then we also need to propagate that to any instructions inside
|
|
/// the bundle which had the same kill state.
|
|
static void toggleBundleKillFlag(MachineInstr *MI, unsigned Reg,
|
|
bool NewKillState,
|
|
const TargetRegisterInfo *TRI) {
|
|
if (MI->getOpcode() != TargetOpcode::BUNDLE)
|
|
return;
|
|
|
|
// Walk backwards from the last instruction in the bundle to the first.
|
|
// Once we set a kill flag on an instruction, we bail out, as otherwise we
|
|
// might set it on too many operands. We will clear as many flags as we
|
|
// can though.
|
|
MachineBasicBlock::instr_iterator Begin = MI->getIterator();
|
|
MachineBasicBlock::instr_iterator End = getBundleEnd(*MI);
|
|
while (Begin != End) {
|
|
if (NewKillState) {
|
|
if ((--End)->addRegisterKilled(Reg, TRI, /* addIfNotFound= */ false))
|
|
return;
|
|
} else
|
|
(--End)->clearRegisterKills(Reg, TRI);
|
|
}
|
|
}
|
|
|
|
bool ScheduleDAGInstrs::toggleKillFlag(MachineInstr *MI, MachineOperand &MO) {
|
|
// Setting kill flag...
|
|
if (!MO.isKill()) {
|
|
MO.setIsKill(true);
|
|
toggleBundleKillFlag(MI, MO.getReg(), true, TRI);
|
|
return false;
|
|
}
|
|
|
|
// If MO itself is live, clear the kill flag...
|
|
if (LiveRegs.test(MO.getReg())) {
|
|
MO.setIsKill(false);
|
|
toggleBundleKillFlag(MI, MO.getReg(), false, TRI);
|
|
return false;
|
|
}
|
|
|
|
// If any subreg of MO is live, then create an imp-def for that
|
|
// subreg and keep MO marked as killed.
|
|
MO.setIsKill(false);
|
|
toggleBundleKillFlag(MI, MO.getReg(), false, TRI);
|
|
bool AllDead = true;
|
|
const unsigned SuperReg = MO.getReg();
|
|
MachineInstrBuilder MIB(MF, MI);
|
|
for (MCSubRegIterator SubRegs(SuperReg, TRI); SubRegs.isValid(); ++SubRegs) {
|
|
if (LiveRegs.test(*SubRegs)) {
|
|
MIB.addReg(*SubRegs, RegState::ImplicitDefine);
|
|
AllDead = false;
|
|
}
|
|
}
|
|
|
|
if(AllDead) {
|
|
MO.setIsKill(true);
|
|
toggleBundleKillFlag(MI, MO.getReg(), true, TRI);
|
|
}
|
|
return false;
|
|
}
|
|
|
|
// FIXME: Reuse the LivePhysRegs utility for this.
|
|
void ScheduleDAGInstrs::fixupKills(MachineBasicBlock *MBB) {
|
|
DEBUG(dbgs() << "Fixup kills for BB#" << MBB->getNumber() << '\n');
|
|
|
|
LiveRegs.resize(TRI->getNumRegs());
|
|
BitVector killedRegs(TRI->getNumRegs());
|
|
|
|
startBlockForKills(MBB);
|
|
|
|
// Examine block from end to start...
|
|
unsigned Count = MBB->size();
|
|
for (MachineBasicBlock::iterator I = MBB->end(), E = MBB->begin();
|
|
I != E; --Count) {
|
|
MachineInstr &MI = *--I;
|
|
if (MI.isDebugValue())
|
|
continue;
|
|
|
|
// Update liveness. Registers that are defed but not used in this
|
|
// instruction are now dead. Mark register and all subregs as they
|
|
// are completely defined.
|
|
for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
|
|
MachineOperand &MO = MI.getOperand(i);
|
|
if (MO.isRegMask())
|
|
LiveRegs.clearBitsNotInMask(MO.getRegMask());
|
|
if (!MO.isReg()) continue;
|
|
unsigned Reg = MO.getReg();
|
|
if (Reg == 0) continue;
|
|
if (!MO.isDef()) continue;
|
|
// Ignore two-addr defs.
|
|
if (MI.isRegTiedToUseOperand(i)) continue;
|
|
|
|
// Repeat for reg and all subregs.
|
|
for (MCSubRegIterator SubRegs(Reg, TRI, /*IncludeSelf=*/true);
|
|
SubRegs.isValid(); ++SubRegs)
|
|
LiveRegs.reset(*SubRegs);
|
|
}
|
|
|
|
// Examine all used registers and set/clear kill flag. When a
|
|
// register is used multiple times we only set the kill flag on
|
|
// the first use. Don't set kill flags on undef operands.
|
|
killedRegs.reset();
|
|
for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
|
|
MachineOperand &MO = MI.getOperand(i);
|
|
if (!MO.isReg() || !MO.isUse() || MO.isUndef()) continue;
|
|
unsigned Reg = MO.getReg();
|
|
if ((Reg == 0) || MRI.isReserved(Reg)) continue;
|
|
|
|
bool kill = false;
|
|
if (!killedRegs.test(Reg)) {
|
|
kill = true;
|
|
// A register is not killed if any subregs are live...
|
|
for (MCSubRegIterator SubRegs(Reg, TRI); SubRegs.isValid(); ++SubRegs) {
|
|
if (LiveRegs.test(*SubRegs)) {
|
|
kill = false;
|
|
break;
|
|
}
|
|
}
|
|
|
|
// If subreg is not live, then register is killed if it became
|
|
// live in this instruction
|
|
if (kill)
|
|
kill = !LiveRegs.test(Reg);
|
|
}
|
|
|
|
if (MO.isKill() != kill) {
|
|
DEBUG(dbgs() << "Fixing " << MO << " in ");
|
|
// Warning: toggleKillFlag may invalidate MO.
|
|
toggleKillFlag(&MI, MO);
|
|
DEBUG(MI.dump());
|
|
DEBUG({
|
|
if (MI.getOpcode() == TargetOpcode::BUNDLE) {
|
|
MachineBasicBlock::instr_iterator Begin = MI.getIterator();
|
|
MachineBasicBlock::instr_iterator End = getBundleEnd(MI);
|
|
while (++Begin != End)
|
|
DEBUG(Begin->dump());
|
|
}
|
|
});
|
|
}
|
|
|
|
killedRegs.set(Reg);
|
|
}
|
|
|
|
// Mark any used register (that is not using undef) and subregs as
|
|
// now live...
|
|
for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
|
|
MachineOperand &MO = MI.getOperand(i);
|
|
if (!MO.isReg() || !MO.isUse() || MO.isUndef()) continue;
|
|
unsigned Reg = MO.getReg();
|
|
if ((Reg == 0) || MRI.isReserved(Reg)) continue;
|
|
|
|
for (MCSubRegIterator SubRegs(Reg, TRI, /*IncludeSelf=*/true);
|
|
SubRegs.isValid(); ++SubRegs)
|
|
LiveRegs.set(*SubRegs);
|
|
}
|
|
}
|
|
}
|
|
|
|
void ScheduleDAGInstrs::dumpNode(const SUnit *SU) const {
|
|
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
|
|
SU->getInstr()->dump();
|
|
#endif
|
|
}
|
|
|
|
std::string ScheduleDAGInstrs::getGraphNodeLabel(const SUnit *SU) const {
|
|
std::string s;
|
|
raw_string_ostream oss(s);
|
|
if (SU == &EntrySU)
|
|
oss << "<entry>";
|
|
else if (SU == &ExitSU)
|
|
oss << "<exit>";
|
|
else
|
|
SU->getInstr()->print(oss, /*SkipOpers=*/true);
|
|
return oss.str();
|
|
}
|
|
|
|
/// Return the basic block label. It is not necessarilly unique because a block
|
|
/// contains multiple scheduling regions. But it is fine for visualization.
|
|
std::string ScheduleDAGInstrs::getDAGName() const {
|
|
return "dag." + BB->getFullName();
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// SchedDFSResult Implementation
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
namespace llvm {
|
|
/// \brief Internal state used to compute SchedDFSResult.
|
|
class SchedDFSImpl {
|
|
SchedDFSResult &R;
|
|
|
|
/// Join DAG nodes into equivalence classes by their subtree.
|
|
IntEqClasses SubtreeClasses;
|
|
/// List PredSU, SuccSU pairs that represent data edges between subtrees.
|
|
std::vector<std::pair<const SUnit*, const SUnit*> > ConnectionPairs;
|
|
|
|
struct RootData {
|
|
unsigned NodeID;
|
|
unsigned ParentNodeID; // Parent node (member of the parent subtree).
|
|
unsigned SubInstrCount; // Instr count in this tree only, not children.
|
|
|
|
RootData(unsigned id): NodeID(id),
|
|
ParentNodeID(SchedDFSResult::InvalidSubtreeID),
|
|
SubInstrCount(0) {}
|
|
|
|
unsigned getSparseSetIndex() const { return NodeID; }
|
|
};
|
|
|
|
SparseSet<RootData> RootSet;
|
|
|
|
public:
|
|
SchedDFSImpl(SchedDFSResult &r): R(r), SubtreeClasses(R.DFSNodeData.size()) {
|
|
RootSet.setUniverse(R.DFSNodeData.size());
|
|
}
|
|
|
|
/// Return true if this node been visited by the DFS traversal.
|
|
///
|
|
/// During visitPostorderNode the Node's SubtreeID is assigned to the Node
|
|
/// ID. Later, SubtreeID is updated but remains valid.
|
|
bool isVisited(const SUnit *SU) const {
|
|
return R.DFSNodeData[SU->NodeNum].SubtreeID
|
|
!= SchedDFSResult::InvalidSubtreeID;
|
|
}
|
|
|
|
/// Initialize this node's instruction count. We don't need to flag the node
|
|
/// visited until visitPostorder because the DAG cannot have cycles.
|
|
void visitPreorder(const SUnit *SU) {
|
|
R.DFSNodeData[SU->NodeNum].InstrCount =
|
|
SU->getInstr()->isTransient() ? 0 : 1;
|
|
}
|
|
|
|
/// Called once for each node after all predecessors are visited. Revisit this
|
|
/// node's predecessors and potentially join them now that we know the ILP of
|
|
/// the other predecessors.
|
|
void visitPostorderNode(const SUnit *SU) {
|
|
// Mark this node as the root of a subtree. It may be joined with its
|
|
// successors later.
|
|
R.DFSNodeData[SU->NodeNum].SubtreeID = SU->NodeNum;
|
|
RootData RData(SU->NodeNum);
|
|
RData.SubInstrCount = SU->getInstr()->isTransient() ? 0 : 1;
|
|
|
|
// If any predecessors are still in their own subtree, they either cannot be
|
|
// joined or are large enough to remain separate. If this parent node's
|
|
// total instruction count is not greater than a child subtree by at least
|
|
// the subtree limit, then try to join it now since splitting subtrees is
|
|
// only useful if multiple high-pressure paths are possible.
|
|
unsigned InstrCount = R.DFSNodeData[SU->NodeNum].InstrCount;
|
|
for (SUnit::const_pred_iterator
|
|
PI = SU->Preds.begin(), PE = SU->Preds.end(); PI != PE; ++PI) {
|
|
if (PI->getKind() != SDep::Data)
|
|
continue;
|
|
unsigned PredNum = PI->getSUnit()->NodeNum;
|
|
if ((InstrCount - R.DFSNodeData[PredNum].InstrCount) < R.SubtreeLimit)
|
|
joinPredSubtree(*PI, SU, /*CheckLimit=*/false);
|
|
|
|
// Either link or merge the TreeData entry from the child to the parent.
|
|
if (R.DFSNodeData[PredNum].SubtreeID == PredNum) {
|
|
// If the predecessor's parent is invalid, this is a tree edge and the
|
|
// current node is the parent.
|
|
if (RootSet[PredNum].ParentNodeID == SchedDFSResult::InvalidSubtreeID)
|
|
RootSet[PredNum].ParentNodeID = SU->NodeNum;
|
|
}
|
|
else if (RootSet.count(PredNum)) {
|
|
// The predecessor is not a root, but is still in the root set. This
|
|
// must be the new parent that it was just joined to. Note that
|
|
// RootSet[PredNum].ParentNodeID may either be invalid or may still be
|
|
// set to the original parent.
|
|
RData.SubInstrCount += RootSet[PredNum].SubInstrCount;
|
|
RootSet.erase(PredNum);
|
|
}
|
|
}
|
|
RootSet[SU->NodeNum] = RData;
|
|
}
|
|
|
|
/// Called once for each tree edge after calling visitPostOrderNode on the
|
|
/// predecessor. Increment the parent node's instruction count and
|
|
/// preemptively join this subtree to its parent's if it is small enough.
|
|
void visitPostorderEdge(const SDep &PredDep, const SUnit *Succ) {
|
|
R.DFSNodeData[Succ->NodeNum].InstrCount
|
|
+= R.DFSNodeData[PredDep.getSUnit()->NodeNum].InstrCount;
|
|
joinPredSubtree(PredDep, Succ);
|
|
}
|
|
|
|
/// Add a connection for cross edges.
|
|
void visitCrossEdge(const SDep &PredDep, const SUnit *Succ) {
|
|
ConnectionPairs.push_back(std::make_pair(PredDep.getSUnit(), Succ));
|
|
}
|
|
|
|
/// Set each node's subtree ID to the representative ID and record connections
|
|
/// between trees.
|
|
void finalize() {
|
|
SubtreeClasses.compress();
|
|
R.DFSTreeData.resize(SubtreeClasses.getNumClasses());
|
|
assert(SubtreeClasses.getNumClasses() == RootSet.size()
|
|
&& "number of roots should match trees");
|
|
for (SparseSet<RootData>::const_iterator
|
|
RI = RootSet.begin(), RE = RootSet.end(); RI != RE; ++RI) {
|
|
unsigned TreeID = SubtreeClasses[RI->NodeID];
|
|
if (RI->ParentNodeID != SchedDFSResult::InvalidSubtreeID)
|
|
R.DFSTreeData[TreeID].ParentTreeID = SubtreeClasses[RI->ParentNodeID];
|
|
R.DFSTreeData[TreeID].SubInstrCount = RI->SubInstrCount;
|
|
// Note that SubInstrCount may be greater than InstrCount if we joined
|
|
// subtrees across a cross edge. InstrCount will be attributed to the
|
|
// original parent, while SubInstrCount will be attributed to the joined
|
|
// parent.
|
|
}
|
|
R.SubtreeConnections.resize(SubtreeClasses.getNumClasses());
|
|
R.SubtreeConnectLevels.resize(SubtreeClasses.getNumClasses());
|
|
DEBUG(dbgs() << R.getNumSubtrees() << " subtrees:\n");
|
|
for (unsigned Idx = 0, End = R.DFSNodeData.size(); Idx != End; ++Idx) {
|
|
R.DFSNodeData[Idx].SubtreeID = SubtreeClasses[Idx];
|
|
DEBUG(dbgs() << " SU(" << Idx << ") in tree "
|
|
<< R.DFSNodeData[Idx].SubtreeID << '\n');
|
|
}
|
|
for (std::vector<std::pair<const SUnit*, const SUnit*> >::const_iterator
|
|
I = ConnectionPairs.begin(), E = ConnectionPairs.end();
|
|
I != E; ++I) {
|
|
unsigned PredTree = SubtreeClasses[I->first->NodeNum];
|
|
unsigned SuccTree = SubtreeClasses[I->second->NodeNum];
|
|
if (PredTree == SuccTree)
|
|
continue;
|
|
unsigned Depth = I->first->getDepth();
|
|
addConnection(PredTree, SuccTree, Depth);
|
|
addConnection(SuccTree, PredTree, Depth);
|
|
}
|
|
}
|
|
|
|
protected:
|
|
/// Join the predecessor subtree with the successor that is its DFS
|
|
/// parent. Apply some heuristics before joining.
|
|
bool joinPredSubtree(const SDep &PredDep, const SUnit *Succ,
|
|
bool CheckLimit = true) {
|
|
assert(PredDep.getKind() == SDep::Data && "Subtrees are for data edges");
|
|
|
|
// Check if the predecessor is already joined.
|
|
const SUnit *PredSU = PredDep.getSUnit();
|
|
unsigned PredNum = PredSU->NodeNum;
|
|
if (R.DFSNodeData[PredNum].SubtreeID != PredNum)
|
|
return false;
|
|
|
|
// Four is the magic number of successors before a node is considered a
|
|
// pinch point.
|
|
unsigned NumDataSucs = 0;
|
|
for (SUnit::const_succ_iterator SI = PredSU->Succs.begin(),
|
|
SE = PredSU->Succs.end(); SI != SE; ++SI) {
|
|
if (SI->getKind() == SDep::Data) {
|
|
if (++NumDataSucs >= 4)
|
|
return false;
|
|
}
|
|
}
|
|
if (CheckLimit && R.DFSNodeData[PredNum].InstrCount > R.SubtreeLimit)
|
|
return false;
|
|
R.DFSNodeData[PredNum].SubtreeID = Succ->NodeNum;
|
|
SubtreeClasses.join(Succ->NodeNum, PredNum);
|
|
return true;
|
|
}
|
|
|
|
/// Called by finalize() to record a connection between trees.
|
|
void addConnection(unsigned FromTree, unsigned ToTree, unsigned Depth) {
|
|
if (!Depth)
|
|
return;
|
|
|
|
do {
|
|
SmallVectorImpl<SchedDFSResult::Connection> &Connections =
|
|
R.SubtreeConnections[FromTree];
|
|
for (SmallVectorImpl<SchedDFSResult::Connection>::iterator
|
|
I = Connections.begin(), E = Connections.end(); I != E; ++I) {
|
|
if (I->TreeID == ToTree) {
|
|
I->Level = std::max(I->Level, Depth);
|
|
return;
|
|
}
|
|
}
|
|
Connections.push_back(SchedDFSResult::Connection(ToTree, Depth));
|
|
FromTree = R.DFSTreeData[FromTree].ParentTreeID;
|
|
} while (FromTree != SchedDFSResult::InvalidSubtreeID);
|
|
}
|
|
};
|
|
} // namespace llvm
|
|
|
|
namespace {
|
|
/// \brief Manage the stack used by a reverse depth-first search over the DAG.
|
|
class SchedDAGReverseDFS {
|
|
std::vector<std::pair<const SUnit*, SUnit::const_pred_iterator> > DFSStack;
|
|
public:
|
|
bool isComplete() const { return DFSStack.empty(); }
|
|
|
|
void follow(const SUnit *SU) {
|
|
DFSStack.push_back(std::make_pair(SU, SU->Preds.begin()));
|
|
}
|
|
void advance() { ++DFSStack.back().second; }
|
|
|
|
const SDep *backtrack() {
|
|
DFSStack.pop_back();
|
|
return DFSStack.empty() ? nullptr : std::prev(DFSStack.back().second);
|
|
}
|
|
|
|
const SUnit *getCurr() const { return DFSStack.back().first; }
|
|
|
|
SUnit::const_pred_iterator getPred() const { return DFSStack.back().second; }
|
|
|
|
SUnit::const_pred_iterator getPredEnd() const {
|
|
return getCurr()->Preds.end();
|
|
}
|
|
};
|
|
} // anonymous
|
|
|
|
static bool hasDataSucc(const SUnit *SU) {
|
|
for (SUnit::const_succ_iterator
|
|
SI = SU->Succs.begin(), SE = SU->Succs.end(); SI != SE; ++SI) {
|
|
if (SI->getKind() == SDep::Data && !SI->getSUnit()->isBoundaryNode())
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
/// Compute an ILP metric for all nodes in the subDAG reachable via depth-first
|
|
/// search from this root.
|
|
void SchedDFSResult::compute(ArrayRef<SUnit> SUnits) {
|
|
if (!IsBottomUp)
|
|
llvm_unreachable("Top-down ILP metric is unimplemnted");
|
|
|
|
SchedDFSImpl Impl(*this);
|
|
for (ArrayRef<SUnit>::const_iterator
|
|
SI = SUnits.begin(), SE = SUnits.end(); SI != SE; ++SI) {
|
|
const SUnit *SU = &*SI;
|
|
if (Impl.isVisited(SU) || hasDataSucc(SU))
|
|
continue;
|
|
|
|
SchedDAGReverseDFS DFS;
|
|
Impl.visitPreorder(SU);
|
|
DFS.follow(SU);
|
|
for (;;) {
|
|
// Traverse the leftmost path as far as possible.
|
|
while (DFS.getPred() != DFS.getPredEnd()) {
|
|
const SDep &PredDep = *DFS.getPred();
|
|
DFS.advance();
|
|
// Ignore non-data edges.
|
|
if (PredDep.getKind() != SDep::Data
|
|
|| PredDep.getSUnit()->isBoundaryNode()) {
|
|
continue;
|
|
}
|
|
// An already visited edge is a cross edge, assuming an acyclic DAG.
|
|
if (Impl.isVisited(PredDep.getSUnit())) {
|
|
Impl.visitCrossEdge(PredDep, DFS.getCurr());
|
|
continue;
|
|
}
|
|
Impl.visitPreorder(PredDep.getSUnit());
|
|
DFS.follow(PredDep.getSUnit());
|
|
}
|
|
// Visit the top of the stack in postorder and backtrack.
|
|
const SUnit *Child = DFS.getCurr();
|
|
const SDep *PredDep = DFS.backtrack();
|
|
Impl.visitPostorderNode(Child);
|
|
if (PredDep)
|
|
Impl.visitPostorderEdge(*PredDep, DFS.getCurr());
|
|
if (DFS.isComplete())
|
|
break;
|
|
}
|
|
}
|
|
Impl.finalize();
|
|
}
|
|
|
|
/// The root of the given SubtreeID was just scheduled. For all subtrees
|
|
/// connected to this tree, record the depth of the connection so that the
|
|
/// nearest connected subtrees can be prioritized.
|
|
void SchedDFSResult::scheduleTree(unsigned SubtreeID) {
|
|
for (SmallVectorImpl<Connection>::const_iterator
|
|
I = SubtreeConnections[SubtreeID].begin(),
|
|
E = SubtreeConnections[SubtreeID].end(); I != E; ++I) {
|
|
SubtreeConnectLevels[I->TreeID] =
|
|
std::max(SubtreeConnectLevels[I->TreeID], I->Level);
|
|
DEBUG(dbgs() << " Tree: " << I->TreeID
|
|
<< " @" << SubtreeConnectLevels[I->TreeID] << '\n');
|
|
}
|
|
}
|
|
|
|
LLVM_DUMP_METHOD
|
|
void ILPValue::print(raw_ostream &OS) const {
|
|
OS << InstrCount << " / " << Length << " = ";
|
|
if (!Length)
|
|
OS << "BADILP";
|
|
else
|
|
OS << format("%g", ((double)InstrCount / Length));
|
|
}
|
|
|
|
LLVM_DUMP_METHOD
|
|
void ILPValue::dump() const {
|
|
dbgs() << *this << '\n';
|
|
}
|
|
|
|
namespace llvm {
|
|
|
|
LLVM_DUMP_METHOD
|
|
raw_ostream &operator<<(raw_ostream &OS, const ILPValue &Val) {
|
|
Val.print(OS);
|
|
return OS;
|
|
}
|
|
|
|
} // namespace llvm
|