mirror of
https://github.com/RPCS3/llvm-mirror.git
synced 2024-12-04 17:56:53 +00:00
a2a555b0fc
across unwind edges. This is for the back-end which expects such things. The code is from the original SjLj EH pass. llvm-svn: 141463
1027 lines
43 KiB
C++
1027 lines
43 KiB
C++
//===- SjLjEHPass.cpp - Eliminate Invoke & Unwind instructions -----------===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This transformation is designed for use by code generators which use SjLj
|
|
// based exception handling.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#define DEBUG_TYPE "sjljehprepare"
|
|
#include "llvm/Transforms/Scalar.h"
|
|
#include "llvm/Constants.h"
|
|
#include "llvm/DerivedTypes.h"
|
|
#include "llvm/Instructions.h"
|
|
#include "llvm/Intrinsics.h"
|
|
#include "llvm/LLVMContext.h"
|
|
#include "llvm/Module.h"
|
|
#include "llvm/Pass.h"
|
|
#include "llvm/CodeGen/Passes.h"
|
|
#include "llvm/Target/TargetData.h"
|
|
#include "llvm/Target/TargetLowering.h"
|
|
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
|
|
#include "llvm/Transforms/Utils/Local.h"
|
|
#include "llvm/Support/CommandLine.h"
|
|
#include "llvm/Support/Debug.h"
|
|
#include "llvm/Support/IRBuilder.h"
|
|
#include "llvm/ADT/DenseMap.h"
|
|
#include "llvm/ADT/SmallVector.h"
|
|
#include "llvm/ADT/Statistic.h"
|
|
#include <set>
|
|
using namespace llvm;
|
|
|
|
static cl::opt<bool> DisableOldSjLjEH("disable-old-sjlj-eh", cl::Hidden,
|
|
cl::desc("Disable the old SjLj EH preparation pass"));
|
|
|
|
STATISTIC(NumInvokes, "Number of invokes replaced");
|
|
STATISTIC(NumUnwinds, "Number of unwinds replaced");
|
|
STATISTIC(NumSpilled, "Number of registers live across unwind edges");
|
|
|
|
namespace {
|
|
class SjLjEHPass : public FunctionPass {
|
|
const TargetLowering *TLI;
|
|
Type *FunctionContextTy;
|
|
Constant *RegisterFn;
|
|
Constant *UnregisterFn;
|
|
Constant *BuiltinSetjmpFn;
|
|
Constant *FrameAddrFn;
|
|
Constant *StackAddrFn;
|
|
Constant *StackRestoreFn;
|
|
Constant *LSDAAddrFn;
|
|
Value *PersonalityFn;
|
|
Constant *SelectorFn;
|
|
Constant *ExceptionFn;
|
|
Constant *CallSiteFn;
|
|
Constant *DispatchSetupFn;
|
|
Constant *FuncCtxFn;
|
|
Value *CallSite;
|
|
DenseMap<InvokeInst*, BasicBlock*> LPadSuccMap;
|
|
public:
|
|
static char ID; // Pass identification, replacement for typeid
|
|
explicit SjLjEHPass(const TargetLowering *tli = NULL)
|
|
: FunctionPass(ID), TLI(tli) { }
|
|
bool doInitialization(Module &M);
|
|
bool runOnFunction(Function &F);
|
|
|
|
virtual void getAnalysisUsage(AnalysisUsage &AU) const {}
|
|
const char *getPassName() const {
|
|
return "SJLJ Exception Handling preparation";
|
|
}
|
|
|
|
private:
|
|
bool setupEntryBlockAndCallSites(Function &F);
|
|
Value *setupFunctionContext(Function &F, ArrayRef<LandingPadInst*> LPads);
|
|
void lowerIncomingArguments(Function &F);
|
|
void lowerAcrossUnwindEdges(Function &F, ArrayRef<InvokeInst*> Invokes);
|
|
|
|
void insertCallSiteStore(Instruction *I, int Number, Value *CallSite);
|
|
void markInvokeCallSite(InvokeInst *II, int InvokeNo, Value *CallSite,
|
|
SwitchInst *CatchSwitch);
|
|
void splitLiveRangesAcrossInvokes(SmallVector<InvokeInst*,16> &Invokes);
|
|
void splitLandingPad(InvokeInst *II);
|
|
bool insertSjLjEHSupport(Function &F);
|
|
};
|
|
} // end anonymous namespace
|
|
|
|
char SjLjEHPass::ID = 0;
|
|
|
|
// Public Interface To the SjLjEHPass pass.
|
|
FunctionPass *llvm::createSjLjEHPass(const TargetLowering *TLI) {
|
|
return new SjLjEHPass(TLI);
|
|
}
|
|
// doInitialization - Set up decalarations and types needed to process
|
|
// exceptions.
|
|
bool SjLjEHPass::doInitialization(Module &M) {
|
|
// Build the function context structure.
|
|
// builtin_setjmp uses a five word jbuf
|
|
Type *VoidPtrTy = Type::getInt8PtrTy(M.getContext());
|
|
Type *Int32Ty = Type::getInt32Ty(M.getContext());
|
|
FunctionContextTy =
|
|
StructType::get(VoidPtrTy, // __prev
|
|
Int32Ty, // call_site
|
|
ArrayType::get(Int32Ty, 4), // __data
|
|
VoidPtrTy, // __personality
|
|
VoidPtrTy, // __lsda
|
|
ArrayType::get(VoidPtrTy, 5), // __jbuf
|
|
NULL);
|
|
RegisterFn = M.getOrInsertFunction("_Unwind_SjLj_Register",
|
|
Type::getVoidTy(M.getContext()),
|
|
PointerType::getUnqual(FunctionContextTy),
|
|
(Type *)0);
|
|
UnregisterFn =
|
|
M.getOrInsertFunction("_Unwind_SjLj_Unregister",
|
|
Type::getVoidTy(M.getContext()),
|
|
PointerType::getUnqual(FunctionContextTy),
|
|
(Type *)0);
|
|
FrameAddrFn = Intrinsic::getDeclaration(&M, Intrinsic::frameaddress);
|
|
StackAddrFn = Intrinsic::getDeclaration(&M, Intrinsic::stacksave);
|
|
StackRestoreFn = Intrinsic::getDeclaration(&M, Intrinsic::stackrestore);
|
|
BuiltinSetjmpFn = Intrinsic::getDeclaration(&M, Intrinsic::eh_sjlj_setjmp);
|
|
LSDAAddrFn = Intrinsic::getDeclaration(&M, Intrinsic::eh_sjlj_lsda);
|
|
SelectorFn = Intrinsic::getDeclaration(&M, Intrinsic::eh_selector);
|
|
ExceptionFn = Intrinsic::getDeclaration(&M, Intrinsic::eh_exception);
|
|
CallSiteFn = Intrinsic::getDeclaration(&M, Intrinsic::eh_sjlj_callsite);
|
|
DispatchSetupFn
|
|
= Intrinsic::getDeclaration(&M, Intrinsic::eh_sjlj_dispatch_setup);
|
|
FuncCtxFn = Intrinsic::getDeclaration(&M, Intrinsic::eh_sjlj_functioncontext);
|
|
PersonalityFn = 0;
|
|
|
|
return true;
|
|
}
|
|
|
|
/// insertCallSiteStore - Insert a store of the call-site value to the
|
|
/// function context
|
|
void SjLjEHPass::insertCallSiteStore(Instruction *I, int Number,
|
|
Value *CallSite) {
|
|
ConstantInt *CallSiteNoC = ConstantInt::get(Type::getInt32Ty(I->getContext()),
|
|
Number);
|
|
// Insert a store of the call-site number
|
|
new StoreInst(CallSiteNoC, CallSite, true, I); // volatile
|
|
}
|
|
|
|
/// splitLandingPad - Split a landing pad. This takes considerable care because
|
|
/// of PHIs and other nasties. The problem is that the jump table needs to jump
|
|
/// to the landing pad block. However, the landing pad block can be jumped to
|
|
/// only by an invoke instruction. So we clone the landingpad instruction into
|
|
/// its own basic block, have the invoke jump to there. The landingpad
|
|
/// instruction's basic block's successor is now the target for the jump table.
|
|
///
|
|
/// But because of PHI nodes, we need to create another basic block for the jump
|
|
/// table to jump to. This is definitely a hack, because the values for the PHI
|
|
/// nodes may not be defined on the edge from the jump table. But that's okay,
|
|
/// because the jump table is simply a construct to mimic what is happening in
|
|
/// the CFG. So the values are mysteriously there, even though there is no value
|
|
/// for the PHI from the jump table's edge (hence calling this a hack).
|
|
void SjLjEHPass::splitLandingPad(InvokeInst *II) {
|
|
SmallVector<BasicBlock*, 2> NewBBs;
|
|
SplitLandingPadPredecessors(II->getUnwindDest(), II->getParent(),
|
|
".1", ".2", this, NewBBs);
|
|
|
|
// Create an empty block so that the jump table has something to jump to
|
|
// which doesn't have any PHI nodes.
|
|
BasicBlock *LPad = NewBBs[0];
|
|
BasicBlock *Succ = *succ_begin(LPad);
|
|
BasicBlock *JumpTo = BasicBlock::Create(II->getContext(), "jt.land",
|
|
LPad->getParent(), Succ);
|
|
LPad->getTerminator()->eraseFromParent();
|
|
BranchInst::Create(JumpTo, LPad);
|
|
BranchInst::Create(Succ, JumpTo);
|
|
LPadSuccMap[II] = JumpTo;
|
|
|
|
for (BasicBlock::iterator I = Succ->begin(); isa<PHINode>(I); ++I) {
|
|
PHINode *PN = cast<PHINode>(I);
|
|
Value *Val = PN->removeIncomingValue(LPad, false);
|
|
PN->addIncoming(Val, JumpTo);
|
|
}
|
|
}
|
|
|
|
/// markInvokeCallSite - Insert code to mark the call_site for this invoke
|
|
void SjLjEHPass::markInvokeCallSite(InvokeInst *II, int InvokeNo,
|
|
Value *CallSite,
|
|
SwitchInst *CatchSwitch) {
|
|
ConstantInt *CallSiteNoC= ConstantInt::get(Type::getInt32Ty(II->getContext()),
|
|
InvokeNo);
|
|
// The runtime comes back to the dispatcher with the call_site - 1 in
|
|
// the context. Odd, but there it is.
|
|
ConstantInt *SwitchValC = ConstantInt::get(Type::getInt32Ty(II->getContext()),
|
|
InvokeNo - 1);
|
|
|
|
// If the unwind edge has phi nodes, split the edge.
|
|
if (isa<PHINode>(II->getUnwindDest()->begin())) {
|
|
// FIXME: New EH - This if-condition will be always true in the new scheme.
|
|
if (II->getUnwindDest()->isLandingPad())
|
|
splitLandingPad(II);
|
|
else
|
|
SplitCriticalEdge(II, 1, this);
|
|
|
|
// If there are any phi nodes left, they must have a single predecessor.
|
|
while (PHINode *PN = dyn_cast<PHINode>(II->getUnwindDest()->begin())) {
|
|
PN->replaceAllUsesWith(PN->getIncomingValue(0));
|
|
PN->eraseFromParent();
|
|
}
|
|
}
|
|
|
|
// Insert the store of the call site value
|
|
insertCallSiteStore(II, InvokeNo, CallSite);
|
|
|
|
// Record the call site value for the back end so it stays associated with
|
|
// the invoke.
|
|
CallInst::Create(CallSiteFn, CallSiteNoC, "", II);
|
|
|
|
// Add a switch case to our unwind block.
|
|
if (BasicBlock *SuccBB = LPadSuccMap[II]) {
|
|
CatchSwitch->addCase(SwitchValC, SuccBB);
|
|
} else {
|
|
CatchSwitch->addCase(SwitchValC, II->getUnwindDest());
|
|
}
|
|
|
|
// We still want this to look like an invoke so we emit the LSDA properly,
|
|
// so we don't transform the invoke into a call here.
|
|
}
|
|
|
|
/// MarkBlocksLiveIn - Insert BB and all of its predescessors into LiveBBs until
|
|
/// we reach blocks we've already seen.
|
|
static void MarkBlocksLiveIn(BasicBlock *BB, std::set<BasicBlock*> &LiveBBs) {
|
|
if (!LiveBBs.insert(BB).second) return; // already been here.
|
|
|
|
for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI)
|
|
MarkBlocksLiveIn(*PI, LiveBBs);
|
|
}
|
|
|
|
/// splitLiveRangesAcrossInvokes - Each value that is live across an unwind edge
|
|
/// we spill into a stack location, guaranteeing that there is nothing live
|
|
/// across the unwind edge. This process also splits all critical edges
|
|
/// coming out of invoke's.
|
|
/// FIXME: Move this function to a common utility file (Local.cpp?) so
|
|
/// both SjLj and LowerInvoke can use it.
|
|
void SjLjEHPass::
|
|
splitLiveRangesAcrossInvokes(SmallVector<InvokeInst*,16> &Invokes) {
|
|
// First step, split all critical edges from invoke instructions.
|
|
for (unsigned i = 0, e = Invokes.size(); i != e; ++i) {
|
|
InvokeInst *II = Invokes[i];
|
|
SplitCriticalEdge(II, 0, this);
|
|
|
|
// FIXME: New EH - This if-condition will be always true in the new scheme.
|
|
if (II->getUnwindDest()->isLandingPad())
|
|
splitLandingPad(II);
|
|
else
|
|
SplitCriticalEdge(II, 1, this);
|
|
|
|
assert(!isa<PHINode>(II->getNormalDest()) &&
|
|
!isa<PHINode>(II->getUnwindDest()) &&
|
|
"Critical edge splitting left single entry phi nodes?");
|
|
}
|
|
|
|
Function *F = Invokes.back()->getParent()->getParent();
|
|
|
|
// To avoid having to handle incoming arguments specially, we lower each arg
|
|
// to a copy instruction in the entry block. This ensures that the argument
|
|
// value itself cannot be live across the entry block.
|
|
BasicBlock::iterator AfterAllocaInsertPt = F->begin()->begin();
|
|
while (isa<AllocaInst>(AfterAllocaInsertPt) &&
|
|
isa<ConstantInt>(cast<AllocaInst>(AfterAllocaInsertPt)->getArraySize()))
|
|
++AfterAllocaInsertPt;
|
|
for (Function::arg_iterator AI = F->arg_begin(), E = F->arg_end();
|
|
AI != E; ++AI) {
|
|
Type *Ty = AI->getType();
|
|
// Aggregate types can't be cast, but are legal argument types, so we have
|
|
// to handle them differently. We use an extract/insert pair as a
|
|
// lightweight method to achieve the same goal.
|
|
if (isa<StructType>(Ty) || isa<ArrayType>(Ty) || isa<VectorType>(Ty)) {
|
|
Instruction *EI = ExtractValueInst::Create(AI, 0, "",AfterAllocaInsertPt);
|
|
Instruction *NI = InsertValueInst::Create(AI, EI, 0);
|
|
NI->insertAfter(EI);
|
|
AI->replaceAllUsesWith(NI);
|
|
// Set the operand of the instructions back to the AllocaInst.
|
|
EI->setOperand(0, AI);
|
|
NI->setOperand(0, AI);
|
|
} else {
|
|
// This is always a no-op cast because we're casting AI to AI->getType()
|
|
// so src and destination types are identical. BitCast is the only
|
|
// possibility.
|
|
CastInst *NC = new BitCastInst(
|
|
AI, AI->getType(), AI->getName()+".tmp", AfterAllocaInsertPt);
|
|
AI->replaceAllUsesWith(NC);
|
|
// Set the operand of the cast instruction back to the AllocaInst.
|
|
// Normally it's forbidden to replace a CastInst's operand because it
|
|
// could cause the opcode to reflect an illegal conversion. However,
|
|
// we're replacing it here with the same value it was constructed with.
|
|
// We do this because the above replaceAllUsesWith() clobbered the
|
|
// operand, but we want this one to remain.
|
|
NC->setOperand(0, AI);
|
|
}
|
|
}
|
|
|
|
// Finally, scan the code looking for instructions with bad live ranges.
|
|
for (Function::iterator BB = F->begin(), E = F->end(); BB != E; ++BB)
|
|
for (BasicBlock::iterator II = BB->begin(), E = BB->end(); II != E; ++II) {
|
|
// Ignore obvious cases we don't have to handle. In particular, most
|
|
// instructions either have no uses or only have a single use inside the
|
|
// current block. Ignore them quickly.
|
|
Instruction *Inst = II;
|
|
if (Inst->use_empty()) continue;
|
|
if (Inst->hasOneUse() &&
|
|
cast<Instruction>(Inst->use_back())->getParent() == BB &&
|
|
!isa<PHINode>(Inst->use_back())) continue;
|
|
|
|
// If this is an alloca in the entry block, it's not a real register
|
|
// value.
|
|
if (AllocaInst *AI = dyn_cast<AllocaInst>(Inst))
|
|
if (isa<ConstantInt>(AI->getArraySize()) && BB == F->begin())
|
|
continue;
|
|
|
|
// Avoid iterator invalidation by copying users to a temporary vector.
|
|
SmallVector<Instruction*,16> Users;
|
|
for (Value::use_iterator UI = Inst->use_begin(), E = Inst->use_end();
|
|
UI != E; ++UI) {
|
|
Instruction *User = cast<Instruction>(*UI);
|
|
if (User->getParent() != BB || isa<PHINode>(User))
|
|
Users.push_back(User);
|
|
}
|
|
|
|
// Find all of the blocks that this value is live in.
|
|
std::set<BasicBlock*> LiveBBs;
|
|
LiveBBs.insert(Inst->getParent());
|
|
while (!Users.empty()) {
|
|
Instruction *U = Users.back();
|
|
Users.pop_back();
|
|
|
|
if (!isa<PHINode>(U)) {
|
|
MarkBlocksLiveIn(U->getParent(), LiveBBs);
|
|
} else {
|
|
// Uses for a PHI node occur in their predecessor block.
|
|
PHINode *PN = cast<PHINode>(U);
|
|
for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
|
|
if (PN->getIncomingValue(i) == Inst)
|
|
MarkBlocksLiveIn(PN->getIncomingBlock(i), LiveBBs);
|
|
}
|
|
}
|
|
|
|
// Now that we know all of the blocks that this thing is live in, see if
|
|
// it includes any of the unwind locations.
|
|
bool NeedsSpill = false;
|
|
for (unsigned i = 0, e = Invokes.size(); i != e; ++i) {
|
|
BasicBlock *UnwindBlock = Invokes[i]->getUnwindDest();
|
|
if (UnwindBlock != BB && LiveBBs.count(UnwindBlock))
|
|
NeedsSpill = true;
|
|
}
|
|
|
|
// If we decided we need a spill, do it.
|
|
// FIXME: Spilling this way is overkill, as it forces all uses of
|
|
// the value to be reloaded from the stack slot, even those that aren't
|
|
// in the unwind blocks. We should be more selective.
|
|
if (NeedsSpill) {
|
|
++NumSpilled;
|
|
DemoteRegToStack(*Inst, true);
|
|
}
|
|
}
|
|
}
|
|
|
|
/// CreateLandingPadLoad - Load the exception handling values and insert them
|
|
/// into a structure.
|
|
static Instruction *CreateLandingPadLoad(Function &F, Value *ExnAddr,
|
|
Value *SelAddr,
|
|
BasicBlock::iterator InsertPt) {
|
|
Value *Exn = new LoadInst(ExnAddr, "exn", false,
|
|
InsertPt);
|
|
Type *Ty = Type::getInt8PtrTy(F.getContext());
|
|
Exn = CastInst::Create(Instruction::IntToPtr, Exn, Ty, "", InsertPt);
|
|
Value *Sel = new LoadInst(SelAddr, "sel", false, InsertPt);
|
|
|
|
Ty = StructType::get(Exn->getType(), Sel->getType(), NULL);
|
|
InsertValueInst *LPadVal = InsertValueInst::Create(llvm::UndefValue::get(Ty),
|
|
Exn, 0,
|
|
"lpad.val", InsertPt);
|
|
return InsertValueInst::Create(LPadVal, Sel, 1, "lpad.val", InsertPt);
|
|
}
|
|
|
|
/// ReplaceLandingPadVal - Replace the landingpad instruction's value with a
|
|
/// load from the stored values (via CreateLandingPadLoad). This looks through
|
|
/// PHI nodes, and removes them if they are dead.
|
|
static void ReplaceLandingPadVal(Function &F, Instruction *Inst, Value *ExnAddr,
|
|
Value *SelAddr) {
|
|
if (Inst->use_empty()) return;
|
|
|
|
while (!Inst->use_empty()) {
|
|
Instruction *I = cast<Instruction>(Inst->use_back());
|
|
|
|
if (PHINode *PN = dyn_cast<PHINode>(I)) {
|
|
ReplaceLandingPadVal(F, PN, ExnAddr, SelAddr);
|
|
if (PN->use_empty()) PN->eraseFromParent();
|
|
continue;
|
|
}
|
|
|
|
I->replaceUsesOfWith(Inst, CreateLandingPadLoad(F, ExnAddr, SelAddr, I));
|
|
}
|
|
}
|
|
|
|
bool SjLjEHPass::insertSjLjEHSupport(Function &F) {
|
|
SmallVector<ReturnInst*,16> Returns;
|
|
SmallVector<UnwindInst*,16> Unwinds;
|
|
SmallVector<InvokeInst*,16> Invokes;
|
|
|
|
// Look through the terminators of the basic blocks to find invokes, returns
|
|
// and unwinds.
|
|
for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB) {
|
|
if (ReturnInst *RI = dyn_cast<ReturnInst>(BB->getTerminator())) {
|
|
// Remember all return instructions in case we insert an invoke into this
|
|
// function.
|
|
Returns.push_back(RI);
|
|
} else if (InvokeInst *II = dyn_cast<InvokeInst>(BB->getTerminator())) {
|
|
Invokes.push_back(II);
|
|
} else if (UnwindInst *UI = dyn_cast<UnwindInst>(BB->getTerminator())) {
|
|
Unwinds.push_back(UI);
|
|
}
|
|
}
|
|
|
|
NumInvokes += Invokes.size();
|
|
NumUnwinds += Unwinds.size();
|
|
|
|
// If we don't have any invokes, there's nothing to do.
|
|
if (Invokes.empty()) return false;
|
|
|
|
// Find the eh.selector.*, eh.exception and alloca calls.
|
|
//
|
|
// Remember any allocas() that aren't in the entry block, as the
|
|
// jmpbuf saved SP will need to be updated for them.
|
|
//
|
|
// We'll use the first eh.selector to determine the right personality
|
|
// function to use. For SJLJ, we always use the same personality for the
|
|
// whole function, not on a per-selector basis.
|
|
// FIXME: That's a bit ugly. Better way?
|
|
SmallVector<CallInst*,16> EH_Selectors;
|
|
SmallVector<CallInst*,16> EH_Exceptions;
|
|
SmallVector<Instruction*,16> JmpbufUpdatePoints;
|
|
|
|
for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB) {
|
|
// Note: Skip the entry block since there's nothing there that interests
|
|
// us. eh.selector and eh.exception shouldn't ever be there, and we
|
|
// want to disregard any allocas that are there.
|
|
//
|
|
// FIXME: This is awkward. The new EH scheme won't need to skip the entry
|
|
// block.
|
|
if (BB == F.begin()) {
|
|
if (InvokeInst *II = dyn_cast<InvokeInst>(F.begin()->getTerminator())) {
|
|
// FIXME: This will be always non-NULL in the new EH.
|
|
if (LandingPadInst *LPI = II->getUnwindDest()->getLandingPadInst())
|
|
if (!PersonalityFn) PersonalityFn = LPI->getPersonalityFn();
|
|
}
|
|
|
|
continue;
|
|
}
|
|
|
|
for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) {
|
|
if (CallInst *CI = dyn_cast<CallInst>(I)) {
|
|
if (CI->getCalledFunction() == SelectorFn) {
|
|
if (!PersonalityFn) PersonalityFn = CI->getArgOperand(1);
|
|
EH_Selectors.push_back(CI);
|
|
} else if (CI->getCalledFunction() == ExceptionFn) {
|
|
EH_Exceptions.push_back(CI);
|
|
} else if (CI->getCalledFunction() == StackRestoreFn) {
|
|
JmpbufUpdatePoints.push_back(CI);
|
|
}
|
|
} else if (AllocaInst *AI = dyn_cast<AllocaInst>(I)) {
|
|
JmpbufUpdatePoints.push_back(AI);
|
|
} else if (InvokeInst *II = dyn_cast<InvokeInst>(I)) {
|
|
// FIXME: This will be always non-NULL in the new EH.
|
|
if (LandingPadInst *LPI = II->getUnwindDest()->getLandingPadInst())
|
|
if (!PersonalityFn) PersonalityFn = LPI->getPersonalityFn();
|
|
}
|
|
}
|
|
}
|
|
|
|
// If we don't have any eh.selector calls, we can't determine the personality
|
|
// function. Without a personality function, we can't process exceptions.
|
|
if (!PersonalityFn) return false;
|
|
|
|
// We have invokes, so we need to add register/unregister calls to get this
|
|
// function onto the global unwind stack.
|
|
//
|
|
// First thing we need to do is scan the whole function for values that are
|
|
// live across unwind edges. Each value that is live across an unwind edge we
|
|
// spill into a stack location, guaranteeing that there is nothing live across
|
|
// the unwind edge. This process also splits all critical edges coming out of
|
|
// invoke's.
|
|
splitLiveRangesAcrossInvokes(Invokes);
|
|
|
|
|
|
SmallVector<LandingPadInst*, 16> LandingPads;
|
|
for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB) {
|
|
if (InvokeInst *II = dyn_cast<InvokeInst>(BB->getTerminator()))
|
|
// FIXME: This will be always non-NULL in the new EH.
|
|
if (LandingPadInst *LPI = II->getUnwindDest()->getLandingPadInst())
|
|
LandingPads.push_back(LPI);
|
|
}
|
|
|
|
|
|
BasicBlock *EntryBB = F.begin();
|
|
// Create an alloca for the incoming jump buffer ptr and the new jump buffer
|
|
// that needs to be restored on all exits from the function. This is an
|
|
// alloca because the value needs to be added to the global context list.
|
|
unsigned Align = 4; // FIXME: Should be a TLI check?
|
|
AllocaInst *FunctionContext =
|
|
new AllocaInst(FunctionContextTy, 0, Align,
|
|
"fcn_context", F.begin()->begin());
|
|
|
|
Value *Idxs[2];
|
|
Type *Int32Ty = Type::getInt32Ty(F.getContext());
|
|
Value *Zero = ConstantInt::get(Int32Ty, 0);
|
|
// We need to also keep around a reference to the call_site field
|
|
Idxs[0] = Zero;
|
|
Idxs[1] = ConstantInt::get(Int32Ty, 1);
|
|
CallSite = GetElementPtrInst::Create(FunctionContext, Idxs, "call_site",
|
|
EntryBB->getTerminator());
|
|
|
|
// The exception selector comes back in context->data[1]
|
|
Idxs[1] = ConstantInt::get(Int32Ty, 2);
|
|
Value *FCData = GetElementPtrInst::Create(FunctionContext, Idxs, "fc_data",
|
|
EntryBB->getTerminator());
|
|
Idxs[1] = ConstantInt::get(Int32Ty, 1);
|
|
Value *SelectorAddr = GetElementPtrInst::Create(FCData, Idxs,
|
|
"exc_selector_gep",
|
|
EntryBB->getTerminator());
|
|
// The exception value comes back in context->data[0]
|
|
Idxs[1] = Zero;
|
|
Value *ExceptionAddr = GetElementPtrInst::Create(FCData, Idxs,
|
|
"exception_gep",
|
|
EntryBB->getTerminator());
|
|
|
|
// The result of the eh.selector call will be replaced with a a reference to
|
|
// the selector value returned in the function context. We leave the selector
|
|
// itself so the EH analysis later can use it.
|
|
for (int i = 0, e = EH_Selectors.size(); i < e; ++i) {
|
|
CallInst *I = EH_Selectors[i];
|
|
Value *SelectorVal = new LoadInst(SelectorAddr, "select_val", true, I);
|
|
I->replaceAllUsesWith(SelectorVal);
|
|
}
|
|
|
|
// eh.exception calls are replaced with references to the proper location in
|
|
// the context. Unlike eh.selector, the eh.exception calls are removed
|
|
// entirely.
|
|
for (int i = 0, e = EH_Exceptions.size(); i < e; ++i) {
|
|
CallInst *I = EH_Exceptions[i];
|
|
// Possible for there to be duplicates, so check to make sure the
|
|
// instruction hasn't already been removed.
|
|
if (!I->getParent()) continue;
|
|
Value *Val = new LoadInst(ExceptionAddr, "exception", true, I);
|
|
Type *Ty = Type::getInt8PtrTy(F.getContext());
|
|
Val = CastInst::Create(Instruction::IntToPtr, Val, Ty, "", I);
|
|
|
|
I->replaceAllUsesWith(Val);
|
|
I->eraseFromParent();
|
|
}
|
|
|
|
for (unsigned i = 0, e = LandingPads.size(); i != e; ++i)
|
|
ReplaceLandingPadVal(F, LandingPads[i], ExceptionAddr, SelectorAddr);
|
|
|
|
// The entry block changes to have the eh.sjlj.setjmp, with a conditional
|
|
// branch to a dispatch block for non-zero returns. If we return normally,
|
|
// we're not handling an exception and just register the function context and
|
|
// continue.
|
|
|
|
// Create the dispatch block. The dispatch block is basically a big switch
|
|
// statement that goes to all of the invoke landing pads.
|
|
BasicBlock *DispatchBlock =
|
|
BasicBlock::Create(F.getContext(), "eh.sjlj.setjmp.catch", &F);
|
|
|
|
// Insert a load of the callsite in the dispatch block, and a switch on its
|
|
// value. By default, we issue a trap statement.
|
|
BasicBlock *TrapBlock =
|
|
BasicBlock::Create(F.getContext(), "trapbb", &F);
|
|
CallInst::Create(Intrinsic::getDeclaration(F.getParent(), Intrinsic::trap),
|
|
"", TrapBlock);
|
|
new UnreachableInst(F.getContext(), TrapBlock);
|
|
|
|
Value *DispatchLoad = new LoadInst(CallSite, "invoke.num", true,
|
|
DispatchBlock);
|
|
SwitchInst *DispatchSwitch =
|
|
SwitchInst::Create(DispatchLoad, TrapBlock, Invokes.size(),
|
|
DispatchBlock);
|
|
// Split the entry block to insert the conditional branch for the setjmp.
|
|
BasicBlock *ContBlock = EntryBB->splitBasicBlock(EntryBB->getTerminator(),
|
|
"eh.sjlj.setjmp.cont");
|
|
|
|
// Populate the Function Context
|
|
// 1. LSDA address
|
|
// 2. Personality function address
|
|
// 3. jmpbuf (save SP, FP and call eh.sjlj.setjmp)
|
|
|
|
// LSDA address
|
|
Idxs[0] = Zero;
|
|
Idxs[1] = ConstantInt::get(Int32Ty, 4);
|
|
Value *LSDAFieldPtr =
|
|
GetElementPtrInst::Create(FunctionContext, Idxs, "lsda_gep",
|
|
EntryBB->getTerminator());
|
|
Value *LSDA = CallInst::Create(LSDAAddrFn, "lsda_addr",
|
|
EntryBB->getTerminator());
|
|
new StoreInst(LSDA, LSDAFieldPtr, true, EntryBB->getTerminator());
|
|
|
|
Idxs[1] = ConstantInt::get(Int32Ty, 3);
|
|
Value *PersonalityFieldPtr =
|
|
GetElementPtrInst::Create(FunctionContext, Idxs, "lsda_gep",
|
|
EntryBB->getTerminator());
|
|
new StoreInst(PersonalityFn, PersonalityFieldPtr, true,
|
|
EntryBB->getTerminator());
|
|
|
|
// Save the frame pointer.
|
|
Idxs[1] = ConstantInt::get(Int32Ty, 5);
|
|
Value *JBufPtr
|
|
= GetElementPtrInst::Create(FunctionContext, Idxs, "jbuf_gep",
|
|
EntryBB->getTerminator());
|
|
Idxs[1] = ConstantInt::get(Int32Ty, 0);
|
|
Value *FramePtr =
|
|
GetElementPtrInst::Create(JBufPtr, Idxs, "jbuf_fp_gep",
|
|
EntryBB->getTerminator());
|
|
|
|
Value *Val = CallInst::Create(FrameAddrFn,
|
|
ConstantInt::get(Int32Ty, 0),
|
|
"fp",
|
|
EntryBB->getTerminator());
|
|
new StoreInst(Val, FramePtr, true, EntryBB->getTerminator());
|
|
|
|
// Save the stack pointer.
|
|
Idxs[1] = ConstantInt::get(Int32Ty, 2);
|
|
Value *StackPtr =
|
|
GetElementPtrInst::Create(JBufPtr, Idxs, "jbuf_sp_gep",
|
|
EntryBB->getTerminator());
|
|
|
|
Val = CallInst::Create(StackAddrFn, "sp", EntryBB->getTerminator());
|
|
new StoreInst(Val, StackPtr, true, EntryBB->getTerminator());
|
|
|
|
// Call the setjmp instrinsic. It fills in the rest of the jmpbuf.
|
|
Value *SetjmpArg =
|
|
CastInst::Create(Instruction::BitCast, JBufPtr,
|
|
Type::getInt8PtrTy(F.getContext()), "",
|
|
EntryBB->getTerminator());
|
|
Value *DispatchVal = CallInst::Create(BuiltinSetjmpFn, SetjmpArg,
|
|
"",
|
|
EntryBB->getTerminator());
|
|
|
|
// Add a call to dispatch_setup after the setjmp call. This is expanded to any
|
|
// target-specific setup that needs to be done.
|
|
CallInst::Create(DispatchSetupFn, DispatchVal, "", EntryBB->getTerminator());
|
|
|
|
// check the return value of the setjmp. non-zero goes to dispatcher.
|
|
Value *IsNormal = new ICmpInst(EntryBB->getTerminator(),
|
|
ICmpInst::ICMP_EQ, DispatchVal, Zero,
|
|
"notunwind");
|
|
// Nuke the uncond branch.
|
|
EntryBB->getTerminator()->eraseFromParent();
|
|
|
|
// Put in a new condbranch in its place.
|
|
BranchInst::Create(ContBlock, DispatchBlock, IsNormal, EntryBB);
|
|
|
|
// Register the function context and make sure it's known to not throw
|
|
CallInst *Register =
|
|
CallInst::Create(RegisterFn, FunctionContext, "",
|
|
ContBlock->getTerminator());
|
|
Register->setDoesNotThrow();
|
|
|
|
// At this point, we are all set up, update the invoke instructions to mark
|
|
// their call_site values, and fill in the dispatch switch accordingly.
|
|
for (unsigned i = 0, e = Invokes.size(); i != e; ++i)
|
|
markInvokeCallSite(Invokes[i], i+1, CallSite, DispatchSwitch);
|
|
|
|
// Mark call instructions that aren't nounwind as no-action (call_site ==
|
|
// -1). Skip the entry block, as prior to then, no function context has been
|
|
// created for this function and any unexpected exceptions thrown will go
|
|
// directly to the caller's context, which is what we want anyway, so no need
|
|
// to do anything here.
|
|
for (Function::iterator BB = F.begin(), E = F.end(); ++BB != E;) {
|
|
for (BasicBlock::iterator I = BB->begin(), end = BB->end(); I != end; ++I)
|
|
if (CallInst *CI = dyn_cast<CallInst>(I)) {
|
|
// Ignore calls to the EH builtins (eh.selector, eh.exception)
|
|
Constant *Callee = CI->getCalledFunction();
|
|
if (Callee != SelectorFn && Callee != ExceptionFn
|
|
&& !CI->doesNotThrow())
|
|
insertCallSiteStore(CI, -1, CallSite);
|
|
} else if (ResumeInst *RI = dyn_cast<ResumeInst>(I)) {
|
|
insertCallSiteStore(RI, -1, CallSite);
|
|
}
|
|
}
|
|
|
|
// Replace all unwinds with a branch to the unwind handler.
|
|
// ??? Should this ever happen with sjlj exceptions?
|
|
for (unsigned i = 0, e = Unwinds.size(); i != e; ++i) {
|
|
BranchInst::Create(TrapBlock, Unwinds[i]);
|
|
Unwinds[i]->eraseFromParent();
|
|
}
|
|
|
|
// Following any allocas not in the entry block, update the saved SP in the
|
|
// jmpbuf to the new value.
|
|
for (unsigned i = 0, e = JmpbufUpdatePoints.size(); i != e; ++i) {
|
|
Instruction *AI = JmpbufUpdatePoints[i];
|
|
Instruction *StackAddr = CallInst::Create(StackAddrFn, "sp");
|
|
StackAddr->insertAfter(AI);
|
|
Instruction *StoreStackAddr = new StoreInst(StackAddr, StackPtr, true);
|
|
StoreStackAddr->insertAfter(StackAddr);
|
|
}
|
|
|
|
// Finally, for any returns from this function, if this function contains an
|
|
// invoke, add a call to unregister the function context.
|
|
for (unsigned i = 0, e = Returns.size(); i != e; ++i)
|
|
CallInst::Create(UnregisterFn, FunctionContext, "", Returns[i]);
|
|
|
|
return true;
|
|
}
|
|
|
|
/// setupFunctionContext - Allocate the function context on the stack and fill
|
|
/// it with all of the data that we know at this point.
|
|
Value *SjLjEHPass::
|
|
setupFunctionContext(Function &F, ArrayRef<LandingPadInst*> LPads) {
|
|
BasicBlock *EntryBB = F.begin();
|
|
|
|
// Create an alloca for the incoming jump buffer ptr and the new jump buffer
|
|
// that needs to be restored on all exits from the function. This is an alloca
|
|
// because the value needs to be added to the global context list.
|
|
unsigned Align =
|
|
TLI->getTargetData()->getPrefTypeAlignment(FunctionContextTy);
|
|
AllocaInst *FuncCtx =
|
|
new AllocaInst(FunctionContextTy, 0, Align, "fn_context", EntryBB->begin());
|
|
|
|
// Fill in the function context structure.
|
|
Value *Idxs[2];
|
|
Type *Int32Ty = Type::getInt32Ty(F.getContext());
|
|
Value *Zero = ConstantInt::get(Int32Ty, 0);
|
|
Value *One = ConstantInt::get(Int32Ty, 1);
|
|
|
|
// Keep around a reference to the call_site field.
|
|
Idxs[0] = Zero;
|
|
Idxs[1] = One;
|
|
CallSite = GetElementPtrInst::Create(FuncCtx, Idxs, "call_site",
|
|
EntryBB->getTerminator());
|
|
|
|
// Reference the __data field.
|
|
Idxs[1] = ConstantInt::get(Int32Ty, 2);
|
|
Value *FCData = GetElementPtrInst::Create(FuncCtx, Idxs, "__data",
|
|
EntryBB->getTerminator());
|
|
|
|
// The exception value comes back in context->__data[0].
|
|
Idxs[1] = Zero;
|
|
Value *ExceptionAddr = GetElementPtrInst::Create(FCData, Idxs,
|
|
"exception_gep",
|
|
EntryBB->getTerminator());
|
|
|
|
// The exception selector comes back in context->__data[1].
|
|
Idxs[1] = One;
|
|
Value *SelectorAddr = GetElementPtrInst::Create(FCData, Idxs,
|
|
"exn_selector_gep",
|
|
EntryBB->getTerminator());
|
|
|
|
for (unsigned I = 0, E = LPads.size(); I != E; ++I) {
|
|
LandingPadInst *LPI = LPads[I];
|
|
IRBuilder<> Builder(LPI->getParent()->getFirstInsertionPt());
|
|
|
|
Value *ExnVal = Builder.CreateLoad(ExceptionAddr, true, "exn_val");
|
|
ExnVal = Builder.CreateIntToPtr(ExnVal, Type::getInt8PtrTy(F.getContext()));
|
|
Value *SelVal = Builder.CreateLoad(SelectorAddr, true, "exn_selector_val");
|
|
|
|
Type *LPadType = LPI->getType();
|
|
Value *LPadVal = UndefValue::get(LPadType);
|
|
LPadVal = Builder.CreateInsertValue(LPadVal, ExnVal, 0, "lpad.val");
|
|
LPadVal = Builder.CreateInsertValue(LPadVal, SelVal, 1, "lpad.val");
|
|
|
|
LPI->replaceAllUsesWith(LPadVal);
|
|
}
|
|
|
|
// Personality function
|
|
Idxs[1] = ConstantInt::get(Int32Ty, 3);
|
|
if (!PersonalityFn)
|
|
PersonalityFn = LPads[0]->getPersonalityFn();
|
|
Value *PersonalityFieldPtr =
|
|
GetElementPtrInst::Create(FuncCtx, Idxs, "pers_fn_gep",
|
|
EntryBB->getTerminator());
|
|
new StoreInst(PersonalityFn, PersonalityFieldPtr, true,
|
|
EntryBB->getTerminator());
|
|
|
|
// LSDA address
|
|
Idxs[1] = ConstantInt::get(Int32Ty, 4);
|
|
Value *LSDAFieldPtr = GetElementPtrInst::Create(FuncCtx, Idxs, "lsda_gep",
|
|
EntryBB->getTerminator());
|
|
Value *LSDA = CallInst::Create(LSDAAddrFn, "lsda_addr",
|
|
EntryBB->getTerminator());
|
|
new StoreInst(LSDA, LSDAFieldPtr, true, EntryBB->getTerminator());
|
|
|
|
return FuncCtx;
|
|
}
|
|
|
|
/// lowerIncomingArguments - To avoid having to handle incoming arguments
|
|
/// specially, we lower each arg to a copy instruction in the entry block. This
|
|
/// ensures that the argument value itself cannot be live out of the entry
|
|
/// block.
|
|
void SjLjEHPass::lowerIncomingArguments(Function &F) {
|
|
BasicBlock::iterator AfterAllocaInsPt = F.begin()->begin();
|
|
while (isa<AllocaInst>(AfterAllocaInsPt) &&
|
|
isa<ConstantInt>(cast<AllocaInst>(AfterAllocaInsPt)->getArraySize()))
|
|
++AfterAllocaInsPt;
|
|
|
|
for (Function::arg_iterator
|
|
AI = F.arg_begin(), AE = F.arg_end(); AI != AE; ++AI) {
|
|
Type *Ty = AI->getType();
|
|
|
|
// Aggregate types can't be cast, but are legal argument types, so we have
|
|
// to handle them differently. We use an extract/insert pair as a
|
|
// lightweight method to achieve the same goal.
|
|
if (isa<StructType>(Ty) || isa<ArrayType>(Ty) || isa<VectorType>(Ty)) {
|
|
Instruction *EI = ExtractValueInst::Create(AI, 0, "", AfterAllocaInsPt);
|
|
Instruction *NI = InsertValueInst::Create(AI, EI, 0);
|
|
NI->insertAfter(EI);
|
|
AI->replaceAllUsesWith(NI);
|
|
|
|
// Set the operand of the instructions back to the AllocaInst.
|
|
EI->setOperand(0, AI);
|
|
NI->setOperand(0, AI);
|
|
} else {
|
|
// This is always a no-op cast because we're casting AI to AI->getType()
|
|
// so src and destination types are identical. BitCast is the only
|
|
// possibility.
|
|
CastInst *NC =
|
|
new BitCastInst(AI, AI->getType(), AI->getName() + ".tmp",
|
|
AfterAllocaInsPt);
|
|
AI->replaceAllUsesWith(NC);
|
|
|
|
// Set the operand of the cast instruction back to the AllocaInst.
|
|
// Normally it's forbidden to replace a CastInst's operand because it
|
|
// could cause the opcode to reflect an illegal conversion. However, we're
|
|
// replacing it here with the same value it was constructed with. We do
|
|
// this because the above replaceAllUsesWith() clobbered the operand, but
|
|
// we want this one to remain.
|
|
NC->setOperand(0, AI);
|
|
}
|
|
}
|
|
}
|
|
|
|
/// lowerAcrossUnwindEdges - Find all variables which are alive across an unwind
|
|
/// edge and spill them.
|
|
void SjLjEHPass::lowerAcrossUnwindEdges(Function &F,
|
|
ArrayRef<InvokeInst*> Invokes) {
|
|
// Finally, scan the code looking for instructions with bad live ranges.
|
|
for (Function::iterator
|
|
BB = F.begin(), BBE = F.end(); BB != BBE; ++BB) {
|
|
for (BasicBlock::iterator
|
|
II = BB->begin(), IIE = BB->end(); II != IIE; ++II) {
|
|
// Ignore obvious cases we don't have to handle. In particular, most
|
|
// instructions either have no uses or only have a single use inside the
|
|
// current block. Ignore them quickly.
|
|
Instruction *Inst = II;
|
|
if (Inst->use_empty()) continue;
|
|
if (Inst->hasOneUse() &&
|
|
cast<Instruction>(Inst->use_back())->getParent() == BB &&
|
|
!isa<PHINode>(Inst->use_back())) continue;
|
|
|
|
// If this is an alloca in the entry block, it's not a real register
|
|
// value.
|
|
if (AllocaInst *AI = dyn_cast<AllocaInst>(Inst))
|
|
if (isa<ConstantInt>(AI->getArraySize()) && BB == F.begin())
|
|
continue;
|
|
|
|
// Avoid iterator invalidation by copying users to a temporary vector.
|
|
SmallVector<Instruction*, 16> Users;
|
|
for (Value::use_iterator
|
|
UI = Inst->use_begin(), E = Inst->use_end(); UI != E; ++UI) {
|
|
Instruction *User = cast<Instruction>(*UI);
|
|
if (User->getParent() != BB || isa<PHINode>(User))
|
|
Users.push_back(User);
|
|
}
|
|
|
|
// Find all of the blocks that this value is live in.
|
|
std::set<BasicBlock*> LiveBBs;
|
|
LiveBBs.insert(Inst->getParent());
|
|
while (!Users.empty()) {
|
|
Instruction *U = Users.back();
|
|
Users.pop_back();
|
|
|
|
if (!isa<PHINode>(U)) {
|
|
MarkBlocksLiveIn(U->getParent(), LiveBBs);
|
|
} else {
|
|
// Uses for a PHI node occur in their predecessor block.
|
|
PHINode *PN = cast<PHINode>(U);
|
|
for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
|
|
if (PN->getIncomingValue(i) == Inst)
|
|
MarkBlocksLiveIn(PN->getIncomingBlock(i), LiveBBs);
|
|
}
|
|
}
|
|
|
|
// Now that we know all of the blocks that this thing is live in, see if
|
|
// it includes any of the unwind locations.
|
|
bool NeedsSpill = false;
|
|
for (unsigned i = 0, e = Invokes.size(); i != e; ++i) {
|
|
BasicBlock *UnwindBlock = Invokes[i]->getUnwindDest();
|
|
if (UnwindBlock != BB && LiveBBs.count(UnwindBlock)) {
|
|
NeedsSpill = true;
|
|
}
|
|
}
|
|
|
|
// If we decided we need a spill, do it.
|
|
// FIXME: Spilling this way is overkill, as it forces all uses of
|
|
// the value to be reloaded from the stack slot, even those that aren't
|
|
// in the unwind blocks. We should be more selective.
|
|
if (NeedsSpill) {
|
|
++NumSpilled;
|
|
DemoteRegToStack(*Inst, true);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/// setupEntryBlockAndCallSites - Setup the entry block by creating and filling
|
|
/// the function context and marking the call sites with the appropriate
|
|
/// values. These values are used by the DWARF EH emitter.
|
|
bool SjLjEHPass::setupEntryBlockAndCallSites(Function &F) {
|
|
SmallVector<ReturnInst*, 16> Returns;
|
|
SmallVector<InvokeInst*, 16> Invokes;
|
|
SmallVector<LandingPadInst*, 16> LPads;
|
|
|
|
// Look through the terminators of the basic blocks to find invokes.
|
|
for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
|
|
if (InvokeInst *II = dyn_cast<InvokeInst>(BB->getTerminator())) {
|
|
Invokes.push_back(II);
|
|
LPads.push_back(II->getUnwindDest()->getLandingPadInst());
|
|
} else if (ReturnInst *RI = dyn_cast<ReturnInst>(BB->getTerminator())) {
|
|
Returns.push_back(RI);
|
|
}
|
|
|
|
if (Invokes.empty()) return false;
|
|
|
|
lowerIncomingArguments(F);
|
|
lowerAcrossUnwindEdges(F, Invokes);
|
|
|
|
Value *FuncCtx = setupFunctionContext(F, LPads);
|
|
BasicBlock *EntryBB = F.begin();
|
|
Type *Int32Ty = Type::getInt32Ty(F.getContext());
|
|
|
|
Value *Idxs[2] = {
|
|
ConstantInt::get(Int32Ty, 0), 0
|
|
};
|
|
|
|
// Get a reference to the jump buffer.
|
|
Idxs[1] = ConstantInt::get(Int32Ty, 5);
|
|
Value *JBufPtr = GetElementPtrInst::Create(FuncCtx, Idxs, "jbuf_gep",
|
|
EntryBB->getTerminator());
|
|
|
|
// Save the frame pointer.
|
|
Idxs[1] = ConstantInt::get(Int32Ty, 0);
|
|
Value *FramePtr = GetElementPtrInst::Create(JBufPtr, Idxs, "jbuf_fp_gep",
|
|
EntryBB->getTerminator());
|
|
|
|
Value *Val = CallInst::Create(FrameAddrFn,
|
|
ConstantInt::get(Int32Ty, 0),
|
|
"fp",
|
|
EntryBB->getTerminator());
|
|
new StoreInst(Val, FramePtr, true, EntryBB->getTerminator());
|
|
|
|
// Save the stack pointer.
|
|
Idxs[1] = ConstantInt::get(Int32Ty, 2);
|
|
Value *StackPtr = GetElementPtrInst::Create(JBufPtr, Idxs, "jbuf_sp_gep",
|
|
EntryBB->getTerminator());
|
|
|
|
Val = CallInst::Create(StackAddrFn, "sp", EntryBB->getTerminator());
|
|
new StoreInst(Val, StackPtr, true, EntryBB->getTerminator());
|
|
|
|
// Call the setjmp instrinsic. It fills in the rest of the jmpbuf.
|
|
Value *SetjmpArg = CastInst::Create(Instruction::BitCast, JBufPtr,
|
|
Type::getInt8PtrTy(F.getContext()), "",
|
|
EntryBB->getTerminator());
|
|
CallInst::Create(BuiltinSetjmpFn, SetjmpArg, "", EntryBB->getTerminator());
|
|
|
|
// Store a pointer to the function context so that the back-end will know
|
|
// where to look for it.
|
|
Value *FuncCtxArg = CastInst::Create(Instruction::BitCast, FuncCtx,
|
|
Type::getInt8PtrTy(F.getContext()), "",
|
|
EntryBB->getTerminator());
|
|
CallInst::Create(FuncCtxFn, FuncCtxArg, "", EntryBB->getTerminator());
|
|
|
|
// At this point, we are all set up, update the invoke instructions to mark
|
|
// their call_site values.
|
|
for (unsigned I = 0, E = Invokes.size(); I != E; ++I) {
|
|
insertCallSiteStore(Invokes[I], I + 1, CallSite);
|
|
|
|
ConstantInt *CallSiteNum =
|
|
ConstantInt::get(Type::getInt32Ty(F.getContext()), I + 1);
|
|
|
|
// Record the call site value for the back end so it stays associated with
|
|
// the invoke.
|
|
CallInst::Create(CallSiteFn, CallSiteNum, "", Invokes[I]);
|
|
}
|
|
|
|
// Mark call instructions that aren't nounwind as no-action (call_site ==
|
|
// -1). Skip the entry block, as prior to then, no function context has been
|
|
// created for this function and any unexpected exceptions thrown will go
|
|
// directly to the caller's context, which is what we want anyway, so no need
|
|
// to do anything here.
|
|
for (Function::iterator BB = F.begin(), E = F.end(); ++BB != E;)
|
|
for (BasicBlock::iterator I = BB->begin(), end = BB->end(); I != end; ++I)
|
|
if (CallInst *CI = dyn_cast<CallInst>(I)) {
|
|
if (!CI->doesNotThrow())
|
|
insertCallSiteStore(CI, -1, CallSite);
|
|
} else if (ResumeInst *RI = dyn_cast<ResumeInst>(I)) {
|
|
insertCallSiteStore(RI, -1, CallSite);
|
|
}
|
|
|
|
// Register the function context and make sure it's known to not throw
|
|
CallInst *Register = CallInst::Create(RegisterFn, FuncCtx, "",
|
|
EntryBB->getTerminator());
|
|
Register->setDoesNotThrow();
|
|
|
|
// Finally, for any returns from this function, if this function contains an
|
|
// invoke, add a call to unregister the function context.
|
|
for (unsigned I = 0, E = Returns.size(); I != E; ++I)
|
|
CallInst::Create(UnregisterFn, FuncCtx, "", Returns[I]);
|
|
|
|
return true;
|
|
}
|
|
|
|
bool SjLjEHPass::runOnFunction(Function &F) {
|
|
bool Res = false;
|
|
if (!DisableOldSjLjEH)
|
|
Res = insertSjLjEHSupport(F);
|
|
else
|
|
Res = setupEntryBlockAndCallSites(F);
|
|
return Res;
|
|
}
|