mirror of
https://github.com/RPCS3/llvm-mirror.git
synced 2024-12-04 17:56:53 +00:00
f55c7de5f4
No functional change intended. llvm-svn: 140664
524 lines
17 KiB
C++
524 lines
17 KiB
C++
//===- ExecutionDepsFix.cpp - Fix execution dependecy issues ----*- C++ -*-===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file contains the execution dependency fix pass.
|
|
//
|
|
// Some X86 SSE instructions like mov, and, or, xor are available in different
|
|
// variants for different operand types. These variant instructions are
|
|
// equivalent, but on Nehalem and newer cpus there is extra latency
|
|
// transferring data between integer and floating point domains. ARM cores
|
|
// have similar issues when they are configured with both VFP and NEON
|
|
// pipelines.
|
|
//
|
|
// This pass changes the variant instructions to minimize domain crossings.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#define DEBUG_TYPE "execution-fix"
|
|
#include "llvm/CodeGen/MachineFunctionPass.h"
|
|
#include "llvm/CodeGen/MachineRegisterInfo.h"
|
|
#include "llvm/CodeGen/Passes.h"
|
|
#include "llvm/Target/TargetInstrInfo.h"
|
|
#include "llvm/Target/TargetMachine.h"
|
|
#include "llvm/ADT/DepthFirstIterator.h"
|
|
#include "llvm/Support/Allocator.h"
|
|
#include "llvm/Support/Debug.h"
|
|
#include "llvm/Support/raw_ostream.h"
|
|
using namespace llvm;
|
|
|
|
/// A DomainValue is a bit like LiveIntervals' ValNo, but it also keeps track
|
|
/// of execution domains.
|
|
///
|
|
/// An open DomainValue represents a set of instructions that can still switch
|
|
/// execution domain. Multiple registers may refer to the same open
|
|
/// DomainValue - they will eventually be collapsed to the same execution
|
|
/// domain.
|
|
///
|
|
/// A collapsed DomainValue represents a single register that has been forced
|
|
/// into one of more execution domains. There is a separate collapsed
|
|
/// DomainValue for each register, but it may contain multiple execution
|
|
/// domains. A register value is initially created in a single execution
|
|
/// domain, but if we were forced to pay the penalty of a domain crossing, we
|
|
/// keep track of the fact the the register is now available in multiple
|
|
/// domains.
|
|
namespace {
|
|
struct DomainValue {
|
|
// Basic reference counting.
|
|
unsigned Refs;
|
|
|
|
// Bitmask of available domains. For an open DomainValue, it is the still
|
|
// possible domains for collapsing. For a collapsed DomainValue it is the
|
|
// domains where the register is available for free.
|
|
unsigned AvailableDomains;
|
|
|
|
// Position of the last defining instruction.
|
|
unsigned Dist;
|
|
|
|
// Twiddleable instructions using or defining these registers.
|
|
SmallVector<MachineInstr*, 8> Instrs;
|
|
|
|
// A collapsed DomainValue has no instructions to twiddle - it simply keeps
|
|
// track of the domains where the registers are already available.
|
|
bool isCollapsed() const { return Instrs.empty(); }
|
|
|
|
// Is domain available?
|
|
bool hasDomain(unsigned domain) const {
|
|
return AvailableDomains & (1u << domain);
|
|
}
|
|
|
|
// Mark domain as available.
|
|
void addDomain(unsigned domain) {
|
|
AvailableDomains |= 1u << domain;
|
|
}
|
|
|
|
// Restrict to a single domain available.
|
|
void setSingleDomain(unsigned domain) {
|
|
AvailableDomains = 1u << domain;
|
|
}
|
|
|
|
// Return bitmask of domains that are available and in mask.
|
|
unsigned getCommonDomains(unsigned mask) const {
|
|
return AvailableDomains & mask;
|
|
}
|
|
|
|
// First domain available.
|
|
unsigned getFirstDomain() const {
|
|
return CountTrailingZeros_32(AvailableDomains);
|
|
}
|
|
|
|
DomainValue() { clear(); }
|
|
|
|
void clear() {
|
|
Refs = AvailableDomains = Dist = 0;
|
|
Instrs.clear();
|
|
}
|
|
};
|
|
}
|
|
|
|
namespace {
|
|
class ExeDepsFix : public MachineFunctionPass {
|
|
static char ID;
|
|
SpecificBumpPtrAllocator<DomainValue> Allocator;
|
|
SmallVector<DomainValue*,16> Avail;
|
|
|
|
const TargetRegisterClass *const RC;
|
|
MachineFunction *MF;
|
|
const TargetInstrInfo *TII;
|
|
const TargetRegisterInfo *TRI;
|
|
MachineBasicBlock *MBB;
|
|
std::vector<int> AliasMap;
|
|
const unsigned NumRegs;
|
|
DomainValue **LiveRegs;
|
|
typedef DenseMap<MachineBasicBlock*,DomainValue**> LiveOutMap;
|
|
LiveOutMap LiveOuts;
|
|
unsigned Distance;
|
|
|
|
public:
|
|
ExeDepsFix(const TargetRegisterClass *rc)
|
|
: MachineFunctionPass(ID), RC(rc), NumRegs(RC->getNumRegs()) {}
|
|
|
|
virtual void getAnalysisUsage(AnalysisUsage &AU) const {
|
|
AU.setPreservesAll();
|
|
MachineFunctionPass::getAnalysisUsage(AU);
|
|
}
|
|
|
|
virtual bool runOnMachineFunction(MachineFunction &MF);
|
|
|
|
virtual const char *getPassName() const {
|
|
return "SSE execution domain fixup";
|
|
}
|
|
|
|
private:
|
|
// Register mapping.
|
|
int RegIndex(unsigned Reg);
|
|
|
|
// DomainValue allocation.
|
|
DomainValue *Alloc(int domain = -1);
|
|
void Recycle(DomainValue*);
|
|
|
|
// LiveRegs manipulations.
|
|
void SetLiveReg(int rx, DomainValue *DV);
|
|
void Kill(int rx);
|
|
void Force(int rx, unsigned domain);
|
|
void Collapse(DomainValue *dv, unsigned domain);
|
|
bool Merge(DomainValue *A, DomainValue *B);
|
|
|
|
void enterBasicBlock();
|
|
void visitGenericInstr(MachineInstr*);
|
|
void visitSoftInstr(MachineInstr*, unsigned mask);
|
|
void visitHardInstr(MachineInstr*, unsigned domain);
|
|
};
|
|
}
|
|
|
|
char ExeDepsFix::ID = 0;
|
|
|
|
/// Translate TRI register number to an index into our smaller tables of
|
|
/// interesting registers. Return -1 for boring registers.
|
|
int ExeDepsFix::RegIndex(unsigned Reg) {
|
|
assert(Reg < AliasMap.size() && "Invalid register");
|
|
return AliasMap[Reg];
|
|
}
|
|
|
|
DomainValue *ExeDepsFix::Alloc(int domain) {
|
|
DomainValue *dv = Avail.empty() ?
|
|
new(Allocator.Allocate()) DomainValue :
|
|
Avail.pop_back_val();
|
|
dv->Dist = Distance;
|
|
if (domain >= 0)
|
|
dv->addDomain(domain);
|
|
return dv;
|
|
}
|
|
|
|
void ExeDepsFix::Recycle(DomainValue *dv) {
|
|
assert(dv && "Cannot recycle NULL");
|
|
dv->clear();
|
|
Avail.push_back(dv);
|
|
}
|
|
|
|
/// Set LiveRegs[rx] = dv, updating reference counts.
|
|
void ExeDepsFix::SetLiveReg(int rx, DomainValue *dv) {
|
|
assert(unsigned(rx) < NumRegs && "Invalid index");
|
|
if (!LiveRegs) {
|
|
LiveRegs = new DomainValue*[NumRegs];
|
|
std::fill(LiveRegs, LiveRegs+NumRegs, (DomainValue*)0);
|
|
}
|
|
|
|
if (LiveRegs[rx] == dv)
|
|
return;
|
|
if (LiveRegs[rx]) {
|
|
assert(LiveRegs[rx]->Refs && "Bad refcount");
|
|
if (--LiveRegs[rx]->Refs == 0) Recycle(LiveRegs[rx]);
|
|
}
|
|
LiveRegs[rx] = dv;
|
|
if (dv) ++dv->Refs;
|
|
}
|
|
|
|
// Kill register rx, recycle or collapse any DomainValue.
|
|
void ExeDepsFix::Kill(int rx) {
|
|
assert(unsigned(rx) < NumRegs && "Invalid index");
|
|
if (!LiveRegs || !LiveRegs[rx]) return;
|
|
|
|
// Before killing the last reference to an open DomainValue, collapse it to
|
|
// the first available domain.
|
|
if (LiveRegs[rx]->Refs == 1 && !LiveRegs[rx]->isCollapsed())
|
|
Collapse(LiveRegs[rx], LiveRegs[rx]->getFirstDomain());
|
|
else
|
|
SetLiveReg(rx, 0);
|
|
}
|
|
|
|
/// Force register rx into domain.
|
|
void ExeDepsFix::Force(int rx, unsigned domain) {
|
|
assert(unsigned(rx) < NumRegs && "Invalid index");
|
|
DomainValue *dv;
|
|
if (LiveRegs && (dv = LiveRegs[rx])) {
|
|
if (dv->isCollapsed())
|
|
dv->addDomain(domain);
|
|
else if (dv->hasDomain(domain))
|
|
Collapse(dv, domain);
|
|
else {
|
|
// This is an incompatible open DomainValue. Collapse it to whatever and
|
|
// force the new value into domain. This costs a domain crossing.
|
|
Collapse(dv, dv->getFirstDomain());
|
|
assert(LiveRegs[rx] && "Not live after collapse?");
|
|
LiveRegs[rx]->addDomain(domain);
|
|
}
|
|
} else {
|
|
// Set up basic collapsed DomainValue.
|
|
SetLiveReg(rx, Alloc(domain));
|
|
}
|
|
}
|
|
|
|
/// Collapse open DomainValue into given domain. If there are multiple
|
|
/// registers using dv, they each get a unique collapsed DomainValue.
|
|
void ExeDepsFix::Collapse(DomainValue *dv, unsigned domain) {
|
|
assert(dv->hasDomain(domain) && "Cannot collapse");
|
|
|
|
// Collapse all the instructions.
|
|
while (!dv->Instrs.empty())
|
|
TII->setExecutionDomain(dv->Instrs.pop_back_val(), domain);
|
|
dv->setSingleDomain(domain);
|
|
|
|
// If there are multiple users, give them new, unique DomainValues.
|
|
if (LiveRegs && dv->Refs > 1)
|
|
for (unsigned rx = 0; rx != NumRegs; ++rx)
|
|
if (LiveRegs[rx] == dv)
|
|
SetLiveReg(rx, Alloc(domain));
|
|
}
|
|
|
|
/// Merge - All instructions and registers in B are moved to A, and B is
|
|
/// released.
|
|
bool ExeDepsFix::Merge(DomainValue *A, DomainValue *B) {
|
|
assert(!A->isCollapsed() && "Cannot merge into collapsed");
|
|
assert(!B->isCollapsed() && "Cannot merge from collapsed");
|
|
if (A == B)
|
|
return true;
|
|
// Restrict to the domains that A and B have in common.
|
|
unsigned common = A->getCommonDomains(B->AvailableDomains);
|
|
if (!common)
|
|
return false;
|
|
A->AvailableDomains = common;
|
|
A->Dist = std::max(A->Dist, B->Dist);
|
|
A->Instrs.append(B->Instrs.begin(), B->Instrs.end());
|
|
for (unsigned rx = 0; rx != NumRegs; ++rx)
|
|
if (LiveRegs[rx] == B)
|
|
SetLiveReg(rx, A);
|
|
return true;
|
|
}
|
|
|
|
void ExeDepsFix::enterBasicBlock() {
|
|
// Try to coalesce live-out registers from predecessors.
|
|
for (MachineBasicBlock::livein_iterator i = MBB->livein_begin(),
|
|
e = MBB->livein_end(); i != e; ++i) {
|
|
int rx = RegIndex(*i);
|
|
if (rx < 0) continue;
|
|
for (MachineBasicBlock::const_pred_iterator pi = MBB->pred_begin(),
|
|
pe = MBB->pred_end(); pi != pe; ++pi) {
|
|
LiveOutMap::const_iterator fi = LiveOuts.find(*pi);
|
|
if (fi == LiveOuts.end()) continue;
|
|
DomainValue *pdv = fi->second[rx];
|
|
if (!pdv) continue;
|
|
if (!LiveRegs || !LiveRegs[rx]) {
|
|
SetLiveReg(rx, pdv);
|
|
continue;
|
|
}
|
|
|
|
// We have a live DomainValue from more than one predecessor.
|
|
if (LiveRegs[rx]->isCollapsed()) {
|
|
// We are already collapsed, but predecessor is not. Force him.
|
|
unsigned domain = LiveRegs[rx]->getFirstDomain();
|
|
if (!pdv->isCollapsed() && pdv->hasDomain(domain))
|
|
Collapse(pdv, domain);
|
|
continue;
|
|
}
|
|
|
|
// Currently open, merge in predecessor.
|
|
if (!pdv->isCollapsed())
|
|
Merge(LiveRegs[rx], pdv);
|
|
else
|
|
Force(rx, pdv->getFirstDomain());
|
|
}
|
|
}
|
|
}
|
|
|
|
// A hard instruction only works in one domain. All input registers will be
|
|
// forced into that domain.
|
|
void ExeDepsFix::visitHardInstr(MachineInstr *mi, unsigned domain) {
|
|
// Collapse all uses.
|
|
for (unsigned i = mi->getDesc().getNumDefs(),
|
|
e = mi->getDesc().getNumOperands(); i != e; ++i) {
|
|
MachineOperand &mo = mi->getOperand(i);
|
|
if (!mo.isReg()) continue;
|
|
int rx = RegIndex(mo.getReg());
|
|
if (rx < 0) continue;
|
|
Force(rx, domain);
|
|
}
|
|
|
|
// Kill all defs and force them.
|
|
for (unsigned i = 0, e = mi->getDesc().getNumDefs(); i != e; ++i) {
|
|
MachineOperand &mo = mi->getOperand(i);
|
|
if (!mo.isReg()) continue;
|
|
int rx = RegIndex(mo.getReg());
|
|
if (rx < 0) continue;
|
|
Kill(rx);
|
|
Force(rx, domain);
|
|
}
|
|
}
|
|
|
|
// A soft instruction can be changed to work in other domains given by mask.
|
|
void ExeDepsFix::visitSoftInstr(MachineInstr *mi, unsigned mask) {
|
|
// Bitmask of available domains for this instruction after taking collapsed
|
|
// operands into account.
|
|
unsigned available = mask;
|
|
|
|
// Scan the explicit use operands for incoming domains.
|
|
SmallVector<int, 4> used;
|
|
if (LiveRegs)
|
|
for (unsigned i = mi->getDesc().getNumDefs(),
|
|
e = mi->getDesc().getNumOperands(); i != e; ++i) {
|
|
MachineOperand &mo = mi->getOperand(i);
|
|
if (!mo.isReg()) continue;
|
|
int rx = RegIndex(mo.getReg());
|
|
if (rx < 0) continue;
|
|
if (DomainValue *dv = LiveRegs[rx]) {
|
|
// Bitmask of domains that dv and available have in common.
|
|
unsigned common = dv->getCommonDomains(available);
|
|
// Is it possible to use this collapsed register for free?
|
|
if (dv->isCollapsed()) {
|
|
// Restrict available domains to the ones in common with the operand.
|
|
// If there are no common domains, we must pay the cross-domain
|
|
// penalty for this operand.
|
|
if (common) available = common;
|
|
} else if (common)
|
|
// Open DomainValue is compatible, save it for merging.
|
|
used.push_back(rx);
|
|
else
|
|
// Open DomainValue is not compatible with instruction. It is useless
|
|
// now.
|
|
Kill(rx);
|
|
}
|
|
}
|
|
|
|
// If the collapsed operands force a single domain, propagate the collapse.
|
|
if (isPowerOf2_32(available)) {
|
|
unsigned domain = CountTrailingZeros_32(available);
|
|
TII->setExecutionDomain(mi, domain);
|
|
visitHardInstr(mi, domain);
|
|
return;
|
|
}
|
|
|
|
// Kill off any remaining uses that don't match available, and build a list of
|
|
// incoming DomainValues that we want to merge.
|
|
SmallVector<DomainValue*,4> doms;
|
|
for (SmallVector<int, 4>::iterator i=used.begin(), e=used.end(); i!=e; ++i) {
|
|
int rx = *i;
|
|
DomainValue *dv = LiveRegs[rx];
|
|
// This useless DomainValue could have been missed above.
|
|
if (!dv->getCommonDomains(available)) {
|
|
Kill(*i);
|
|
continue;
|
|
}
|
|
// sorted, uniqued insert.
|
|
bool inserted = false;
|
|
for (SmallVector<DomainValue*,4>::iterator i = doms.begin(), e = doms.end();
|
|
i != e && !inserted; ++i) {
|
|
if (dv == *i)
|
|
inserted = true;
|
|
else if (dv->Dist < (*i)->Dist) {
|
|
inserted = true;
|
|
doms.insert(i, dv);
|
|
}
|
|
}
|
|
if (!inserted)
|
|
doms.push_back(dv);
|
|
}
|
|
|
|
// doms are now sorted in order of appearance. Try to merge them all, giving
|
|
// priority to the latest ones.
|
|
DomainValue *dv = 0;
|
|
while (!doms.empty()) {
|
|
if (!dv) {
|
|
dv = doms.pop_back_val();
|
|
continue;
|
|
}
|
|
|
|
DomainValue *latest = doms.pop_back_val();
|
|
if (Merge(dv, latest)) continue;
|
|
|
|
// If latest didn't merge, it is useless now. Kill all registers using it.
|
|
for (SmallVector<int,4>::iterator i=used.begin(), e=used.end(); i != e; ++i)
|
|
if (LiveRegs[*i] == latest)
|
|
Kill(*i);
|
|
}
|
|
|
|
// dv is the DomainValue we are going to use for this instruction.
|
|
if (!dv)
|
|
dv = Alloc();
|
|
dv->Dist = Distance;
|
|
dv->AvailableDomains = available;
|
|
dv->Instrs.push_back(mi);
|
|
|
|
// Finally set all defs and non-collapsed uses to dv.
|
|
for (unsigned i = 0, e = mi->getDesc().getNumOperands(); i != e; ++i) {
|
|
MachineOperand &mo = mi->getOperand(i);
|
|
if (!mo.isReg()) continue;
|
|
int rx = RegIndex(mo.getReg());
|
|
if (rx < 0) continue;
|
|
if (!LiveRegs || !LiveRegs[rx] || (mo.isDef() && LiveRegs[rx]!=dv)) {
|
|
Kill(rx);
|
|
SetLiveReg(rx, dv);
|
|
}
|
|
}
|
|
}
|
|
|
|
void ExeDepsFix::visitGenericInstr(MachineInstr *mi) {
|
|
// Process explicit defs, kill any relevant registers redefined.
|
|
for (unsigned i = 0, e = mi->getDesc().getNumDefs(); i != e; ++i) {
|
|
MachineOperand &mo = mi->getOperand(i);
|
|
if (!mo.isReg()) continue;
|
|
int rx = RegIndex(mo.getReg());
|
|
if (rx < 0) continue;
|
|
Kill(rx);
|
|
}
|
|
}
|
|
|
|
bool ExeDepsFix::runOnMachineFunction(MachineFunction &mf) {
|
|
MF = &mf;
|
|
TII = MF->getTarget().getInstrInfo();
|
|
TRI = MF->getTarget().getRegisterInfo();
|
|
MBB = 0;
|
|
LiveRegs = 0;
|
|
Distance = 0;
|
|
assert(NumRegs == RC->getNumRegs() && "Bad regclass");
|
|
|
|
// If no relevant registers are used in the function, we can skip it
|
|
// completely.
|
|
bool anyregs = false;
|
|
for (TargetRegisterClass::const_iterator I = RC->begin(), E = RC->end();
|
|
I != E; ++I)
|
|
if (MF->getRegInfo().isPhysRegUsed(*I)) {
|
|
anyregs = true;
|
|
break;
|
|
}
|
|
if (!anyregs) return false;
|
|
|
|
// Initialize the AliasMap on the first use.
|
|
if (AliasMap.empty()) {
|
|
// Given a PhysReg, AliasMap[PhysReg] is either the relevant index into RC,
|
|
// or -1.
|
|
AliasMap.resize(TRI->getNumRegs(), -1);
|
|
for (unsigned i = 0, e = RC->getNumRegs(); i != e; ++i)
|
|
for (const unsigned *AI = TRI->getOverlaps(RC->getRegister(i)); *AI; ++AI)
|
|
AliasMap[*AI] = i;
|
|
}
|
|
|
|
MachineBasicBlock *Entry = MF->begin();
|
|
SmallPtrSet<MachineBasicBlock*, 16> Visited;
|
|
for (df_ext_iterator<MachineBasicBlock*, SmallPtrSet<MachineBasicBlock*, 16> >
|
|
DFI = df_ext_begin(Entry, Visited), DFE = df_ext_end(Entry, Visited);
|
|
DFI != DFE; ++DFI) {
|
|
MBB = *DFI;
|
|
enterBasicBlock();
|
|
for (MachineBasicBlock::iterator I = MBB->begin(), E = MBB->end(); I != E;
|
|
++I) {
|
|
MachineInstr *mi = I;
|
|
if (mi->isDebugValue()) continue;
|
|
++Distance;
|
|
std::pair<uint16_t, uint16_t> domp = TII->getExecutionDomain(mi);
|
|
if (domp.first)
|
|
if (domp.second)
|
|
visitSoftInstr(mi, domp.second);
|
|
else
|
|
visitHardInstr(mi, domp.first);
|
|
else if (LiveRegs)
|
|
visitGenericInstr(mi);
|
|
}
|
|
|
|
// Save live registers at end of MBB - used by enterBasicBlock().
|
|
if (LiveRegs)
|
|
LiveOuts.insert(std::make_pair(MBB, LiveRegs));
|
|
LiveRegs = 0;
|
|
}
|
|
|
|
// Clear the LiveOuts vectors. Should we also collapse any remaining
|
|
// DomainValues?
|
|
for (LiveOutMap::const_iterator i = LiveOuts.begin(), e = LiveOuts.end();
|
|
i != e; ++i)
|
|
delete[] i->second;
|
|
LiveOuts.clear();
|
|
Avail.clear();
|
|
Allocator.DestroyAll();
|
|
|
|
return false;
|
|
}
|
|
|
|
FunctionPass *
|
|
llvm::createExecutionDependencyFixPass(const TargetRegisterClass *RC) {
|
|
return new ExeDepsFix(RC);
|
|
}
|