llvm-mirror/utils/TableGen/AsmMatcherEmitter.cpp
Sean Callanan 1942b96584 Modified the register matcher function in AsmMatcher to
be static.  Also made it possible for clients to get it
and no other functions from ...GenAsmMatcher.inc by
defining REGISTERS_ONLY before including GenAsmMatcher.inc.
This sets the stage for target-specific lexers that can
identify registers and return AsmToken::Register as
appropriate.

llvm-svn: 94266
2010-01-23 00:40:33 +00:00

1556 lines
54 KiB
C++

//===- AsmMatcherEmitter.cpp - Generate an assembly matcher ---------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This tablegen backend emits a target specifier matcher for converting parsed
// assembly operands in the MCInst structures.
//
// The input to the target specific matcher is a list of literal tokens and
// operands. The target specific parser should generally eliminate any syntax
// which is not relevant for matching; for example, comma tokens should have
// already been consumed and eliminated by the parser. Most instructions will
// end up with a single literal token (the instruction name) and some number of
// operands.
//
// Some example inputs, for X86:
// 'addl' (immediate ...) (register ...)
// 'add' (immediate ...) (memory ...)
// 'call' '*' %epc
//
// The assembly matcher is responsible for converting this input into a precise
// machine instruction (i.e., an instruction with a well defined encoding). This
// mapping has several properties which complicate matching:
//
// - It may be ambiguous; many architectures can legally encode particular
// variants of an instruction in different ways (for example, using a smaller
// encoding for small immediates). Such ambiguities should never be
// arbitrarily resolved by the assembler, the assembler is always responsible
// for choosing the "best" available instruction.
//
// - It may depend on the subtarget or the assembler context. Instructions
// which are invalid for the current mode, but otherwise unambiguous (e.g.,
// an SSE instruction in a file being assembled for i486) should be accepted
// and rejected by the assembler front end. However, if the proper encoding
// for an instruction is dependent on the assembler context then the matcher
// is responsible for selecting the correct machine instruction for the
// current mode.
//
// The core matching algorithm attempts to exploit the regularity in most
// instruction sets to quickly determine the set of possibly matching
// instructions, and the simplify the generated code. Additionally, this helps
// to ensure that the ambiguities are intentionally resolved by the user.
//
// The matching is divided into two distinct phases:
//
// 1. Classification: Each operand is mapped to the unique set which (a)
// contains it, and (b) is the largest such subset for which a single
// instruction could match all members.
//
// For register classes, we can generate these subgroups automatically. For
// arbitrary operands, we expect the user to define the classes and their
// relations to one another (for example, 8-bit signed immediates as a
// subset of 32-bit immediates).
//
// By partitioning the operands in this way, we guarantee that for any
// tuple of classes, any single instruction must match either all or none
// of the sets of operands which could classify to that tuple.
//
// In addition, the subset relation amongst classes induces a partial order
// on such tuples, which we use to resolve ambiguities.
//
// FIXME: What do we do if a crazy case shows up where this is the wrong
// resolution?
//
// 2. The input can now be treated as a tuple of classes (static tokens are
// simple singleton sets). Each such tuple should generally map to a single
// instruction (we currently ignore cases where this isn't true, whee!!!),
// which we can emit a simple matcher for.
//
//===----------------------------------------------------------------------===//
#include "AsmMatcherEmitter.h"
#include "CodeGenTarget.h"
#include "Record.h"
#include "llvm/ADT/OwningPtr.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include <list>
#include <map>
#include <set>
using namespace llvm;
static cl::opt<std::string>
MatchPrefix("match-prefix", cl::init(""),
cl::desc("Only match instructions with the given prefix"));
/// FlattenVariants - Flatten an .td file assembly string by selecting the
/// variant at index \arg N.
static std::string FlattenVariants(const std::string &AsmString,
unsigned N) {
StringRef Cur = AsmString;
std::string Res = "";
for (;;) {
// Find the start of the next variant string.
size_t VariantsStart = 0;
for (size_t e = Cur.size(); VariantsStart != e; ++VariantsStart)
if (Cur[VariantsStart] == '{' &&
(VariantsStart == 0 || (Cur[VariantsStart-1] != '$' &&
Cur[VariantsStart-1] != '\\')))
break;
// Add the prefix to the result.
Res += Cur.slice(0, VariantsStart);
if (VariantsStart == Cur.size())
break;
++VariantsStart; // Skip the '{'.
// Scan to the end of the variants string.
size_t VariantsEnd = VariantsStart;
unsigned NestedBraces = 1;
for (size_t e = Cur.size(); VariantsEnd != e; ++VariantsEnd) {
if (Cur[VariantsEnd] == '}' && Cur[VariantsEnd-1] != '\\') {
if (--NestedBraces == 0)
break;
} else if (Cur[VariantsEnd] == '{')
++NestedBraces;
}
// Select the Nth variant (or empty).
StringRef Selection = Cur.slice(VariantsStart, VariantsEnd);
for (unsigned i = 0; i != N; ++i)
Selection = Selection.split('|').second;
Res += Selection.split('|').first;
assert(VariantsEnd != Cur.size() &&
"Unterminated variants in assembly string!");
Cur = Cur.substr(VariantsEnd + 1);
}
return Res;
}
/// TokenizeAsmString - Tokenize a simplified assembly string.
static void TokenizeAsmString(const StringRef &AsmString,
SmallVectorImpl<StringRef> &Tokens) {
unsigned Prev = 0;
bool InTok = true;
for (unsigned i = 0, e = AsmString.size(); i != e; ++i) {
switch (AsmString[i]) {
case '[':
case ']':
case '*':
case '!':
case ' ':
case '\t':
case ',':
if (InTok) {
Tokens.push_back(AsmString.slice(Prev, i));
InTok = false;
}
if (!isspace(AsmString[i]) && AsmString[i] != ',')
Tokens.push_back(AsmString.substr(i, 1));
Prev = i + 1;
break;
case '\\':
if (InTok) {
Tokens.push_back(AsmString.slice(Prev, i));
InTok = false;
}
++i;
assert(i != AsmString.size() && "Invalid quoted character");
Tokens.push_back(AsmString.substr(i, 1));
Prev = i + 1;
break;
case '$': {
// If this isn't "${", treat like a normal token.
if (i + 1 == AsmString.size() || AsmString[i + 1] != '{') {
if (InTok) {
Tokens.push_back(AsmString.slice(Prev, i));
InTok = false;
}
Prev = i;
break;
}
if (InTok) {
Tokens.push_back(AsmString.slice(Prev, i));
InTok = false;
}
StringRef::iterator End =
std::find(AsmString.begin() + i, AsmString.end(), '}');
assert(End != AsmString.end() && "Missing brace in operand reference!");
size_t EndPos = End - AsmString.begin();
Tokens.push_back(AsmString.slice(i, EndPos+1));
Prev = EndPos + 1;
i = EndPos;
break;
}
default:
InTok = true;
}
}
if (InTok && Prev != AsmString.size())
Tokens.push_back(AsmString.substr(Prev));
}
static bool IsAssemblerInstruction(const StringRef &Name,
const CodeGenInstruction &CGI,
const SmallVectorImpl<StringRef> &Tokens) {
// Ignore "codegen only" instructions.
if (CGI.TheDef->getValueAsBit("isCodeGenOnly"))
return false;
// Ignore pseudo ops.
//
// FIXME: This is a hack; can we convert these instructions to set the
// "codegen only" bit instead?
if (const RecordVal *Form = CGI.TheDef->getValue("Form"))
if (Form->getValue()->getAsString() == "Pseudo")
return false;
// Ignore "Int_*" and "*_Int" instructions, which are internal aliases.
//
// FIXME: This is a total hack.
if (StringRef(Name).startswith("Int_") || StringRef(Name).endswith("_Int"))
return false;
// Ignore instructions with no .s string.
//
// FIXME: What are these?
if (CGI.AsmString.empty())
return false;
// FIXME: Hack; ignore any instructions with a newline in them.
if (std::find(CGI.AsmString.begin(),
CGI.AsmString.end(), '\n') != CGI.AsmString.end())
return false;
// Ignore instructions with attributes, these are always fake instructions for
// simplifying codegen.
//
// FIXME: Is this true?
//
// Also, check for instructions which reference the operand multiple times;
// this implies a constraint we would not honor.
std::set<std::string> OperandNames;
for (unsigned i = 1, e = Tokens.size(); i < e; ++i) {
if (Tokens[i][0] == '$' &&
std::find(Tokens[i].begin(),
Tokens[i].end(), ':') != Tokens[i].end()) {
DEBUG({
errs() << "warning: '" << Name << "': "
<< "ignoring instruction; operand with attribute '"
<< Tokens[i] << "'\n";
});
return false;
}
if (Tokens[i][0] == '$' && !OperandNames.insert(Tokens[i]).second) {
std::string Err = "'" + Name.str() + "': " +
"invalid assembler instruction; tied operand '" + Tokens[i].str() + "'";
throw TGError(CGI.TheDef->getLoc(), Err);
}
}
return true;
}
namespace {
/// ClassInfo - Helper class for storing the information about a particular
/// class of operands which can be matched.
struct ClassInfo {
enum ClassInfoKind {
/// Invalid kind, for use as a sentinel value.
Invalid = 0,
/// The class for a particular token.
Token,
/// The (first) register class, subsequent register classes are
/// RegisterClass0+1, and so on.
RegisterClass0,
/// The (first) user defined class, subsequent user defined classes are
/// UserClass0+1, and so on.
UserClass0 = 1<<16
};
/// Kind - The class kind, which is either a predefined kind, or (UserClass0 +
/// N) for the Nth user defined class.
unsigned Kind;
/// SuperClasses - The super classes of this class. Note that for simplicities
/// sake user operands only record their immediate super class, while register
/// operands include all superclasses.
std::vector<ClassInfo*> SuperClasses;
/// Name - The full class name, suitable for use in an enum.
std::string Name;
/// ClassName - The unadorned generic name for this class (e.g., Token).
std::string ClassName;
/// ValueName - The name of the value this class represents; for a token this
/// is the literal token string, for an operand it is the TableGen class (or
/// empty if this is a derived class).
std::string ValueName;
/// PredicateMethod - The name of the operand method to test whether the
/// operand matches this class; this is not valid for Token or register kinds.
std::string PredicateMethod;
/// RenderMethod - The name of the operand method to add this operand to an
/// MCInst; this is not valid for Token or register kinds.
std::string RenderMethod;
/// For register classes, the records for all the registers in this class.
std::set<Record*> Registers;
public:
/// isRegisterClass() - Check if this is a register class.
bool isRegisterClass() const {
return Kind >= RegisterClass0 && Kind < UserClass0;
}
/// isUserClass() - Check if this is a user defined class.
bool isUserClass() const {
return Kind >= UserClass0;
}
/// isRelatedTo - Check whether this class is "related" to \arg RHS. Classes
/// are related if they are in the same class hierarchy.
bool isRelatedTo(const ClassInfo &RHS) const {
// Tokens are only related to tokens.
if (Kind == Token || RHS.Kind == Token)
return Kind == Token && RHS.Kind == Token;
// Registers classes are only related to registers classes, and only if
// their intersection is non-empty.
if (isRegisterClass() || RHS.isRegisterClass()) {
if (!isRegisterClass() || !RHS.isRegisterClass())
return false;
std::set<Record*> Tmp;
std::insert_iterator< std::set<Record*> > II(Tmp, Tmp.begin());
std::set_intersection(Registers.begin(), Registers.end(),
RHS.Registers.begin(), RHS.Registers.end(),
II);
return !Tmp.empty();
}
// Otherwise we have two users operands; they are related if they are in the
// same class hierarchy.
//
// FIXME: This is an oversimplification, they should only be related if they
// intersect, however we don't have that information.
assert(isUserClass() && RHS.isUserClass() && "Unexpected class!");
const ClassInfo *Root = this;
while (!Root->SuperClasses.empty())
Root = Root->SuperClasses.front();
const ClassInfo *RHSRoot = &RHS;
while (!RHSRoot->SuperClasses.empty())
RHSRoot = RHSRoot->SuperClasses.front();
return Root == RHSRoot;
}
/// isSubsetOf - Test whether this class is a subset of \arg RHS;
bool isSubsetOf(const ClassInfo &RHS) const {
// This is a subset of RHS if it is the same class...
if (this == &RHS)
return true;
// ... or if any of its super classes are a subset of RHS.
for (std::vector<ClassInfo*>::const_iterator it = SuperClasses.begin(),
ie = SuperClasses.end(); it != ie; ++it)
if ((*it)->isSubsetOf(RHS))
return true;
return false;
}
/// operator< - Compare two classes.
bool operator<(const ClassInfo &RHS) const {
// Unrelated classes can be ordered by kind.
if (!isRelatedTo(RHS))
return Kind < RHS.Kind;
switch (Kind) {
case Invalid:
assert(0 && "Invalid kind!");
case Token:
// Tokens are comparable by value.
//
// FIXME: Compare by enum value.
return ValueName < RHS.ValueName;
default:
// This class preceeds the RHS if it is a proper subset of the RHS.
return this != &RHS && isSubsetOf(RHS);
}
}
};
/// InstructionInfo - Helper class for storing the necessary information for an
/// instruction which is capable of being matched.
struct InstructionInfo {
struct Operand {
/// The unique class instance this operand should match.
ClassInfo *Class;
/// The original operand this corresponds to, if any.
const CodeGenInstruction::OperandInfo *OperandInfo;
};
/// InstrName - The target name for this instruction.
std::string InstrName;
/// Instr - The instruction this matches.
const CodeGenInstruction *Instr;
/// AsmString - The assembly string for this instruction (with variants
/// removed).
std::string AsmString;
/// Tokens - The tokenized assembly pattern that this instruction matches.
SmallVector<StringRef, 4> Tokens;
/// Operands - The operands that this instruction matches.
SmallVector<Operand, 4> Operands;
/// ConversionFnKind - The enum value which is passed to the generated
/// ConvertToMCInst to convert parsed operands into an MCInst for this
/// function.
std::string ConversionFnKind;
/// operator< - Compare two instructions.
bool operator<(const InstructionInfo &RHS) const {
if (Operands.size() != RHS.Operands.size())
return Operands.size() < RHS.Operands.size();
// Compare lexicographically by operand. The matcher validates that other
// orderings wouldn't be ambiguous using \see CouldMatchAmiguouslyWith().
for (unsigned i = 0, e = Operands.size(); i != e; ++i) {
if (*Operands[i].Class < *RHS.Operands[i].Class)
return true;
if (*RHS.Operands[i].Class < *Operands[i].Class)
return false;
}
return false;
}
/// CouldMatchAmiguouslyWith - Check whether this instruction could
/// ambiguously match the same set of operands as \arg RHS (without being a
/// strictly superior match).
bool CouldMatchAmiguouslyWith(const InstructionInfo &RHS) {
// The number of operands is unambiguous.
if (Operands.size() != RHS.Operands.size())
return false;
// Otherwise, make sure the ordering of the two instructions is unambiguous
// by checking that either (a) a token or operand kind discriminates them,
// or (b) the ordering among equivalent kinds is consistent.
// Tokens and operand kinds are unambiguous (assuming a correct target
// specific parser).
for (unsigned i = 0, e = Operands.size(); i != e; ++i)
if (Operands[i].Class->Kind != RHS.Operands[i].Class->Kind ||
Operands[i].Class->Kind == ClassInfo::Token)
if (*Operands[i].Class < *RHS.Operands[i].Class ||
*RHS.Operands[i].Class < *Operands[i].Class)
return false;
// Otherwise, this operand could commute if all operands are equivalent, or
// there is a pair of operands that compare less than and a pair that
// compare greater than.
bool HasLT = false, HasGT = false;
for (unsigned i = 0, e = Operands.size(); i != e; ++i) {
if (*Operands[i].Class < *RHS.Operands[i].Class)
HasLT = true;
if (*RHS.Operands[i].Class < *Operands[i].Class)
HasGT = true;
}
return !(HasLT ^ HasGT);
}
public:
void dump();
};
class AsmMatcherInfo {
public:
/// The tablegen AsmParser record.
Record *AsmParser;
/// The AsmParser "CommentDelimiter" value.
std::string CommentDelimiter;
/// The AsmParser "RegisterPrefix" value.
std::string RegisterPrefix;
/// The classes which are needed for matching.
std::vector<ClassInfo*> Classes;
/// The information on the instruction to match.
std::vector<InstructionInfo*> Instructions;
/// Map of Register records to their class information.
std::map<Record*, ClassInfo*> RegisterClasses;
private:
/// Map of token to class information which has already been constructed.
std::map<std::string, ClassInfo*> TokenClasses;
/// Map of RegisterClass records to their class information.
std::map<Record*, ClassInfo*> RegisterClassClasses;
/// Map of AsmOperandClass records to their class information.
std::map<Record*, ClassInfo*> AsmOperandClasses;
private:
/// getTokenClass - Lookup or create the class for the given token.
ClassInfo *getTokenClass(const StringRef &Token);
/// getOperandClass - Lookup or create the class for the given operand.
ClassInfo *getOperandClass(const StringRef &Token,
const CodeGenInstruction::OperandInfo &OI);
/// BuildRegisterClasses - Build the ClassInfo* instances for register
/// classes.
void BuildRegisterClasses(CodeGenTarget &Target,
std::set<std::string> &SingletonRegisterNames);
/// BuildOperandClasses - Build the ClassInfo* instances for user defined
/// operand classes.
void BuildOperandClasses(CodeGenTarget &Target);
public:
AsmMatcherInfo(Record *_AsmParser);
/// BuildInfo - Construct the various tables used during matching.
void BuildInfo(CodeGenTarget &Target);
};
}
void InstructionInfo::dump() {
errs() << InstrName << " -- " << "flattened:\"" << AsmString << '\"'
<< ", tokens:[";
for (unsigned i = 0, e = Tokens.size(); i != e; ++i) {
errs() << Tokens[i];
if (i + 1 != e)
errs() << ", ";
}
errs() << "]\n";
for (unsigned i = 0, e = Operands.size(); i != e; ++i) {
Operand &Op = Operands[i];
errs() << " op[" << i << "] = " << Op.Class->ClassName << " - ";
if (Op.Class->Kind == ClassInfo::Token) {
errs() << '\"' << Tokens[i] << "\"\n";
continue;
}
if (!Op.OperandInfo) {
errs() << "(singleton register)\n";
continue;
}
const CodeGenInstruction::OperandInfo &OI = *Op.OperandInfo;
errs() << OI.Name << " " << OI.Rec->getName()
<< " (" << OI.MIOperandNo << ", " << OI.MINumOperands << ")\n";
}
}
static std::string getEnumNameForToken(const StringRef &Str) {
std::string Res;
for (StringRef::iterator it = Str.begin(), ie = Str.end(); it != ie; ++it) {
switch (*it) {
case '*': Res += "_STAR_"; break;
case '%': Res += "_PCT_"; break;
case ':': Res += "_COLON_"; break;
default:
if (isalnum(*it)) {
Res += *it;
} else {
Res += "_" + utostr((unsigned) *it) + "_";
}
}
}
return Res;
}
/// getRegisterRecord - Get the register record for \arg name, or 0.
static Record *getRegisterRecord(CodeGenTarget &Target, const StringRef &Name) {
for (unsigned i = 0, e = Target.getRegisters().size(); i != e; ++i) {
const CodeGenRegister &Reg = Target.getRegisters()[i];
if (Name == Reg.TheDef->getValueAsString("AsmName"))
return Reg.TheDef;
}
return 0;
}
ClassInfo *AsmMatcherInfo::getTokenClass(const StringRef &Token) {
ClassInfo *&Entry = TokenClasses[Token];
if (!Entry) {
Entry = new ClassInfo();
Entry->Kind = ClassInfo::Token;
Entry->ClassName = "Token";
Entry->Name = "MCK_" + getEnumNameForToken(Token);
Entry->ValueName = Token;
Entry->PredicateMethod = "<invalid>";
Entry->RenderMethod = "<invalid>";
Classes.push_back(Entry);
}
return Entry;
}
ClassInfo *
AsmMatcherInfo::getOperandClass(const StringRef &Token,
const CodeGenInstruction::OperandInfo &OI) {
if (OI.Rec->isSubClassOf("RegisterClass")) {
ClassInfo *CI = RegisterClassClasses[OI.Rec];
if (!CI) {
PrintError(OI.Rec->getLoc(), "register class has no class info!");
throw std::string("ERROR: Missing register class!");
}
return CI;
}
assert(OI.Rec->isSubClassOf("Operand") && "Unexpected operand!");
Record *MatchClass = OI.Rec->getValueAsDef("ParserMatchClass");
ClassInfo *CI = AsmOperandClasses[MatchClass];
if (!CI) {
PrintError(OI.Rec->getLoc(), "operand has no match class!");
throw std::string("ERROR: Missing match class!");
}
return CI;
}
void AsmMatcherInfo::BuildRegisterClasses(CodeGenTarget &Target,
std::set<std::string>
&SingletonRegisterNames) {
std::vector<CodeGenRegisterClass> RegisterClasses;
std::vector<CodeGenRegister> Registers;
RegisterClasses = Target.getRegisterClasses();
Registers = Target.getRegisters();
// The register sets used for matching.
std::set< std::set<Record*> > RegisterSets;
// Gather the defined sets.
for (std::vector<CodeGenRegisterClass>::iterator it = RegisterClasses.begin(),
ie = RegisterClasses.end(); it != ie; ++it)
RegisterSets.insert(std::set<Record*>(it->Elements.begin(),
it->Elements.end()));
// Add any required singleton sets.
for (std::set<std::string>::iterator it = SingletonRegisterNames.begin(),
ie = SingletonRegisterNames.end(); it != ie; ++it)
if (Record *Rec = getRegisterRecord(Target, *it))
RegisterSets.insert(std::set<Record*>(&Rec, &Rec + 1));
// Introduce derived sets where necessary (when a register does not determine
// a unique register set class), and build the mapping of registers to the set
// they should classify to.
std::map<Record*, std::set<Record*> > RegisterMap;
for (std::vector<CodeGenRegister>::iterator it = Registers.begin(),
ie = Registers.end(); it != ie; ++it) {
CodeGenRegister &CGR = *it;
// Compute the intersection of all sets containing this register.
std::set<Record*> ContainingSet;
for (std::set< std::set<Record*> >::iterator it = RegisterSets.begin(),
ie = RegisterSets.end(); it != ie; ++it) {
if (!it->count(CGR.TheDef))
continue;
if (ContainingSet.empty()) {
ContainingSet = *it;
} else {
std::set<Record*> Tmp;
std::swap(Tmp, ContainingSet);
std::insert_iterator< std::set<Record*> > II(ContainingSet,
ContainingSet.begin());
std::set_intersection(Tmp.begin(), Tmp.end(), it->begin(), it->end(),
II);
}
}
if (!ContainingSet.empty()) {
RegisterSets.insert(ContainingSet);
RegisterMap.insert(std::make_pair(CGR.TheDef, ContainingSet));
}
}
// Construct the register classes.
std::map<std::set<Record*>, ClassInfo*> RegisterSetClasses;
unsigned Index = 0;
for (std::set< std::set<Record*> >::iterator it = RegisterSets.begin(),
ie = RegisterSets.end(); it != ie; ++it, ++Index) {
ClassInfo *CI = new ClassInfo();
CI->Kind = ClassInfo::RegisterClass0 + Index;
CI->ClassName = "Reg" + utostr(Index);
CI->Name = "MCK_Reg" + utostr(Index);
CI->ValueName = "";
CI->PredicateMethod = ""; // unused
CI->RenderMethod = "addRegOperands";
CI->Registers = *it;
Classes.push_back(CI);
RegisterSetClasses.insert(std::make_pair(*it, CI));
}
// Find the superclasses; we could compute only the subgroup lattice edges,
// but there isn't really a point.
for (std::set< std::set<Record*> >::iterator it = RegisterSets.begin(),
ie = RegisterSets.end(); it != ie; ++it) {
ClassInfo *CI = RegisterSetClasses[*it];
for (std::set< std::set<Record*> >::iterator it2 = RegisterSets.begin(),
ie2 = RegisterSets.end(); it2 != ie2; ++it2)
if (*it != *it2 &&
std::includes(it2->begin(), it2->end(), it->begin(), it->end()))
CI->SuperClasses.push_back(RegisterSetClasses[*it2]);
}
// Name the register classes which correspond to a user defined RegisterClass.
for (std::vector<CodeGenRegisterClass>::iterator it = RegisterClasses.begin(),
ie = RegisterClasses.end(); it != ie; ++it) {
ClassInfo *CI = RegisterSetClasses[std::set<Record*>(it->Elements.begin(),
it->Elements.end())];
if (CI->ValueName.empty()) {
CI->ClassName = it->getName();
CI->Name = "MCK_" + it->getName();
CI->ValueName = it->getName();
} else
CI->ValueName = CI->ValueName + "," + it->getName();
RegisterClassClasses.insert(std::make_pair(it->TheDef, CI));
}
// Populate the map for individual registers.
for (std::map<Record*, std::set<Record*> >::iterator it = RegisterMap.begin(),
ie = RegisterMap.end(); it != ie; ++it)
this->RegisterClasses[it->first] = RegisterSetClasses[it->second];
// Name the register classes which correspond to singleton registers.
for (std::set<std::string>::iterator it = SingletonRegisterNames.begin(),
ie = SingletonRegisterNames.end(); it != ie; ++it) {
if (Record *Rec = getRegisterRecord(Target, *it)) {
ClassInfo *CI = this->RegisterClasses[Rec];
assert(CI && "Missing singleton register class info!");
if (CI->ValueName.empty()) {
CI->ClassName = Rec->getName();
CI->Name = "MCK_" + Rec->getName();
CI->ValueName = Rec->getName();
} else
CI->ValueName = CI->ValueName + "," + Rec->getName();
}
}
}
void AsmMatcherInfo::BuildOperandClasses(CodeGenTarget &Target) {
std::vector<Record*> AsmOperands;
AsmOperands = Records.getAllDerivedDefinitions("AsmOperandClass");
unsigned Index = 0;
for (std::vector<Record*>::iterator it = AsmOperands.begin(),
ie = AsmOperands.end(); it != ie; ++it, ++Index) {
ClassInfo *CI = new ClassInfo();
CI->Kind = ClassInfo::UserClass0 + Index;
Init *Super = (*it)->getValueInit("SuperClass");
if (DefInit *DI = dynamic_cast<DefInit*>(Super)) {
ClassInfo *SC = AsmOperandClasses[DI->getDef()];
if (!SC)
PrintError((*it)->getLoc(), "Invalid super class reference!");
else
CI->SuperClasses.push_back(SC);
} else {
assert(dynamic_cast<UnsetInit*>(Super) && "Unexpected SuperClass field!");
}
CI->ClassName = (*it)->getValueAsString("Name");
CI->Name = "MCK_" + CI->ClassName;
CI->ValueName = (*it)->getName();
// Get or construct the predicate method name.
Init *PMName = (*it)->getValueInit("PredicateMethod");
if (StringInit *SI = dynamic_cast<StringInit*>(PMName)) {
CI->PredicateMethod = SI->getValue();
} else {
assert(dynamic_cast<UnsetInit*>(PMName) &&
"Unexpected PredicateMethod field!");
CI->PredicateMethod = "is" + CI->ClassName;
}
// Get or construct the render method name.
Init *RMName = (*it)->getValueInit("RenderMethod");
if (StringInit *SI = dynamic_cast<StringInit*>(RMName)) {
CI->RenderMethod = SI->getValue();
} else {
assert(dynamic_cast<UnsetInit*>(RMName) &&
"Unexpected RenderMethod field!");
CI->RenderMethod = "add" + CI->ClassName + "Operands";
}
AsmOperandClasses[*it] = CI;
Classes.push_back(CI);
}
}
AsmMatcherInfo::AsmMatcherInfo(Record *_AsmParser)
: AsmParser(_AsmParser),
CommentDelimiter(AsmParser->getValueAsString("CommentDelimiter")),
RegisterPrefix(AsmParser->getValueAsString("RegisterPrefix"))
{
}
void AsmMatcherInfo::BuildInfo(CodeGenTarget &Target) {
// Parse the instructions; we need to do this first so that we can gather the
// singleton register classes.
std::set<std::string> SingletonRegisterNames;
for (std::map<std::string, CodeGenInstruction>::const_iterator
it = Target.getInstructions().begin(),
ie = Target.getInstructions().end();
it != ie; ++it) {
const CodeGenInstruction &CGI = it->second;
if (!StringRef(it->first).startswith(MatchPrefix))
continue;
OwningPtr<InstructionInfo> II(new InstructionInfo);
II->InstrName = it->first;
II->Instr = &it->second;
II->AsmString = FlattenVariants(CGI.AsmString, 0);
// Remove comments from the asm string.
if (!CommentDelimiter.empty()) {
size_t Idx = StringRef(II->AsmString).find(CommentDelimiter);
if (Idx != StringRef::npos)
II->AsmString = II->AsmString.substr(0, Idx);
}
TokenizeAsmString(II->AsmString, II->Tokens);
// Ignore instructions which shouldn't be matched.
if (!IsAssemblerInstruction(it->first, CGI, II->Tokens))
continue;
// Collect singleton registers, if used.
if (!RegisterPrefix.empty()) {
for (unsigned i = 0, e = II->Tokens.size(); i != e; ++i) {
if (II->Tokens[i].startswith(RegisterPrefix)) {
StringRef RegName = II->Tokens[i].substr(RegisterPrefix.size());
Record *Rec = getRegisterRecord(Target, RegName);
if (!Rec) {
std::string Err = "unable to find register for '" + RegName.str() +
"' (which matches register prefix)";
throw TGError(CGI.TheDef->getLoc(), Err);
}
SingletonRegisterNames.insert(RegName);
}
}
}
Instructions.push_back(II.take());
}
// Build info for the register classes.
BuildRegisterClasses(Target, SingletonRegisterNames);
// Build info for the user defined assembly operand classes.
BuildOperandClasses(Target);
// Build the instruction information.
for (std::vector<InstructionInfo*>::iterator it = Instructions.begin(),
ie = Instructions.end(); it != ie; ++it) {
InstructionInfo *II = *it;
for (unsigned i = 0, e = II->Tokens.size(); i != e; ++i) {
StringRef Token = II->Tokens[i];
// Check for singleton registers.
if (!RegisterPrefix.empty() && Token.startswith(RegisterPrefix)) {
StringRef RegName = II->Tokens[i].substr(RegisterPrefix.size());
InstructionInfo::Operand Op;
Op.Class = RegisterClasses[getRegisterRecord(Target, RegName)];
Op.OperandInfo = 0;
assert(Op.Class && Op.Class->Registers.size() == 1 &&
"Unexpected class for singleton register");
II->Operands.push_back(Op);
continue;
}
// Check for simple tokens.
if (Token[0] != '$') {
InstructionInfo::Operand Op;
Op.Class = getTokenClass(Token);
Op.OperandInfo = 0;
II->Operands.push_back(Op);
continue;
}
// Otherwise this is an operand reference.
StringRef OperandName;
if (Token[1] == '{')
OperandName = Token.substr(2, Token.size() - 3);
else
OperandName = Token.substr(1);
// Map this token to an operand. FIXME: Move elsewhere.
unsigned Idx;
try {
Idx = II->Instr->getOperandNamed(OperandName);
} catch(...) {
throw std::string("error: unable to find operand: '" +
OperandName.str() + "'");
}
const CodeGenInstruction::OperandInfo &OI = II->Instr->OperandList[Idx];
InstructionInfo::Operand Op;
Op.Class = getOperandClass(Token, OI);
Op.OperandInfo = &OI;
II->Operands.push_back(Op);
}
}
// Reorder classes so that classes preceed super classes.
std::sort(Classes.begin(), Classes.end(), less_ptr<ClassInfo>());
}
static void EmitConvertToMCInst(CodeGenTarget &Target,
std::vector<InstructionInfo*> &Infos,
raw_ostream &OS) {
// Write the convert function to a separate stream, so we can drop it after
// the enum.
std::string ConvertFnBody;
raw_string_ostream CvtOS(ConvertFnBody);
// Function we have already generated.
std::set<std::string> GeneratedFns;
// Start the unified conversion function.
CvtOS << "static bool ConvertToMCInst(ConversionKind Kind, MCInst &Inst, "
<< "unsigned Opcode,\n"
<< " const SmallVectorImpl<MCParsedAsmOperand*"
<< "> &Operands) {\n";
CvtOS << " Inst.setOpcode(Opcode);\n";
CvtOS << " switch (Kind) {\n";
CvtOS << " default:\n";
// Start the enum, which we will generate inline.
OS << "// Unified function for converting operants to MCInst instances.\n\n";
OS << "enum ConversionKind {\n";
// TargetOperandClass - This is the target's operand class, like X86Operand.
std::string TargetOperandClass = Target.getName() + "Operand";
for (std::vector<InstructionInfo*>::const_iterator it = Infos.begin(),
ie = Infos.end(); it != ie; ++it) {
InstructionInfo &II = **it;
// Order the (class) operands by the order to convert them into an MCInst.
SmallVector<std::pair<unsigned, unsigned>, 4> MIOperandList;
for (unsigned i = 0, e = II.Operands.size(); i != e; ++i) {
InstructionInfo::Operand &Op = II.Operands[i];
if (Op.OperandInfo)
MIOperandList.push_back(std::make_pair(Op.OperandInfo->MIOperandNo, i));
}
std::sort(MIOperandList.begin(), MIOperandList.end());
// Compute the total number of operands.
unsigned NumMIOperands = 0;
for (unsigned i = 0, e = II.Instr->OperandList.size(); i != e; ++i) {
const CodeGenInstruction::OperandInfo &OI = II.Instr->OperandList[i];
NumMIOperands = std::max(NumMIOperands,
OI.MIOperandNo + OI.MINumOperands);
}
// Build the conversion function signature.
std::string Signature = "Convert";
unsigned CurIndex = 0;
for (unsigned i = 0, e = MIOperandList.size(); i != e; ++i) {
InstructionInfo::Operand &Op = II.Operands[MIOperandList[i].second];
assert(CurIndex <= Op.OperandInfo->MIOperandNo &&
"Duplicate match for instruction operand!");
Signature += "_";
// Skip operands which weren't matched by anything, this occurs when the
// .td file encodes "implicit" operands as explicit ones.
//
// FIXME: This should be removed from the MCInst structure.
for (; CurIndex != Op.OperandInfo->MIOperandNo; ++CurIndex)
Signature += "Imp";
// Registers are always converted the same, don't duplicate the conversion
// function based on them.
//
// FIXME: We could generalize this based on the render method, if it
// mattered.
if (Op.Class->isRegisterClass())
Signature += "Reg";
else
Signature += Op.Class->ClassName;
Signature += utostr(Op.OperandInfo->MINumOperands);
Signature += "_" + utostr(MIOperandList[i].second);
CurIndex += Op.OperandInfo->MINumOperands;
}
// Add any trailing implicit operands.
for (; CurIndex != NumMIOperands; ++CurIndex)
Signature += "Imp";
II.ConversionFnKind = Signature;
// Check if we have already generated this signature.
if (!GeneratedFns.insert(Signature).second)
continue;
// If not, emit it now.
// Add to the enum list.
OS << " " << Signature << ",\n";
// And to the convert function.
CvtOS << " case " << Signature << ":\n";
CurIndex = 0;
for (unsigned i = 0, e = MIOperandList.size(); i != e; ++i) {
InstructionInfo::Operand &Op = II.Operands[MIOperandList[i].second];
// Add the implicit operands.
for (; CurIndex != Op.OperandInfo->MIOperandNo; ++CurIndex)
CvtOS << " Inst.addOperand(MCOperand::CreateReg(0));\n";
CvtOS << " ((" << TargetOperandClass << "*)Operands["
<< MIOperandList[i].second
<< "])->" << Op.Class->RenderMethod
<< "(Inst, " << Op.OperandInfo->MINumOperands << ");\n";
CurIndex += Op.OperandInfo->MINumOperands;
}
// And add trailing implicit operands.
for (; CurIndex != NumMIOperands; ++CurIndex)
CvtOS << " Inst.addOperand(MCOperand::CreateReg(0));\n";
CvtOS << " break;\n";
}
// Finish the convert function.
CvtOS << " }\n";
CvtOS << " return false;\n";
CvtOS << "}\n\n";
// Finish the enum, and drop the convert function after it.
OS << " NumConversionVariants\n";
OS << "};\n\n";
OS << CvtOS.str();
}
/// EmitMatchClassEnumeration - Emit the enumeration for match class kinds.
static void EmitMatchClassEnumeration(CodeGenTarget &Target,
std::vector<ClassInfo*> &Infos,
raw_ostream &OS) {
OS << "namespace {\n\n";
OS << "/// MatchClassKind - The kinds of classes which participate in\n"
<< "/// instruction matching.\n";
OS << "enum MatchClassKind {\n";
OS << " InvalidMatchClass = 0,\n";
for (std::vector<ClassInfo*>::iterator it = Infos.begin(),
ie = Infos.end(); it != ie; ++it) {
ClassInfo &CI = **it;
OS << " " << CI.Name << ", // ";
if (CI.Kind == ClassInfo::Token) {
OS << "'" << CI.ValueName << "'\n";
} else if (CI.isRegisterClass()) {
if (!CI.ValueName.empty())
OS << "register class '" << CI.ValueName << "'\n";
else
OS << "derived register class\n";
} else {
OS << "user defined class '" << CI.ValueName << "'\n";
}
}
OS << " NumMatchClassKinds\n";
OS << "};\n\n";
OS << "}\n\n";
}
/// EmitClassifyOperand - Emit the function to classify an operand.
static void EmitClassifyOperand(CodeGenTarget &Target,
AsmMatcherInfo &Info,
raw_ostream &OS) {
OS << "static MatchClassKind ClassifyOperand(MCParsedAsmOperand *GOp) {\n"
<< " " << Target.getName() << "Operand &Operand = *("
<< Target.getName() << "Operand*)GOp;\n";
// Classify tokens.
OS << " if (Operand.isToken())\n";
OS << " return MatchTokenString(Operand.getToken());\n\n";
// Classify registers.
//
// FIXME: Don't hardcode isReg, getReg.
OS << " if (Operand.isReg()) {\n";
OS << " switch (Operand.getReg()) {\n";
OS << " default: return InvalidMatchClass;\n";
for (std::map<Record*, ClassInfo*>::iterator
it = Info.RegisterClasses.begin(), ie = Info.RegisterClasses.end();
it != ie; ++it)
OS << " case " << Target.getName() << "::"
<< it->first->getName() << ": return " << it->second->Name << ";\n";
OS << " }\n";
OS << " }\n\n";
// Classify user defined operands.
for (std::vector<ClassInfo*>::iterator it = Info.Classes.begin(),
ie = Info.Classes.end(); it != ie; ++it) {
ClassInfo &CI = **it;
if (!CI.isUserClass())
continue;
OS << " // '" << CI.ClassName << "' class";
if (!CI.SuperClasses.empty()) {
OS << ", subclass of ";
for (unsigned i = 0, e = CI.SuperClasses.size(); i != e; ++i) {
if (i) OS << ", ";
OS << "'" << CI.SuperClasses[i]->ClassName << "'";
assert(CI < *CI.SuperClasses[i] && "Invalid class relation!");
}
}
OS << "\n";
OS << " if (Operand." << CI.PredicateMethod << "()) {\n";
// Validate subclass relationships.
if (!CI.SuperClasses.empty()) {
for (unsigned i = 0, e = CI.SuperClasses.size(); i != e; ++i)
OS << " assert(Operand." << CI.SuperClasses[i]->PredicateMethod
<< "() && \"Invalid class relationship!\");\n";
}
OS << " return " << CI.Name << ";\n";
OS << " }\n\n";
}
OS << " return InvalidMatchClass;\n";
OS << "}\n\n";
}
/// EmitIsSubclass - Emit the subclass predicate function.
static void EmitIsSubclass(CodeGenTarget &Target,
std::vector<ClassInfo*> &Infos,
raw_ostream &OS) {
OS << "/// IsSubclass - Compute whether \\arg A is a subclass of \\arg B.\n";
OS << "static bool IsSubclass(MatchClassKind A, MatchClassKind B) {\n";
OS << " if (A == B)\n";
OS << " return true;\n\n";
OS << " switch (A) {\n";
OS << " default:\n";
OS << " return false;\n";
for (std::vector<ClassInfo*>::iterator it = Infos.begin(),
ie = Infos.end(); it != ie; ++it) {
ClassInfo &A = **it;
if (A.Kind != ClassInfo::Token) {
std::vector<StringRef> SuperClasses;
for (std::vector<ClassInfo*>::iterator it = Infos.begin(),
ie = Infos.end(); it != ie; ++it) {
ClassInfo &B = **it;
if (&A != &B && A.isSubsetOf(B))
SuperClasses.push_back(B.Name);
}
if (SuperClasses.empty())
continue;
OS << "\n case " << A.Name << ":\n";
if (SuperClasses.size() == 1) {
OS << " return B == " << SuperClasses.back() << ";\n";
continue;
}
OS << " switch (B) {\n";
OS << " default: return false;\n";
for (unsigned i = 0, e = SuperClasses.size(); i != e; ++i)
OS << " case " << SuperClasses[i] << ": return true;\n";
OS << " }\n";
}
}
OS << " }\n";
OS << "}\n\n";
}
typedef std::pair<std::string, std::string> StringPair;
/// FindFirstNonCommonLetter - Find the first character in the keys of the
/// string pairs that is not shared across the whole set of strings. All
/// strings are assumed to have the same length.
static unsigned
FindFirstNonCommonLetter(const std::vector<const StringPair*> &Matches) {
assert(!Matches.empty());
for (unsigned i = 0, e = Matches[0]->first.size(); i != e; ++i) {
// Check to see if letter i is the same across the set.
char Letter = Matches[0]->first[i];
for (unsigned str = 0, e = Matches.size(); str != e; ++str)
if (Matches[str]->first[i] != Letter)
return i;
}
return Matches[0]->first.size();
}
/// EmitStringMatcherForChar - Given a set of strings that are known to be the
/// same length and whose characters leading up to CharNo are the same, emit
/// code to verify that CharNo and later are the same.
///
/// \return - True if control can leave the emitted code fragment.
static bool EmitStringMatcherForChar(const std::string &StrVariableName,
const std::vector<const StringPair*> &Matches,
unsigned CharNo, unsigned IndentCount,
raw_ostream &OS) {
assert(!Matches.empty() && "Must have at least one string to match!");
std::string Indent(IndentCount*2+4, ' ');
// If we have verified that the entire string matches, we're done: output the
// matching code.
if (CharNo == Matches[0]->first.size()) {
assert(Matches.size() == 1 && "Had duplicate keys to match on");
// FIXME: If Matches[0].first has embeded \n, this will be bad.
OS << Indent << Matches[0]->second << "\t // \"" << Matches[0]->first
<< "\"\n";
return false;
}
// Bucket the matches by the character we are comparing.
std::map<char, std::vector<const StringPair*> > MatchesByLetter;
for (unsigned i = 0, e = Matches.size(); i != e; ++i)
MatchesByLetter[Matches[i]->first[CharNo]].push_back(Matches[i]);
// If we have exactly one bucket to match, see how many characters are common
// across the whole set and match all of them at once.
if (MatchesByLetter.size() == 1) {
unsigned FirstNonCommonLetter = FindFirstNonCommonLetter(Matches);
unsigned NumChars = FirstNonCommonLetter-CharNo;
// Emit code to break out if the prefix doesn't match.
if (NumChars == 1) {
// Do the comparison with if (Str[1] != 'f')
// FIXME: Need to escape general characters.
OS << Indent << "if (" << StrVariableName << "[" << CharNo << "] != '"
<< Matches[0]->first[CharNo] << "')\n";
OS << Indent << " break;\n";
} else {
// Do the comparison with if (Str.substr(1,3) != "foo").
// FIXME: Need to escape general strings.
OS << Indent << "if (" << StrVariableName << ".substr(" << CharNo << ","
<< NumChars << ") != \"";
OS << Matches[0]->first.substr(CharNo, NumChars) << "\")\n";
OS << Indent << " break;\n";
}
return EmitStringMatcherForChar(StrVariableName, Matches,
FirstNonCommonLetter, IndentCount, OS);
}
// Otherwise, we have multiple possible things, emit a switch on the
// character.
OS << Indent << "switch (" << StrVariableName << "[" << CharNo << "]) {\n";
OS << Indent << "default: break;\n";
for (std::map<char, std::vector<const StringPair*> >::iterator LI =
MatchesByLetter.begin(), E = MatchesByLetter.end(); LI != E; ++LI) {
// TODO: escape hard stuff (like \n) if we ever care about it.
OS << Indent << "case '" << LI->first << "':\t // "
<< LI->second.size() << " strings to match.\n";
if (EmitStringMatcherForChar(StrVariableName, LI->second, CharNo+1,
IndentCount+1, OS))
OS << Indent << " break;\n";
}
OS << Indent << "}\n";
return true;
}
/// EmitStringMatcher - Given a list of strings and code to execute when they
/// match, output a simple switch tree to classify the input string.
///
/// If a match is found, the code in Vals[i].second is executed; control must
/// not exit this code fragment. If nothing matches, execution falls through.
///
/// \param StrVariableName - The name of the variable to test.
static void EmitStringMatcher(const std::string &StrVariableName,
const std::vector<StringPair> &Matches,
raw_ostream &OS) {
// First level categorization: group strings by length.
std::map<unsigned, std::vector<const StringPair*> > MatchesByLength;
for (unsigned i = 0, e = Matches.size(); i != e; ++i)
MatchesByLength[Matches[i].first.size()].push_back(&Matches[i]);
// Output a switch statement on length and categorize the elements within each
// bin.
OS << " switch (" << StrVariableName << ".size()) {\n";
OS << " default: break;\n";
for (std::map<unsigned, std::vector<const StringPair*> >::iterator LI =
MatchesByLength.begin(), E = MatchesByLength.end(); LI != E; ++LI) {
OS << " case " << LI->first << ":\t // " << LI->second.size()
<< " strings to match.\n";
if (EmitStringMatcherForChar(StrVariableName, LI->second, 0, 0, OS))
OS << " break;\n";
}
OS << " }\n";
}
/// EmitMatchTokenString - Emit the function to match a token string to the
/// appropriate match class value.
static void EmitMatchTokenString(CodeGenTarget &Target,
std::vector<ClassInfo*> &Infos,
raw_ostream &OS) {
// Construct the match list.
std::vector<StringPair> Matches;
for (std::vector<ClassInfo*>::iterator it = Infos.begin(),
ie = Infos.end(); it != ie; ++it) {
ClassInfo &CI = **it;
if (CI.Kind == ClassInfo::Token)
Matches.push_back(StringPair(CI.ValueName, "return " + CI.Name + ";"));
}
OS << "static MatchClassKind MatchTokenString(const StringRef &Name) {\n";
EmitStringMatcher("Name", Matches, OS);
OS << " return InvalidMatchClass;\n";
OS << "}\n\n";
}
/// EmitMatchRegisterName - Emit the function to match a string to the target
/// specific register enum.
static void EmitMatchRegisterName(CodeGenTarget &Target, Record *AsmParser,
raw_ostream &OS) {
// Construct the match list.
std::vector<StringPair> Matches;
for (unsigned i = 0, e = Target.getRegisters().size(); i != e; ++i) {
const CodeGenRegister &Reg = Target.getRegisters()[i];
if (Reg.TheDef->getValueAsString("AsmName").empty())
continue;
Matches.push_back(StringPair(Reg.TheDef->getValueAsString("AsmName"),
"return " + utostr(i + 1) + ";"));
}
OS << "static unsigned MatchRegisterName(const StringRef &Name) {\n";
EmitStringMatcher("Name", Matches, OS);
OS << " return 0;\n";
OS << "}\n\n";
}
void AsmMatcherEmitter::run(raw_ostream &OS) {
CodeGenTarget Target;
Record *AsmParser = Target.getAsmParser();
std::string ClassName = AsmParser->getValueAsString("AsmParserClassName");
// Compute the information on the instructions to match.
AsmMatcherInfo Info(AsmParser);
Info.BuildInfo(Target);
// Sort the instruction table using the partial order on classes.
std::sort(Info.Instructions.begin(), Info.Instructions.end(),
less_ptr<InstructionInfo>());
DEBUG_WITH_TYPE("instruction_info", {
for (std::vector<InstructionInfo*>::iterator
it = Info.Instructions.begin(), ie = Info.Instructions.end();
it != ie; ++it)
(*it)->dump();
});
// Check for ambiguous instructions.
unsigned NumAmbiguous = 0;
for (unsigned i = 0, e = Info.Instructions.size(); i != e; ++i) {
for (unsigned j = i + 1; j != e; ++j) {
InstructionInfo &A = *Info.Instructions[i];
InstructionInfo &B = *Info.Instructions[j];
if (A.CouldMatchAmiguouslyWith(B)) {
DEBUG_WITH_TYPE("ambiguous_instrs", {
errs() << "warning: ambiguous instruction match:\n";
A.dump();
errs() << "\nis incomparable with:\n";
B.dump();
errs() << "\n\n";
});
++NumAmbiguous;
}
}
}
if (NumAmbiguous)
DEBUG_WITH_TYPE("ambiguous_instrs", {
errs() << "warning: " << NumAmbiguous
<< " ambiguous instructions!\n";
});
// Write the output.
EmitSourceFileHeader("Assembly Matcher Source Fragment", OS);
// Emit the function to match a register name to number.
EmitMatchRegisterName(Target, AsmParser, OS);
OS << "#ifndef REGISTERS_ONLY\n\n";
// Generate the unified function to convert operands into an MCInst.
EmitConvertToMCInst(Target, Info.Instructions, OS);
// Emit the enumeration for classes which participate in matching.
EmitMatchClassEnumeration(Target, Info.Classes, OS);
// Emit the routine to match token strings to their match class.
EmitMatchTokenString(Target, Info.Classes, OS);
// Emit the routine to classify an operand.
EmitClassifyOperand(Target, Info, OS);
// Emit the subclass predicate routine.
EmitIsSubclass(Target, Info.Classes, OS);
// Finally, build the match function.
size_t MaxNumOperands = 0;
for (std::vector<InstructionInfo*>::const_iterator it =
Info.Instructions.begin(), ie = Info.Instructions.end();
it != ie; ++it)
MaxNumOperands = std::max(MaxNumOperands, (*it)->Operands.size());
OS << "bool " << Target.getName() << ClassName
<< "::\nMatchInstruction(const SmallVectorImpl<MCParsedAsmOperand*> "
"&Operands,\n MCInst &Inst) {\n";
// Emit the static match table; unused classes get initalized to 0 which is
// guaranteed to be InvalidMatchClass.
//
// FIXME: We can reduce the size of this table very easily. First, we change
// it so that store the kinds in separate bit-fields for each index, which
// only needs to be the max width used for classes at that index (we also need
// to reject based on this during classification). If we then make sure to
// order the match kinds appropriately (putting mnemonics last), then we
// should only end up using a few bits for each class, especially the ones
// following the mnemonic.
OS << " static const struct MatchEntry {\n";
OS << " unsigned Opcode;\n";
OS << " ConversionKind ConvertFn;\n";
OS << " MatchClassKind Classes[" << MaxNumOperands << "];\n";
OS << " } MatchTable[" << Info.Instructions.size() << "] = {\n";
for (std::vector<InstructionInfo*>::const_iterator it =
Info.Instructions.begin(), ie = Info.Instructions.end();
it != ie; ++it) {
InstructionInfo &II = **it;
OS << " { " << Target.getName() << "::" << II.InstrName
<< ", " << II.ConversionFnKind << ", { ";
for (unsigned i = 0, e = II.Operands.size(); i != e; ++i) {
InstructionInfo::Operand &Op = II.Operands[i];
if (i) OS << ", ";
OS << Op.Class->Name;
}
OS << " } },\n";
}
OS << " };\n\n";
// Emit code to compute the class list for this operand vector.
OS << " // Eliminate obvious mismatches.\n";
OS << " if (Operands.size() > " << MaxNumOperands << ")\n";
OS << " return true;\n\n";
OS << " // Compute the class list for this operand vector.\n";
OS << " MatchClassKind Classes[" << MaxNumOperands << "];\n";
OS << " for (unsigned i = 0, e = Operands.size(); i != e; ++i) {\n";
OS << " Classes[i] = ClassifyOperand(Operands[i]);\n\n";
OS << " // Check for invalid operands before matching.\n";
OS << " if (Classes[i] == InvalidMatchClass)\n";
OS << " return true;\n";
OS << " }\n\n";
OS << " // Mark unused classes.\n";
OS << " for (unsigned i = Operands.size(), e = " << MaxNumOperands << "; "
<< "i != e; ++i)\n";
OS << " Classes[i] = InvalidMatchClass;\n\n";
// Emit code to search the table.
OS << " // Search the table.\n";
OS << " for (const MatchEntry *it = MatchTable, "
<< "*ie = MatchTable + " << Info.Instructions.size()
<< "; it != ie; ++it) {\n";
for (unsigned i = 0; i != MaxNumOperands; ++i) {
OS << " if (!IsSubclass(Classes["
<< i << "], it->Classes[" << i << "]))\n";
OS << " continue;\n";
}
OS << "\n";
OS << " return ConvertToMCInst(it->ConvertFn, Inst, "
<< "it->Opcode, Operands);\n";
OS << " }\n\n";
OS << " return true;\n";
OS << "}\n\n";
OS << "#endif // REGISTERS_ONLY\n";
}