mirror of
https://github.com/RPCS3/llvm-mirror.git
synced 2025-01-24 21:05:23 +00:00
2e98413a27
llvm-svn: 4456
434 lines
14 KiB
C++
434 lines
14 KiB
C++
//===- llvm/Analysis/Dominators.h - Dominator Info Calculation ---*- C++ -*--=//
|
|
//
|
|
// This file defines the following classes:
|
|
// 1. DominatorSet: Calculates the [reverse] dominator set for a function
|
|
// 2. ImmediateDominators: Calculates and holds a mapping between BasicBlocks
|
|
// and their immediate dominator.
|
|
// 3. DominatorTree: Represent the ImmediateDominator as an explicit tree
|
|
// structure.
|
|
// 4. DominanceFrontier: Calculate and hold the dominance frontier for a
|
|
// function.
|
|
//
|
|
// These data structures are listed in increasing order of complexity. It
|
|
// takes longer to calculate the dominator frontier, for example, than the
|
|
// ImmediateDominator mapping.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#ifndef LLVM_ANALYSIS_DOMINATORS_H
|
|
#define LLVM_ANALYSIS_DOMINATORS_H
|
|
|
|
#include "llvm/Pass.h"
|
|
#include <set>
|
|
class Instruction;
|
|
|
|
template <typename GraphType> struct GraphTraits;
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// DominatorBase - Base class that other, more interesting dominator analyses
|
|
// inherit from.
|
|
//
|
|
class DominatorBase : public FunctionPass {
|
|
protected:
|
|
BasicBlock *Root;
|
|
const bool IsPostDominators;
|
|
|
|
inline DominatorBase(bool isPostDom) : Root(0), IsPostDominators(isPostDom) {}
|
|
public:
|
|
inline BasicBlock *getRoot() const { return Root; }
|
|
|
|
// Returns true if analysis based of postdoms
|
|
bool isPostDominator() const { return IsPostDominators; }
|
|
};
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// DominatorSet - Maintain a set<BasicBlock*> for every basic block in a
|
|
// function, that represents the blocks that dominate the block.
|
|
//
|
|
class DominatorSetBase : public DominatorBase {
|
|
public:
|
|
typedef std::set<BasicBlock*> DomSetType; // Dom set for a bb
|
|
// Map of dom sets
|
|
typedef std::map<BasicBlock*, DomSetType> DomSetMapType;
|
|
protected:
|
|
DomSetMapType Doms;
|
|
public:
|
|
DominatorSetBase(bool isPostDom) : DominatorBase(isPostDom) {}
|
|
|
|
virtual void releaseMemory() { Doms.clear(); }
|
|
|
|
// Accessor interface:
|
|
typedef DomSetMapType::const_iterator const_iterator;
|
|
typedef DomSetMapType::iterator iterator;
|
|
inline const_iterator begin() const { return Doms.begin(); }
|
|
inline iterator begin() { return Doms.begin(); }
|
|
inline const_iterator end() const { return Doms.end(); }
|
|
inline iterator end() { return Doms.end(); }
|
|
inline const_iterator find(BasicBlock* B) const { return Doms.find(B); }
|
|
inline iterator find(BasicBlock* B) { return Doms.find(B); }
|
|
|
|
|
|
/// getDominators - Return the set of basic blocks that dominate the specified
|
|
/// block.
|
|
///
|
|
inline const DomSetType &getDominators(BasicBlock *BB) const {
|
|
const_iterator I = find(BB);
|
|
assert(I != end() && "BB not in function!");
|
|
return I->second;
|
|
}
|
|
|
|
/// dominates - Return true if A dominates B.
|
|
///
|
|
inline bool dominates(BasicBlock *A, BasicBlock *B) const {
|
|
return getDominators(B).count(A) != 0;
|
|
}
|
|
|
|
/// properlyDominates - Return true if A dominates B and A != B.
|
|
///
|
|
bool properlyDominates(BasicBlock *A, BasicBlock *B) const {
|
|
return dominates(A, B) && A != B;
|
|
}
|
|
|
|
/// print - Convert to human readable form
|
|
virtual void print(std::ostream &OS) const;
|
|
|
|
/// dominates - Return true if A dominates B. This performs the special
|
|
/// checks neccesary if A and B are in the same basic block.
|
|
///
|
|
bool dominates(Instruction *A, Instruction *B) const;
|
|
|
|
//===--------------------------------------------------------------------===//
|
|
// API to update (Post)DominatorSet information based on modifications to
|
|
// the CFG...
|
|
|
|
/// addBasicBlock - Call to update the dominator set with information about a
|
|
/// new block that was inserted into the function.
|
|
void addBasicBlock(BasicBlock *BB, const DomSetType &Dominators) {
|
|
assert(find(BB) == end() && "Block already in DominatorSet!");
|
|
Doms.insert(std::make_pair(BB, Dominators));
|
|
}
|
|
|
|
// addDominator - If a new block is inserted into the CFG, then method may be
|
|
// called to notify the blocks it dominates that it is in their set.
|
|
//
|
|
void addDominator(BasicBlock *BB, BasicBlock *NewDominator) {
|
|
iterator I = find(BB);
|
|
assert(I != end() && "BB is not in DominatorSet!");
|
|
I->second.insert(NewDominator);
|
|
}
|
|
};
|
|
|
|
|
|
//===-------------------------------------
|
|
// DominatorSet Class - Concrete subclass of DominatorSetBase that is used to
|
|
// compute a normal dominator set.
|
|
//
|
|
struct DominatorSet : public DominatorSetBase {
|
|
DominatorSet() : DominatorSetBase(false) {}
|
|
|
|
virtual bool runOnFunction(Function &F);
|
|
|
|
/// recalculate - This method may be called by external passes that modify the
|
|
/// CFG and then need dominator information recalculated. This method is
|
|
/// obviously really slow, so it should be avoided if at all possible.
|
|
void recalculate();
|
|
|
|
// getAnalysisUsage - This simply provides a dominator set
|
|
virtual void getAnalysisUsage(AnalysisUsage &AU) const {
|
|
AU.setPreservesAll();
|
|
}
|
|
private:
|
|
void calculateDominatorsFromBlock(BasicBlock *BB);
|
|
};
|
|
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// ImmediateDominators - Calculate the immediate dominator for each node in a
|
|
// function.
|
|
//
|
|
class ImmediateDominatorsBase : public DominatorBase {
|
|
protected:
|
|
std::map<BasicBlock*, BasicBlock*> IDoms;
|
|
void calcIDoms(const DominatorSetBase &DS);
|
|
public:
|
|
ImmediateDominatorsBase(bool isPostDom) : DominatorBase(isPostDom) {}
|
|
|
|
virtual void releaseMemory() { IDoms.clear(); }
|
|
|
|
// Accessor interface:
|
|
typedef std::map<BasicBlock*, BasicBlock*> IDomMapType;
|
|
typedef IDomMapType::const_iterator const_iterator;
|
|
inline const_iterator begin() const { return IDoms.begin(); }
|
|
inline const_iterator end() const { return IDoms.end(); }
|
|
inline const_iterator find(BasicBlock* B) const { return IDoms.find(B);}
|
|
|
|
// operator[] - Return the idom for the specified basic block. The start
|
|
// node returns null, because it does not have an immediate dominator.
|
|
//
|
|
inline BasicBlock *operator[](BasicBlock *BB) const {
|
|
return get(BB);
|
|
}
|
|
|
|
// get() - Synonym for operator[].
|
|
inline BasicBlock *get(BasicBlock *BB) const {
|
|
std::map<BasicBlock*, BasicBlock*>::const_iterator I = IDoms.find(BB);
|
|
return I != IDoms.end() ? I->second : 0;
|
|
}
|
|
|
|
//===--------------------------------------------------------------------===//
|
|
// API to update Immediate(Post)Dominators information based on modifications
|
|
// to the CFG...
|
|
|
|
/// addNewBlock - Add a new block to the CFG, with the specified immediate
|
|
/// dominator.
|
|
///
|
|
void addNewBlock(BasicBlock *BB, BasicBlock *IDom) {
|
|
assert(get(BB) == 0 && "BasicBlock already in idom info!");
|
|
IDoms[BB] = IDom;
|
|
}
|
|
|
|
/// setImmediateDominator - Update the immediate dominator information to
|
|
/// change the current immediate dominator for the specified block to another
|
|
/// block. This method requires that BB already have an IDom, otherwise just
|
|
/// use addNewBlock.
|
|
void setImmediateDominator(BasicBlock *BB, BasicBlock *NewIDom) {
|
|
assert(IDoms.find(BB) != IDoms.end() && "BB doesn't have idom yet!");
|
|
IDoms[BB] = NewIDom;
|
|
}
|
|
|
|
// print - Convert to human readable form
|
|
virtual void print(std::ostream &OS) const;
|
|
};
|
|
|
|
//===-------------------------------------
|
|
// ImmediateDominators Class - Concrete subclass of ImmediateDominatorsBase that
|
|
// is used to compute a normal immediate dominator set.
|
|
//
|
|
struct ImmediateDominators : public ImmediateDominatorsBase {
|
|
ImmediateDominators() : ImmediateDominatorsBase(false) {}
|
|
|
|
virtual bool runOnFunction(Function &F) {
|
|
IDoms.clear(); // Reset from the last time we were run...
|
|
DominatorSet &DS = getAnalysis<DominatorSet>();
|
|
Root = DS.getRoot();
|
|
calcIDoms(DS);
|
|
return false;
|
|
}
|
|
|
|
virtual void getAnalysisUsage(AnalysisUsage &AU) const {
|
|
AU.setPreservesAll();
|
|
AU.addRequired<DominatorSet>();
|
|
}
|
|
};
|
|
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// DominatorTree - Calculate the immediate dominator tree for a function.
|
|
//
|
|
class DominatorTreeBase : public DominatorBase {
|
|
protected:
|
|
class Node2;
|
|
public:
|
|
typedef Node2 Node;
|
|
protected:
|
|
std::map<BasicBlock*, Node*> Nodes;
|
|
void reset();
|
|
typedef std::map<BasicBlock*, Node*> NodeMapType;
|
|
public:
|
|
class Node2 {
|
|
friend class DominatorTree;
|
|
friend class PostDominatorTree;
|
|
friend class DominatorTreeBase;
|
|
BasicBlock *TheNode;
|
|
Node2 *IDom;
|
|
std::vector<Node*> Children;
|
|
public:
|
|
typedef std::vector<Node*>::iterator iterator;
|
|
typedef std::vector<Node*>::const_iterator const_iterator;
|
|
|
|
iterator begin() { return Children.begin(); }
|
|
iterator end() { return Children.end(); }
|
|
const_iterator begin() const { return Children.begin(); }
|
|
const_iterator end() const { return Children.end(); }
|
|
|
|
inline BasicBlock *getNode() const { return TheNode; }
|
|
inline Node2 *getIDom() const { return IDom; }
|
|
inline const std::vector<Node*> &getChildren() const { return Children; }
|
|
|
|
// dominates - Returns true iff this dominates N. Note that this is not a
|
|
// constant time operation!
|
|
inline bool dominates(const Node2 *N) const {
|
|
const Node2 *IDom;
|
|
while ((IDom = N->getIDom()) != 0 && IDom != this)
|
|
N = IDom; // Walk up the tree
|
|
return IDom != 0;
|
|
}
|
|
|
|
private:
|
|
inline Node2(BasicBlock *node, Node *iDom)
|
|
: TheNode(node), IDom(iDom) {}
|
|
inline Node2 *addChild(Node *C) { Children.push_back(C); return C; }
|
|
|
|
void setIDom(Node2 *NewIDom);
|
|
};
|
|
|
|
public:
|
|
DominatorTreeBase(bool isPostDom) : DominatorBase(isPostDom) {}
|
|
~DominatorTreeBase() { reset(); }
|
|
|
|
virtual void releaseMemory() { reset(); }
|
|
|
|
/// getNode - return the (Post)DominatorTree node for the specified basic
|
|
/// block. This is the same as using operator[] on this class.
|
|
///
|
|
inline Node *getNode(BasicBlock *BB) const {
|
|
NodeMapType::const_iterator i = Nodes.find(BB);
|
|
return (i != Nodes.end()) ? i->second : 0;
|
|
}
|
|
|
|
inline Node *operator[](BasicBlock *BB) const {
|
|
return getNode(BB);
|
|
}
|
|
|
|
//===--------------------------------------------------------------------===// // API to update (Post)DominatorTree information based on modifications to
|
|
// the CFG...
|
|
|
|
/// createNewNode - Add a new node to the dominator tree information. This
|
|
/// creates a new node as a child of IDomNode, linking it into the children
|
|
/// list of the immediate dominator.
|
|
///
|
|
Node *createNewNode(BasicBlock *BB, Node *IDomNode) {
|
|
assert(getNode(BB) == 0 && "Block already in dominator tree!");
|
|
assert(IDomNode && "Not immediate dominator specified for block!");
|
|
return Nodes[BB] = IDomNode->addChild(new Node(BB, IDomNode));
|
|
}
|
|
|
|
/// changeImmediateDominator - This method is used to update the dominator
|
|
/// tree information when a node's immediate dominator changes.
|
|
///
|
|
void changeImmediateDominator(Node *Node, Node *NewIDom) {
|
|
assert(Node && NewIDom && "Cannot change null node pointers!");
|
|
Node->setIDom(NewIDom);
|
|
}
|
|
|
|
/// print - Convert to human readable form
|
|
virtual void print(std::ostream &OS) const;
|
|
};
|
|
|
|
|
|
//===-------------------------------------
|
|
// DominatorTree Class - Concrete subclass of DominatorTreeBase that is used to
|
|
// compute a normal dominator tree.
|
|
//
|
|
struct DominatorTree : public DominatorTreeBase {
|
|
DominatorTree() : DominatorTreeBase(false) {}
|
|
|
|
virtual bool runOnFunction(Function &F) {
|
|
reset(); // Reset from the last time we were run...
|
|
DominatorSet &DS = getAnalysis<DominatorSet>();
|
|
Root = DS.getRoot();
|
|
calculate(DS);
|
|
return false;
|
|
}
|
|
|
|
virtual void getAnalysisUsage(AnalysisUsage &AU) const {
|
|
AU.setPreservesAll();
|
|
AU.addRequired<DominatorSet>();
|
|
}
|
|
private:
|
|
void calculate(const DominatorSet &DS);
|
|
};
|
|
|
|
//===-------------------------------------
|
|
// DominatorTree GraphTraits specialization so the DominatorTree can be
|
|
// iterable by generic graph iterators.
|
|
|
|
template <> struct GraphTraits<DominatorTree*> {
|
|
typedef DominatorTree::Node NodeType;
|
|
typedef NodeType::iterator ChildIteratorType;
|
|
|
|
static NodeType *getEntryNode(DominatorTree *DT) {
|
|
return DT->getNode(DT->getRoot());
|
|
}
|
|
static inline ChildIteratorType child_begin(NodeType* N) {
|
|
return N->begin();
|
|
}
|
|
static inline ChildIteratorType child_end(NodeType* N) {
|
|
return N->end();
|
|
}
|
|
};
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// DominanceFrontier - Calculate the dominance frontiers for a function.
|
|
//
|
|
class DominanceFrontierBase : public DominatorBase {
|
|
public:
|
|
typedef std::set<BasicBlock*> DomSetType; // Dom set for a bb
|
|
typedef std::map<BasicBlock*, DomSetType> DomSetMapType; // Dom set map
|
|
protected:
|
|
DomSetMapType Frontiers;
|
|
public:
|
|
DominanceFrontierBase(bool isPostDom) : DominatorBase(isPostDom) {}
|
|
|
|
virtual void releaseMemory() { Frontiers.clear(); }
|
|
|
|
// Accessor interface:
|
|
typedef DomSetMapType::const_iterator const_iterator;
|
|
const_iterator begin() const { return Frontiers.begin(); }
|
|
const_iterator end() const { return Frontiers.end(); }
|
|
const_iterator find(BasicBlock* B) const { return Frontiers.find(B); }
|
|
|
|
void addBasicBlock(BasicBlock *BB, const DomSetType &frontier) {
|
|
assert(find(BB) == end() && "Block already in DominanceFrontier!");
|
|
Frontiers.insert(std::make_pair(BB, frontier));
|
|
}
|
|
|
|
void addToFrontier(BasicBlock *BB, BasicBlock *Node) {
|
|
DomSetMapType::iterator I = Frontiers.find(BB);
|
|
assert(I != end() && "BB is not in DominanceFrontier!");
|
|
I->second.insert(Node);
|
|
}
|
|
|
|
void removeFromFrontier(BasicBlock *BB, BasicBlock *Node) {
|
|
DomSetMapType::iterator I = Frontiers.find(BB);
|
|
assert(I != end() && "BB is not in DominanceFrontier!");
|
|
assert(I->second.count(Node) && "Node is not in DominanceFrontier of BB");
|
|
I->second.erase(Node);
|
|
}
|
|
|
|
// print - Convert to human readable form
|
|
virtual void print(std::ostream &OS) const;
|
|
};
|
|
|
|
|
|
//===-------------------------------------
|
|
// DominatorTree Class - Concrete subclass of DominatorTreeBase that is used to
|
|
// compute a normal dominator tree.
|
|
//
|
|
struct DominanceFrontier : public DominanceFrontierBase {
|
|
DominanceFrontier() : DominanceFrontierBase(false) {}
|
|
|
|
virtual bool runOnFunction(Function &) {
|
|
Frontiers.clear();
|
|
DominatorTree &DT = getAnalysis<DominatorTree>();
|
|
Root = DT.getRoot();
|
|
calculate(DT, DT[Root]);
|
|
return false;
|
|
}
|
|
|
|
virtual void getAnalysisUsage(AnalysisUsage &AU) const {
|
|
AU.setPreservesAll();
|
|
AU.addRequired<DominatorTree>();
|
|
}
|
|
private:
|
|
const DomSetType &calculate(const DominatorTree &DT,
|
|
const DominatorTree::Node *Node);
|
|
};
|
|
|
|
#endif
|