Zachary Turner 2269779262 [msf] Resubmit "Rename Msf -> MSF".
Previously this change was submitted from a Windows machine, so
changes made to the case of filenames and directory names did
not survive the commit, and as a result the CMake source file
names and the on-disk file names did not match on case-sensitive
file systems.

I'm resubmitting this patch from a Linux system, which hopefully
allows the case changes to make it through unfettered.

llvm-svn: 277213
2016-07-29 20:56:36 +00:00

278 lines
8.8 KiB
C++

//===- StreamArray.h - Array backed by an arbitrary stream ----------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_DEBUGINFO_MSF_STREAMARRAY_H
#define LLVM_DEBUGINFO_MSF_STREAMARRAY_H
#include "llvm/DebugInfo/MSF/StreamRef.h"
#include "llvm/Support/Error.h"
#include <functional>
#include <type_traits>
namespace llvm {
namespace msf {
/// VarStreamArrayExtractor is intended to be specialized to provide customized
/// extraction logic. On input it receives a StreamRef pointing to the
/// beginning of the next record, but where the length of the record is not yet
/// known. Upon completion, it should return an appropriate Error instance if
/// a record could not be extracted, or if one could be extracted it should
/// return success and set Len to the number of bytes this record occupied in
/// the underlying stream, and it should fill out the fields of the value type
/// Item appropriately to represent the current record.
///
/// You can specialize this template for your own custom value types to avoid
/// having to specify a second template argument to VarStreamArray (documented
/// below).
template <typename T> struct VarStreamArrayExtractor {
// Method intentionally deleted. You must provide an explicit specialization
// with the following method implemented.
Error operator()(ReadableStreamRef Stream, uint32_t &Len,
T &Item) const = delete;
};
/// VarStreamArray represents an array of variable length records backed by a
/// stream. This could be a contiguous sequence of bytes in memory, it could
/// be a file on disk, or it could be a PDB stream where bytes are stored as
/// discontiguous blocks in a file. Usually it is desirable to treat arrays
/// as contiguous blocks of memory, but doing so with large PDB files, for
/// example, could mean allocating huge amounts of memory just to allow
/// re-ordering of stream data to be contiguous before iterating over it. By
/// abstracting this out, we need not duplicate this memory, and we can
/// iterate over arrays in arbitrarily formatted streams. Elements are parsed
/// lazily on iteration, so there is no upfront cost associated with building
/// a VarStreamArray, no matter how large it may be.
///
/// You create a VarStreamArray by specifying a ValueType and an Extractor type.
/// If you do not specify an Extractor type, it expects you to specialize
/// VarStreamArrayExtractor<T> for your ValueType.
///
/// By default an Extractor is default constructed in the class, but in some
/// cases you might find it useful for an Extractor to maintain state across
/// extractions. In this case you can provide your own Extractor through a
/// secondary constructor. The following examples show various ways of
/// creating a VarStreamArray.
///
/// // Will use VarStreamArrayExtractor<MyType> as the extractor.
/// VarStreamArray<MyType> MyTypeArray;
///
/// // Will use a default-constructed MyExtractor as the extractor.
/// VarStreamArray<MyType, MyExtractor> MyTypeArray2;
///
/// // Will use the specific instance of MyExtractor provided.
/// // MyExtractor need not be default-constructible in this case.
/// MyExtractor E(SomeContext);
/// VarStreamArray<MyType, MyExtractor> MyTypeArray3(E);
///
template <typename ValueType, typename Extractor> class VarStreamArrayIterator;
template <typename ValueType,
typename Extractor = VarStreamArrayExtractor<ValueType>>
class VarStreamArray {
friend class VarStreamArrayIterator<ValueType, Extractor>;
public:
typedef VarStreamArrayIterator<ValueType, Extractor> Iterator;
VarStreamArray() {}
explicit VarStreamArray(const Extractor &E) : E(E) {}
explicit VarStreamArray(ReadableStreamRef Stream) : Stream(Stream) {}
VarStreamArray(ReadableStreamRef Stream, const Extractor &E)
: Stream(Stream), E(E) {}
VarStreamArray(const VarStreamArray<ValueType, Extractor> &Other)
: Stream(Other.Stream), E(Other.E) {}
Iterator begin(bool *HadError = nullptr) const {
return Iterator(*this, E, HadError);
}
Iterator end() const { return Iterator(E); }
const Extractor &getExtractor() const { return E; }
ReadableStreamRef getUnderlyingStream() const { return Stream; }
private:
ReadableStreamRef Stream;
Extractor E;
};
template <typename ValueType, typename Extractor> class VarStreamArrayIterator {
typedef VarStreamArrayIterator<ValueType, Extractor> IterType;
typedef VarStreamArray<ValueType, Extractor> ArrayType;
public:
VarStreamArrayIterator(const ArrayType &Array, const Extractor &E,
bool *HadError = nullptr)
: IterRef(Array.Stream), Array(&Array), HadError(HadError), Extract(E) {
if (IterRef.getLength() == 0)
moveToEnd();
else {
auto EC = Extract(IterRef, ThisLen, ThisValue);
if (EC) {
consumeError(std::move(EC));
markError();
}
}
}
VarStreamArrayIterator() {}
explicit VarStreamArrayIterator(const Extractor &E) : Extract(E) {}
~VarStreamArrayIterator() {}
bool operator==(const IterType &R) const {
if (Array && R.Array) {
// Both have a valid array, make sure they're same.
assert(Array == R.Array);
return IterRef == R.IterRef;
}
// Both iterators are at the end.
if (!Array && !R.Array)
return true;
// One is not at the end and one is.
return false;
}
bool operator!=(const IterType &R) { return !(*this == R); }
const ValueType &operator*() const {
assert(Array && !HasError);
return ThisValue;
}
IterType &operator++() {
// We are done with the current record, discard it so that we are
// positioned at the next record.
IterRef = IterRef.drop_front(ThisLen);
if (IterRef.getLength() == 0) {
// There is nothing after the current record, we must make this an end
// iterator.
moveToEnd();
} else {
// There is some data after the current record.
auto EC = Extract(IterRef, ThisLen, ThisValue);
if (EC) {
consumeError(std::move(EC));
markError();
} else if (ThisLen == 0) {
// An empty record? Make this an end iterator.
moveToEnd();
}
}
return *this;
}
IterType operator++(int) {
IterType Original = *this;
++*this;
return Original;
}
private:
void moveToEnd() {
Array = nullptr;
ThisLen = 0;
}
void markError() {
moveToEnd();
HasError = true;
if (HadError != nullptr)
*HadError = true;
}
ValueType ThisValue;
ReadableStreamRef IterRef;
const ArrayType *Array{nullptr};
uint32_t ThisLen{0};
bool HasError{false};
bool *HadError{nullptr};
Extractor Extract;
};
template <typename T> class FixedStreamArrayIterator;
template <typename T> class FixedStreamArray {
friend class FixedStreamArrayIterator<T>;
public:
FixedStreamArray() : Stream() {}
FixedStreamArray(ReadableStreamRef Stream) : Stream(Stream) {
assert(Stream.getLength() % sizeof(T) == 0);
}
const T &operator[](uint32_t Index) const {
assert(Index < size());
uint32_t Off = Index * sizeof(T);
ArrayRef<uint8_t> Data;
if (auto EC = Stream.readBytes(Off, sizeof(T), Data)) {
assert(false && "Unexpected failure reading from stream");
// This should never happen since we asserted that the stream length was
// an exact multiple of the element size.
consumeError(std::move(EC));
}
return *reinterpret_cast<const T *>(Data.data());
}
uint32_t size() const { return Stream.getLength() / sizeof(T); }
FixedStreamArrayIterator<T> begin() const {
return FixedStreamArrayIterator<T>(*this, 0);
}
FixedStreamArrayIterator<T> end() const {
return FixedStreamArrayIterator<T>(*this, size());
}
ReadableStreamRef getUnderlyingStream() const { return Stream; }
private:
ReadableStreamRef Stream;
};
template <typename T> class FixedStreamArrayIterator {
public:
FixedStreamArrayIterator(const FixedStreamArray<T> &Array, uint32_t Index)
: Array(Array), Index(Index) {}
bool operator==(const FixedStreamArrayIterator<T> &R) {
assert(&Array == &R.Array);
return Index == R.Index;
}
bool operator!=(const FixedStreamArrayIterator<T> &R) {
return !(*this == R);
}
const T &operator*() const { return Array[Index]; }
FixedStreamArrayIterator<T> &operator++() {
assert(Index < Array.size());
++Index;
return *this;
}
FixedStreamArrayIterator<T> operator++(int) {
FixedStreamArrayIterator<T> Original = *this;
++*this;
return Original;
}
private:
const FixedStreamArray<T> &Array;
uint32_t Index;
};
} // namespace msf
} // namespace llvm
#endif // LLVM_DEBUGINFO_MSF_STREAMARRAY_H