mirror of
https://github.com/RPCS3/llvm-mirror.git
synced 2025-01-08 12:21:04 +00:00
0489ce9303
This is a follow-up to r331272. We've been running doxygen with the autobrief option for a couple of years now. This makes the \brief markers into our comments redundant. Since they are a visual distraction and we don't want to encourage more \brief markers in new code either, this patch removes them all. Patch produced by for i in $(git grep -l '\@brief'); do perl -pi -e 's/\@brief //g' $i & done https://reviews.llvm.org/D46290 llvm-svn: 331275
1034 lines
35 KiB
C++
1034 lines
35 KiB
C++
//===- RegionInfo.h - SESE region analysis ----------------------*- C++ -*-===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// Calculate a program structure tree built out of single entry single exit
|
|
// regions.
|
|
// The basic ideas are taken from "The Program Structure Tree - Richard Johnson,
|
|
// David Pearson, Keshav Pingali - 1994", however enriched with ideas from "The
|
|
// Refined Process Structure Tree - Jussi Vanhatalo, Hagen Voelyer, Jana
|
|
// Koehler - 2009".
|
|
// The algorithm to calculate these data structures however is completely
|
|
// different, as it takes advantage of existing information already available
|
|
// in (Post)dominace tree and dominance frontier passes. This leads to a simpler
|
|
// and in practice hopefully better performing algorithm. The runtime of the
|
|
// algorithms described in the papers above are both linear in graph size,
|
|
// O(V+E), whereas this algorithm is not, as the dominance frontier information
|
|
// itself is not, but in practice runtime seems to be in the order of magnitude
|
|
// of dominance tree calculation.
|
|
//
|
|
// WARNING: LLVM is generally very concerned about compile time such that
|
|
// the use of additional analysis passes in the default
|
|
// optimization sequence is avoided as much as possible.
|
|
// Specifically, if you do not need the RegionInfo, but dominance
|
|
// information could be sufficient please base your work only on
|
|
// the dominator tree. Most passes maintain it, such that using
|
|
// it has often near zero cost. In contrast RegionInfo is by
|
|
// default not available, is not maintained by existing
|
|
// transformations and there is no intention to do so.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#ifndef LLVM_ANALYSIS_REGIONINFO_H
|
|
#define LLVM_ANALYSIS_REGIONINFO_H
|
|
|
|
#include "llvm/ADT/DenseMap.h"
|
|
#include "llvm/ADT/DepthFirstIterator.h"
|
|
#include "llvm/ADT/GraphTraits.h"
|
|
#include "llvm/ADT/PointerIntPair.h"
|
|
#include "llvm/ADT/iterator_range.h"
|
|
#include "llvm/Config/llvm-config.h"
|
|
#include "llvm/IR/BasicBlock.h"
|
|
#include "llvm/IR/Dominators.h"
|
|
#include "llvm/IR/PassManager.h"
|
|
#include "llvm/Pass.h"
|
|
#include "llvm/Support/raw_ostream.h"
|
|
#include <algorithm>
|
|
#include <cassert>
|
|
#include <map>
|
|
#include <memory>
|
|
#include <set>
|
|
#include <string>
|
|
#include <type_traits>
|
|
#include <vector>
|
|
|
|
namespace llvm {
|
|
|
|
class DominanceFrontier;
|
|
class DominatorTree;
|
|
class Loop;
|
|
class LoopInfo;
|
|
class PostDominatorTree;
|
|
class Region;
|
|
template <class RegionTr> class RegionBase;
|
|
class RegionInfo;
|
|
template <class RegionTr> class RegionInfoBase;
|
|
class RegionNode;
|
|
|
|
// Class to be specialized for different users of RegionInfo
|
|
// (i.e. BasicBlocks or MachineBasicBlocks). This is only to avoid needing to
|
|
// pass around an unreasonable number of template parameters.
|
|
template <class FuncT_>
|
|
struct RegionTraits {
|
|
// FuncT
|
|
// BlockT
|
|
// RegionT
|
|
// RegionNodeT
|
|
// RegionInfoT
|
|
using BrokenT = typename FuncT_::UnknownRegionTypeError;
|
|
};
|
|
|
|
template <>
|
|
struct RegionTraits<Function> {
|
|
using FuncT = Function;
|
|
using BlockT = BasicBlock;
|
|
using RegionT = Region;
|
|
using RegionNodeT = RegionNode;
|
|
using RegionInfoT = RegionInfo;
|
|
using DomTreeT = DominatorTree;
|
|
using DomTreeNodeT = DomTreeNode;
|
|
using DomFrontierT = DominanceFrontier;
|
|
using PostDomTreeT = PostDominatorTree;
|
|
using InstT = Instruction;
|
|
using LoopT = Loop;
|
|
using LoopInfoT = LoopInfo;
|
|
|
|
static unsigned getNumSuccessors(BasicBlock *BB) {
|
|
return BB->getTerminator()->getNumSuccessors();
|
|
}
|
|
};
|
|
|
|
/// Marker class to iterate over the elements of a Region in flat mode.
|
|
///
|
|
/// The class is used to either iterate in Flat mode or by not using it to not
|
|
/// iterate in Flat mode. During a Flat mode iteration all Regions are entered
|
|
/// and the iteration returns every BasicBlock. If the Flat mode is not
|
|
/// selected for SubRegions just one RegionNode containing the subregion is
|
|
/// returned.
|
|
template <class GraphType>
|
|
class FlatIt {};
|
|
|
|
/// A RegionNode represents a subregion or a BasicBlock that is part of a
|
|
/// Region.
|
|
template <class Tr>
|
|
class RegionNodeBase {
|
|
friend class RegionBase<Tr>;
|
|
|
|
public:
|
|
using BlockT = typename Tr::BlockT;
|
|
using RegionT = typename Tr::RegionT;
|
|
|
|
private:
|
|
/// This is the entry basic block that starts this region node. If this is a
|
|
/// BasicBlock RegionNode, then entry is just the basic block, that this
|
|
/// RegionNode represents. Otherwise it is the entry of this (Sub)RegionNode.
|
|
///
|
|
/// In the BBtoRegionNode map of the parent of this node, BB will always map
|
|
/// to this node no matter which kind of node this one is.
|
|
///
|
|
/// The node can hold either a Region or a BasicBlock.
|
|
/// Use one bit to save, if this RegionNode is a subregion or BasicBlock
|
|
/// RegionNode.
|
|
PointerIntPair<BlockT *, 1, bool> entry;
|
|
|
|
/// The parent Region of this RegionNode.
|
|
/// @see getParent()
|
|
RegionT *parent;
|
|
|
|
protected:
|
|
/// Create a RegionNode.
|
|
///
|
|
/// @param Parent The parent of this RegionNode.
|
|
/// @param Entry The entry BasicBlock of the RegionNode. If this
|
|
/// RegionNode represents a BasicBlock, this is the
|
|
/// BasicBlock itself. If it represents a subregion, this
|
|
/// is the entry BasicBlock of the subregion.
|
|
/// @param isSubRegion If this RegionNode represents a SubRegion.
|
|
inline RegionNodeBase(RegionT *Parent, BlockT *Entry,
|
|
bool isSubRegion = false)
|
|
: entry(Entry, isSubRegion), parent(Parent) {}
|
|
|
|
public:
|
|
RegionNodeBase(const RegionNodeBase &) = delete;
|
|
RegionNodeBase &operator=(const RegionNodeBase &) = delete;
|
|
|
|
/// Get the parent Region of this RegionNode.
|
|
///
|
|
/// The parent Region is the Region this RegionNode belongs to. If for
|
|
/// example a BasicBlock is element of two Regions, there exist two
|
|
/// RegionNodes for this BasicBlock. Each with the getParent() function
|
|
/// pointing to the Region this RegionNode belongs to.
|
|
///
|
|
/// @return Get the parent Region of this RegionNode.
|
|
inline RegionT *getParent() const { return parent; }
|
|
|
|
/// Get the entry BasicBlock of this RegionNode.
|
|
///
|
|
/// If this RegionNode represents a BasicBlock this is just the BasicBlock
|
|
/// itself, otherwise we return the entry BasicBlock of the Subregion
|
|
///
|
|
/// @return The entry BasicBlock of this RegionNode.
|
|
inline BlockT *getEntry() const { return entry.getPointer(); }
|
|
|
|
/// Get the content of this RegionNode.
|
|
///
|
|
/// This can be either a BasicBlock or a subregion. Before calling getNodeAs()
|
|
/// check the type of the content with the isSubRegion() function call.
|
|
///
|
|
/// @return The content of this RegionNode.
|
|
template <class T> inline T *getNodeAs() const;
|
|
|
|
/// Is this RegionNode a subregion?
|
|
///
|
|
/// @return True if it contains a subregion. False if it contains a
|
|
/// BasicBlock.
|
|
inline bool isSubRegion() const { return entry.getInt(); }
|
|
};
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
/// A single entry single exit Region.
|
|
///
|
|
/// A Region is a connected subgraph of a control flow graph that has exactly
|
|
/// two connections to the remaining graph. It can be used to analyze or
|
|
/// optimize parts of the control flow graph.
|
|
///
|
|
/// A <em> simple Region </em> is connected to the remaining graph by just two
|
|
/// edges. One edge entering the Region and another one leaving the Region.
|
|
///
|
|
/// An <em> extended Region </em> (or just Region) is a subgraph that can be
|
|
/// transform into a simple Region. The transformation is done by adding
|
|
/// BasicBlocks that merge several entry or exit edges so that after the merge
|
|
/// just one entry and one exit edge exists.
|
|
///
|
|
/// The \e Entry of a Region is the first BasicBlock that is passed after
|
|
/// entering the Region. It is an element of the Region. The entry BasicBlock
|
|
/// dominates all BasicBlocks in the Region.
|
|
///
|
|
/// The \e Exit of a Region is the first BasicBlock that is passed after
|
|
/// leaving the Region. It is not an element of the Region. The exit BasicBlock,
|
|
/// postdominates all BasicBlocks in the Region.
|
|
///
|
|
/// A <em> canonical Region </em> cannot be constructed by combining smaller
|
|
/// Regions.
|
|
///
|
|
/// Region A is the \e parent of Region B, if B is completely contained in A.
|
|
///
|
|
/// Two canonical Regions either do not intersect at all or one is
|
|
/// the parent of the other.
|
|
///
|
|
/// The <em> Program Structure Tree</em> is a graph (V, E) where V is the set of
|
|
/// Regions in the control flow graph and E is the \e parent relation of these
|
|
/// Regions.
|
|
///
|
|
/// Example:
|
|
///
|
|
/// \verbatim
|
|
/// A simple control flow graph, that contains two regions.
|
|
///
|
|
/// 1
|
|
/// / |
|
|
/// 2 |
|
|
/// / \ 3
|
|
/// 4 5 |
|
|
/// | | |
|
|
/// 6 7 8
|
|
/// \ | /
|
|
/// \ |/ Region A: 1 -> 9 {1,2,3,4,5,6,7,8}
|
|
/// 9 Region B: 2 -> 9 {2,4,5,6,7}
|
|
/// \endverbatim
|
|
///
|
|
/// You can obtain more examples by either calling
|
|
///
|
|
/// <tt> "opt -regions -analyze anyprogram.ll" </tt>
|
|
/// or
|
|
/// <tt> "opt -view-regions-only anyprogram.ll" </tt>
|
|
///
|
|
/// on any LLVM file you are interested in.
|
|
///
|
|
/// The first call returns a textual representation of the program structure
|
|
/// tree, the second one creates a graphical representation using graphviz.
|
|
template <class Tr>
|
|
class RegionBase : public RegionNodeBase<Tr> {
|
|
friend class RegionInfoBase<Tr>;
|
|
|
|
using FuncT = typename Tr::FuncT;
|
|
using BlockT = typename Tr::BlockT;
|
|
using RegionInfoT = typename Tr::RegionInfoT;
|
|
using RegionT = typename Tr::RegionT;
|
|
using RegionNodeT = typename Tr::RegionNodeT;
|
|
using DomTreeT = typename Tr::DomTreeT;
|
|
using LoopT = typename Tr::LoopT;
|
|
using LoopInfoT = typename Tr::LoopInfoT;
|
|
using InstT = typename Tr::InstT;
|
|
|
|
using BlockTraits = GraphTraits<BlockT *>;
|
|
using InvBlockTraits = GraphTraits<Inverse<BlockT *>>;
|
|
using SuccIterTy = typename BlockTraits::ChildIteratorType;
|
|
using PredIterTy = typename InvBlockTraits::ChildIteratorType;
|
|
|
|
// Information necessary to manage this Region.
|
|
RegionInfoT *RI;
|
|
DomTreeT *DT;
|
|
|
|
// The exit BasicBlock of this region.
|
|
// (The entry BasicBlock is part of RegionNode)
|
|
BlockT *exit;
|
|
|
|
using RegionSet = std::vector<std::unique_ptr<RegionT>>;
|
|
|
|
// The subregions of this region.
|
|
RegionSet children;
|
|
|
|
using BBNodeMapT = std::map<BlockT *, std::unique_ptr<RegionNodeT>>;
|
|
|
|
// Save the BasicBlock RegionNodes that are element of this Region.
|
|
mutable BBNodeMapT BBNodeMap;
|
|
|
|
/// Check if a BB is in this Region. This check also works
|
|
/// if the region is incorrectly built. (EXPENSIVE!)
|
|
void verifyBBInRegion(BlockT *BB) const;
|
|
|
|
/// Walk over all the BBs of the region starting from BB and
|
|
/// verify that all reachable basic blocks are elements of the region.
|
|
/// (EXPENSIVE!)
|
|
void verifyWalk(BlockT *BB, std::set<BlockT *> *visitedBB) const;
|
|
|
|
/// Verify if the region and its children are valid regions (EXPENSIVE!)
|
|
void verifyRegionNest() const;
|
|
|
|
public:
|
|
/// Create a new region.
|
|
///
|
|
/// @param Entry The entry basic block of the region.
|
|
/// @param Exit The exit basic block of the region.
|
|
/// @param RI The region info object that is managing this region.
|
|
/// @param DT The dominator tree of the current function.
|
|
/// @param Parent The surrounding region or NULL if this is a top level
|
|
/// region.
|
|
RegionBase(BlockT *Entry, BlockT *Exit, RegionInfoT *RI, DomTreeT *DT,
|
|
RegionT *Parent = nullptr);
|
|
|
|
RegionBase(const RegionBase &) = delete;
|
|
RegionBase &operator=(const RegionBase &) = delete;
|
|
|
|
/// Delete the Region and all its subregions.
|
|
~RegionBase();
|
|
|
|
/// Get the entry BasicBlock of the Region.
|
|
/// @return The entry BasicBlock of the region.
|
|
BlockT *getEntry() const {
|
|
return RegionNodeBase<Tr>::getEntry();
|
|
}
|
|
|
|
/// Replace the entry basic block of the region with the new basic
|
|
/// block.
|
|
///
|
|
/// @param BB The new entry basic block of the region.
|
|
void replaceEntry(BlockT *BB);
|
|
|
|
/// Replace the exit basic block of the region with the new basic
|
|
/// block.
|
|
///
|
|
/// @param BB The new exit basic block of the region.
|
|
void replaceExit(BlockT *BB);
|
|
|
|
/// Recursively replace the entry basic block of the region.
|
|
///
|
|
/// This function replaces the entry basic block with a new basic block. It
|
|
/// also updates all child regions that have the same entry basic block as
|
|
/// this region.
|
|
///
|
|
/// @param NewEntry The new entry basic block.
|
|
void replaceEntryRecursive(BlockT *NewEntry);
|
|
|
|
/// Recursively replace the exit basic block of the region.
|
|
///
|
|
/// This function replaces the exit basic block with a new basic block. It
|
|
/// also updates all child regions that have the same exit basic block as
|
|
/// this region.
|
|
///
|
|
/// @param NewExit The new exit basic block.
|
|
void replaceExitRecursive(BlockT *NewExit);
|
|
|
|
/// Get the exit BasicBlock of the Region.
|
|
/// @return The exit BasicBlock of the Region, NULL if this is the TopLevel
|
|
/// Region.
|
|
BlockT *getExit() const { return exit; }
|
|
|
|
/// Get the parent of the Region.
|
|
/// @return The parent of the Region or NULL if this is a top level
|
|
/// Region.
|
|
RegionT *getParent() const {
|
|
return RegionNodeBase<Tr>::getParent();
|
|
}
|
|
|
|
/// Get the RegionNode representing the current Region.
|
|
/// @return The RegionNode representing the current Region.
|
|
RegionNodeT *getNode() const {
|
|
return const_cast<RegionNodeT *>(
|
|
reinterpret_cast<const RegionNodeT *>(this));
|
|
}
|
|
|
|
/// Get the nesting level of this Region.
|
|
///
|
|
/// An toplevel Region has depth 0.
|
|
///
|
|
/// @return The depth of the region.
|
|
unsigned getDepth() const;
|
|
|
|
/// Check if a Region is the TopLevel region.
|
|
///
|
|
/// The toplevel region represents the whole function.
|
|
bool isTopLevelRegion() const { return exit == nullptr; }
|
|
|
|
/// Return a new (non-canonical) region, that is obtained by joining
|
|
/// this region with its predecessors.
|
|
///
|
|
/// @return A region also starting at getEntry(), but reaching to the next
|
|
/// basic block that forms with getEntry() a (non-canonical) region.
|
|
/// NULL if such a basic block does not exist.
|
|
RegionT *getExpandedRegion() const;
|
|
|
|
/// Return the first block of this region's single entry edge,
|
|
/// if existing.
|
|
///
|
|
/// @return The BasicBlock starting this region's single entry edge,
|
|
/// else NULL.
|
|
BlockT *getEnteringBlock() const;
|
|
|
|
/// Return the first block of this region's single exit edge,
|
|
/// if existing.
|
|
///
|
|
/// @return The BasicBlock starting this region's single exit edge,
|
|
/// else NULL.
|
|
BlockT *getExitingBlock() const;
|
|
|
|
/// Collect all blocks of this region's single exit edge, if existing.
|
|
///
|
|
/// @return True if this region contains all the predecessors of the exit.
|
|
bool getExitingBlocks(SmallVectorImpl<BlockT *> &Exitings) const;
|
|
|
|
/// Is this a simple region?
|
|
///
|
|
/// A region is simple if it has exactly one exit and one entry edge.
|
|
///
|
|
/// @return True if the Region is simple.
|
|
bool isSimple() const;
|
|
|
|
/// Returns the name of the Region.
|
|
/// @return The Name of the Region.
|
|
std::string getNameStr() const;
|
|
|
|
/// Return the RegionInfo object, that belongs to this Region.
|
|
RegionInfoT *getRegionInfo() const { return RI; }
|
|
|
|
/// PrintStyle - Print region in difference ways.
|
|
enum PrintStyle { PrintNone, PrintBB, PrintRN };
|
|
|
|
/// Print the region.
|
|
///
|
|
/// @param OS The output stream the Region is printed to.
|
|
/// @param printTree Print also the tree of subregions.
|
|
/// @param level The indentation level used for printing.
|
|
void print(raw_ostream &OS, bool printTree = true, unsigned level = 0,
|
|
PrintStyle Style = PrintNone) const;
|
|
|
|
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
|
|
/// Print the region to stderr.
|
|
void dump() const;
|
|
#endif
|
|
|
|
/// Check if the region contains a BasicBlock.
|
|
///
|
|
/// @param BB The BasicBlock that might be contained in this Region.
|
|
/// @return True if the block is contained in the region otherwise false.
|
|
bool contains(const BlockT *BB) const;
|
|
|
|
/// Check if the region contains another region.
|
|
///
|
|
/// @param SubRegion The region that might be contained in this Region.
|
|
/// @return True if SubRegion is contained in the region otherwise false.
|
|
bool contains(const RegionT *SubRegion) const {
|
|
// Toplevel Region.
|
|
if (!getExit())
|
|
return true;
|
|
|
|
return contains(SubRegion->getEntry()) &&
|
|
(contains(SubRegion->getExit()) ||
|
|
SubRegion->getExit() == getExit());
|
|
}
|
|
|
|
/// Check if the region contains an Instruction.
|
|
///
|
|
/// @param Inst The Instruction that might be contained in this region.
|
|
/// @return True if the Instruction is contained in the region otherwise
|
|
/// false.
|
|
bool contains(const InstT *Inst) const { return contains(Inst->getParent()); }
|
|
|
|
/// Check if the region contains a loop.
|
|
///
|
|
/// @param L The loop that might be contained in this region.
|
|
/// @return True if the loop is contained in the region otherwise false.
|
|
/// In case a NULL pointer is passed to this function the result
|
|
/// is false, except for the region that describes the whole function.
|
|
/// In that case true is returned.
|
|
bool contains(const LoopT *L) const;
|
|
|
|
/// Get the outermost loop in the region that contains a loop.
|
|
///
|
|
/// Find for a Loop L the outermost loop OuterL that is a parent loop of L
|
|
/// and is itself contained in the region.
|
|
///
|
|
/// @param L The loop the lookup is started.
|
|
/// @return The outermost loop in the region, NULL if such a loop does not
|
|
/// exist or if the region describes the whole function.
|
|
LoopT *outermostLoopInRegion(LoopT *L) const;
|
|
|
|
/// Get the outermost loop in the region that contains a basic block.
|
|
///
|
|
/// Find for a basic block BB the outermost loop L that contains BB and is
|
|
/// itself contained in the region.
|
|
///
|
|
/// @param LI A pointer to a LoopInfo analysis.
|
|
/// @param BB The basic block surrounded by the loop.
|
|
/// @return The outermost loop in the region, NULL if such a loop does not
|
|
/// exist or if the region describes the whole function.
|
|
LoopT *outermostLoopInRegion(LoopInfoT *LI, BlockT *BB) const;
|
|
|
|
/// Get the subregion that starts at a BasicBlock
|
|
///
|
|
/// @param BB The BasicBlock the subregion should start.
|
|
/// @return The Subregion if available, otherwise NULL.
|
|
RegionT *getSubRegionNode(BlockT *BB) const;
|
|
|
|
/// Get the RegionNode for a BasicBlock
|
|
///
|
|
/// @param BB The BasicBlock at which the RegionNode should start.
|
|
/// @return If available, the RegionNode that represents the subregion
|
|
/// starting at BB. If no subregion starts at BB, the RegionNode
|
|
/// representing BB.
|
|
RegionNodeT *getNode(BlockT *BB) const;
|
|
|
|
/// Get the BasicBlock RegionNode for a BasicBlock
|
|
///
|
|
/// @param BB The BasicBlock for which the RegionNode is requested.
|
|
/// @return The RegionNode representing the BB.
|
|
RegionNodeT *getBBNode(BlockT *BB) const;
|
|
|
|
/// Add a new subregion to this Region.
|
|
///
|
|
/// @param SubRegion The new subregion that will be added.
|
|
/// @param moveChildren Move the children of this region, that are also
|
|
/// contained in SubRegion into SubRegion.
|
|
void addSubRegion(RegionT *SubRegion, bool moveChildren = false);
|
|
|
|
/// Remove a subregion from this Region.
|
|
///
|
|
/// The subregion is not deleted, as it will probably be inserted into another
|
|
/// region.
|
|
/// @param SubRegion The SubRegion that will be removed.
|
|
RegionT *removeSubRegion(RegionT *SubRegion);
|
|
|
|
/// Move all direct child nodes of this Region to another Region.
|
|
///
|
|
/// @param To The Region the child nodes will be transferred to.
|
|
void transferChildrenTo(RegionT *To);
|
|
|
|
/// Verify if the region is a correct region.
|
|
///
|
|
/// Check if this is a correctly build Region. This is an expensive check, as
|
|
/// the complete CFG of the Region will be walked.
|
|
void verifyRegion() const;
|
|
|
|
/// Clear the cache for BB RegionNodes.
|
|
///
|
|
/// After calling this function the BasicBlock RegionNodes will be stored at
|
|
/// different memory locations. RegionNodes obtained before this function is
|
|
/// called are therefore not comparable to RegionNodes abtained afterwords.
|
|
void clearNodeCache();
|
|
|
|
/// @name Subregion Iterators
|
|
///
|
|
/// These iterators iterator over all subregions of this Region.
|
|
//@{
|
|
using iterator = typename RegionSet::iterator;
|
|
using const_iterator = typename RegionSet::const_iterator;
|
|
|
|
iterator begin() { return children.begin(); }
|
|
iterator end() { return children.end(); }
|
|
|
|
const_iterator begin() const { return children.begin(); }
|
|
const_iterator end() const { return children.end(); }
|
|
//@}
|
|
|
|
/// @name BasicBlock Iterators
|
|
///
|
|
/// These iterators iterate over all BasicBlocks that are contained in this
|
|
/// Region. The iterator also iterates over BasicBlocks that are elements of
|
|
/// a subregion of this Region. It is therefore called a flat iterator.
|
|
//@{
|
|
template <bool IsConst>
|
|
class block_iterator_wrapper
|
|
: public df_iterator<
|
|
typename std::conditional<IsConst, const BlockT, BlockT>::type *> {
|
|
using super =
|
|
df_iterator<
|
|
typename std::conditional<IsConst, const BlockT, BlockT>::type *>;
|
|
|
|
public:
|
|
using Self = block_iterator_wrapper<IsConst>;
|
|
using value_type = typename super::value_type;
|
|
|
|
// Construct the begin iterator.
|
|
block_iterator_wrapper(value_type Entry, value_type Exit)
|
|
: super(df_begin(Entry)) {
|
|
// Mark the exit of the region as visited, so that the children of the
|
|
// exit and the exit itself, i.e. the block outside the region will never
|
|
// be visited.
|
|
super::Visited.insert(Exit);
|
|
}
|
|
|
|
// Construct the end iterator.
|
|
block_iterator_wrapper() : super(df_end<value_type>((BlockT *)nullptr)) {}
|
|
|
|
/*implicit*/ block_iterator_wrapper(super I) : super(I) {}
|
|
|
|
// FIXME: Even a const_iterator returns a non-const BasicBlock pointer.
|
|
// This was introduced for backwards compatibility, but should
|
|
// be removed as soon as all users are fixed.
|
|
BlockT *operator*() const {
|
|
return const_cast<BlockT *>(super::operator*());
|
|
}
|
|
};
|
|
|
|
using block_iterator = block_iterator_wrapper<false>;
|
|
using const_block_iterator = block_iterator_wrapper<true>;
|
|
|
|
block_iterator block_begin() { return block_iterator(getEntry(), getExit()); }
|
|
|
|
block_iterator block_end() { return block_iterator(); }
|
|
|
|
const_block_iterator block_begin() const {
|
|
return const_block_iterator(getEntry(), getExit());
|
|
}
|
|
const_block_iterator block_end() const { return const_block_iterator(); }
|
|
|
|
using block_range = iterator_range<block_iterator>;
|
|
using const_block_range = iterator_range<const_block_iterator>;
|
|
|
|
/// Returns a range view of the basic blocks in the region.
|
|
inline block_range blocks() {
|
|
return block_range(block_begin(), block_end());
|
|
}
|
|
|
|
/// Returns a range view of the basic blocks in the region.
|
|
///
|
|
/// This is the 'const' version of the range view.
|
|
inline const_block_range blocks() const {
|
|
return const_block_range(block_begin(), block_end());
|
|
}
|
|
//@}
|
|
|
|
/// @name Element Iterators
|
|
///
|
|
/// These iterators iterate over all BasicBlock and subregion RegionNodes that
|
|
/// are direct children of this Region. It does not iterate over any
|
|
/// RegionNodes that are also element of a subregion of this Region.
|
|
//@{
|
|
using element_iterator =
|
|
df_iterator<RegionNodeT *, df_iterator_default_set<RegionNodeT *>, false,
|
|
GraphTraits<RegionNodeT *>>;
|
|
|
|
using const_element_iterator =
|
|
df_iterator<const RegionNodeT *,
|
|
df_iterator_default_set<const RegionNodeT *>, false,
|
|
GraphTraits<const RegionNodeT *>>;
|
|
|
|
element_iterator element_begin();
|
|
element_iterator element_end();
|
|
iterator_range<element_iterator> elements() {
|
|
return make_range(element_begin(), element_end());
|
|
}
|
|
|
|
const_element_iterator element_begin() const;
|
|
const_element_iterator element_end() const;
|
|
iterator_range<const_element_iterator> elements() const {
|
|
return make_range(element_begin(), element_end());
|
|
}
|
|
//@}
|
|
};
|
|
|
|
/// Print a RegionNode.
|
|
template <class Tr>
|
|
inline raw_ostream &operator<<(raw_ostream &OS, const RegionNodeBase<Tr> &Node);
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
/// Analysis that detects all canonical Regions.
|
|
///
|
|
/// The RegionInfo pass detects all canonical regions in a function. The Regions
|
|
/// are connected using the parent relation. This builds a Program Structure
|
|
/// Tree.
|
|
template <class Tr>
|
|
class RegionInfoBase {
|
|
friend class RegionInfo;
|
|
friend class MachineRegionInfo;
|
|
|
|
using BlockT = typename Tr::BlockT;
|
|
using FuncT = typename Tr::FuncT;
|
|
using RegionT = typename Tr::RegionT;
|
|
using RegionInfoT = typename Tr::RegionInfoT;
|
|
using DomTreeT = typename Tr::DomTreeT;
|
|
using DomTreeNodeT = typename Tr::DomTreeNodeT;
|
|
using PostDomTreeT = typename Tr::PostDomTreeT;
|
|
using DomFrontierT = typename Tr::DomFrontierT;
|
|
using BlockTraits = GraphTraits<BlockT *>;
|
|
using InvBlockTraits = GraphTraits<Inverse<BlockT *>>;
|
|
using SuccIterTy = typename BlockTraits::ChildIteratorType;
|
|
using PredIterTy = typename InvBlockTraits::ChildIteratorType;
|
|
|
|
using BBtoBBMap = DenseMap<BlockT *, BlockT *>;
|
|
using BBtoRegionMap = DenseMap<BlockT *, RegionT *>;
|
|
|
|
RegionInfoBase();
|
|
|
|
RegionInfoBase(RegionInfoBase &&Arg)
|
|
: DT(std::move(Arg.DT)), PDT(std::move(Arg.PDT)), DF(std::move(Arg.DF)),
|
|
TopLevelRegion(std::move(Arg.TopLevelRegion)),
|
|
BBtoRegion(std::move(Arg.BBtoRegion)) {
|
|
Arg.wipe();
|
|
}
|
|
|
|
RegionInfoBase &operator=(RegionInfoBase &&RHS) {
|
|
DT = std::move(RHS.DT);
|
|
PDT = std::move(RHS.PDT);
|
|
DF = std::move(RHS.DF);
|
|
TopLevelRegion = std::move(RHS.TopLevelRegion);
|
|
BBtoRegion = std::move(RHS.BBtoRegion);
|
|
RHS.wipe();
|
|
return *this;
|
|
}
|
|
|
|
virtual ~RegionInfoBase();
|
|
|
|
DomTreeT *DT;
|
|
PostDomTreeT *PDT;
|
|
DomFrontierT *DF;
|
|
|
|
/// The top level region.
|
|
RegionT *TopLevelRegion = nullptr;
|
|
|
|
/// Map every BB to the smallest region, that contains BB.
|
|
BBtoRegionMap BBtoRegion;
|
|
|
|
protected:
|
|
/// Update refences to a RegionInfoT held by the RegionT managed here
|
|
///
|
|
/// This is a post-move helper. Regions hold references to the owning
|
|
/// RegionInfo object. After a move these need to be fixed.
|
|
template<typename TheRegionT>
|
|
void updateRegionTree(RegionInfoT &RI, TheRegionT *R) {
|
|
if (!R)
|
|
return;
|
|
R->RI = &RI;
|
|
for (auto &SubR : *R)
|
|
updateRegionTree(RI, SubR.get());
|
|
}
|
|
|
|
private:
|
|
/// Wipe this region tree's state without releasing any resources.
|
|
///
|
|
/// This is essentially a post-move helper only. It leaves the object in an
|
|
/// assignable and destroyable state, but otherwise invalid.
|
|
void wipe() {
|
|
DT = nullptr;
|
|
PDT = nullptr;
|
|
DF = nullptr;
|
|
TopLevelRegion = nullptr;
|
|
BBtoRegion.clear();
|
|
}
|
|
|
|
// Check whether the entries of BBtoRegion for the BBs of region
|
|
// SR are correct. Triggers an assertion if not. Calls itself recursively for
|
|
// subregions.
|
|
void verifyBBMap(const RegionT *SR) const;
|
|
|
|
// Returns true if BB is in the dominance frontier of
|
|
// entry, because it was inherited from exit. In the other case there is an
|
|
// edge going from entry to BB without passing exit.
|
|
bool isCommonDomFrontier(BlockT *BB, BlockT *entry, BlockT *exit) const;
|
|
|
|
// Check if entry and exit surround a valid region, based on
|
|
// dominance tree and dominance frontier.
|
|
bool isRegion(BlockT *entry, BlockT *exit) const;
|
|
|
|
// Saves a shortcut pointing from entry to exit.
|
|
// This function may extend this shortcut if possible.
|
|
void insertShortCut(BlockT *entry, BlockT *exit, BBtoBBMap *ShortCut) const;
|
|
|
|
// Returns the next BB that postdominates N, while skipping
|
|
// all post dominators that cannot finish a canonical region.
|
|
DomTreeNodeT *getNextPostDom(DomTreeNodeT *N, BBtoBBMap *ShortCut) const;
|
|
|
|
// A region is trivial, if it contains only one BB.
|
|
bool isTrivialRegion(BlockT *entry, BlockT *exit) const;
|
|
|
|
// Creates a single entry single exit region.
|
|
RegionT *createRegion(BlockT *entry, BlockT *exit);
|
|
|
|
// Detect all regions starting with bb 'entry'.
|
|
void findRegionsWithEntry(BlockT *entry, BBtoBBMap *ShortCut);
|
|
|
|
// Detects regions in F.
|
|
void scanForRegions(FuncT &F, BBtoBBMap *ShortCut);
|
|
|
|
// Get the top most parent with the same entry block.
|
|
RegionT *getTopMostParent(RegionT *region);
|
|
|
|
// Build the region hierarchy after all region detected.
|
|
void buildRegionsTree(DomTreeNodeT *N, RegionT *region);
|
|
|
|
// Update statistic about created regions.
|
|
virtual void updateStatistics(RegionT *R) = 0;
|
|
|
|
// Detect all regions in function and build the region tree.
|
|
void calculate(FuncT &F);
|
|
|
|
public:
|
|
RegionInfoBase(const RegionInfoBase &) = delete;
|
|
RegionInfoBase &operator=(const RegionInfoBase &) = delete;
|
|
|
|
static bool VerifyRegionInfo;
|
|
static typename RegionT::PrintStyle printStyle;
|
|
|
|
void print(raw_ostream &OS) const;
|
|
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
|
|
void dump() const;
|
|
#endif
|
|
|
|
void releaseMemory();
|
|
|
|
/// Get the smallest region that contains a BasicBlock.
|
|
///
|
|
/// @param BB The basic block.
|
|
/// @return The smallest region, that contains BB or NULL, if there is no
|
|
/// region containing BB.
|
|
RegionT *getRegionFor(BlockT *BB) const;
|
|
|
|
/// Set the smallest region that surrounds a basic block.
|
|
///
|
|
/// @param BB The basic block surrounded by a region.
|
|
/// @param R The smallest region that surrounds BB.
|
|
void setRegionFor(BlockT *BB, RegionT *R);
|
|
|
|
/// A shortcut for getRegionFor().
|
|
///
|
|
/// @param BB The basic block.
|
|
/// @return The smallest region, that contains BB or NULL, if there is no
|
|
/// region containing BB.
|
|
RegionT *operator[](BlockT *BB) const;
|
|
|
|
/// Return the exit of the maximal refined region, that starts at a
|
|
/// BasicBlock.
|
|
///
|
|
/// @param BB The BasicBlock the refined region starts.
|
|
BlockT *getMaxRegionExit(BlockT *BB) const;
|
|
|
|
/// Find the smallest region that contains two regions.
|
|
///
|
|
/// @param A The first region.
|
|
/// @param B The second region.
|
|
/// @return The smallest region containing A and B.
|
|
RegionT *getCommonRegion(RegionT *A, RegionT *B) const;
|
|
|
|
/// Find the smallest region that contains two basic blocks.
|
|
///
|
|
/// @param A The first basic block.
|
|
/// @param B The second basic block.
|
|
/// @return The smallest region that contains A and B.
|
|
RegionT *getCommonRegion(BlockT *A, BlockT *B) const {
|
|
return getCommonRegion(getRegionFor(A), getRegionFor(B));
|
|
}
|
|
|
|
/// Find the smallest region that contains a set of regions.
|
|
///
|
|
/// @param Regions A vector of regions.
|
|
/// @return The smallest region that contains all regions in Regions.
|
|
RegionT *getCommonRegion(SmallVectorImpl<RegionT *> &Regions) const;
|
|
|
|
/// Find the smallest region that contains a set of basic blocks.
|
|
///
|
|
/// @param BBs A vector of basic blocks.
|
|
/// @return The smallest region that contains all basic blocks in BBS.
|
|
RegionT *getCommonRegion(SmallVectorImpl<BlockT *> &BBs) const;
|
|
|
|
RegionT *getTopLevelRegion() const { return TopLevelRegion; }
|
|
|
|
/// Clear the Node Cache for all Regions.
|
|
///
|
|
/// @see Region::clearNodeCache()
|
|
void clearNodeCache() {
|
|
if (TopLevelRegion)
|
|
TopLevelRegion->clearNodeCache();
|
|
}
|
|
|
|
void verifyAnalysis() const;
|
|
};
|
|
|
|
class Region;
|
|
|
|
class RegionNode : public RegionNodeBase<RegionTraits<Function>> {
|
|
public:
|
|
inline RegionNode(Region *Parent, BasicBlock *Entry, bool isSubRegion = false)
|
|
: RegionNodeBase<RegionTraits<Function>>(Parent, Entry, isSubRegion) {}
|
|
|
|
bool operator==(const Region &RN) const {
|
|
return this == reinterpret_cast<const RegionNode *>(&RN);
|
|
}
|
|
};
|
|
|
|
class Region : public RegionBase<RegionTraits<Function>> {
|
|
public:
|
|
Region(BasicBlock *Entry, BasicBlock *Exit, RegionInfo *RI, DominatorTree *DT,
|
|
Region *Parent = nullptr);
|
|
~Region();
|
|
|
|
bool operator==(const RegionNode &RN) const {
|
|
return &RN == reinterpret_cast<const RegionNode *>(this);
|
|
}
|
|
};
|
|
|
|
class RegionInfo : public RegionInfoBase<RegionTraits<Function>> {
|
|
public:
|
|
using Base = RegionInfoBase<RegionTraits<Function>>;
|
|
|
|
explicit RegionInfo();
|
|
|
|
RegionInfo(RegionInfo &&Arg) : Base(std::move(static_cast<Base &>(Arg))) {
|
|
updateRegionTree(*this, TopLevelRegion);
|
|
}
|
|
|
|
RegionInfo &operator=(RegionInfo &&RHS) {
|
|
Base::operator=(std::move(static_cast<Base &>(RHS)));
|
|
updateRegionTree(*this, TopLevelRegion);
|
|
return *this;
|
|
}
|
|
|
|
~RegionInfo() override;
|
|
|
|
/// Handle invalidation explicitly.
|
|
bool invalidate(Function &F, const PreservedAnalyses &PA,
|
|
FunctionAnalysisManager::Invalidator &);
|
|
|
|
// updateStatistics - Update statistic about created regions.
|
|
void updateStatistics(Region *R) final;
|
|
|
|
void recalculate(Function &F, DominatorTree *DT, PostDominatorTree *PDT,
|
|
DominanceFrontier *DF);
|
|
|
|
#ifndef NDEBUG
|
|
/// Opens a viewer to show the GraphViz visualization of the regions.
|
|
///
|
|
/// Useful during debugging as an alternative to dump().
|
|
void view();
|
|
|
|
/// Opens a viewer to show the GraphViz visualization of this region
|
|
/// without instructions in the BasicBlocks.
|
|
///
|
|
/// Useful during debugging as an alternative to dump().
|
|
void viewOnly();
|
|
#endif
|
|
};
|
|
|
|
class RegionInfoPass : public FunctionPass {
|
|
RegionInfo RI;
|
|
|
|
public:
|
|
static char ID;
|
|
|
|
explicit RegionInfoPass();
|
|
~RegionInfoPass() override;
|
|
|
|
RegionInfo &getRegionInfo() { return RI; }
|
|
|
|
const RegionInfo &getRegionInfo() const { return RI; }
|
|
|
|
/// @name FunctionPass interface
|
|
//@{
|
|
bool runOnFunction(Function &F) override;
|
|
void releaseMemory() override;
|
|
void verifyAnalysis() const override;
|
|
void getAnalysisUsage(AnalysisUsage &AU) const override;
|
|
void print(raw_ostream &OS, const Module *) const override;
|
|
void dump() const;
|
|
//@}
|
|
};
|
|
|
|
/// Analysis pass that exposes the \c RegionInfo for a function.
|
|
class RegionInfoAnalysis : public AnalysisInfoMixin<RegionInfoAnalysis> {
|
|
friend AnalysisInfoMixin<RegionInfoAnalysis>;
|
|
|
|
static AnalysisKey Key;
|
|
|
|
public:
|
|
using Result = RegionInfo;
|
|
|
|
RegionInfo run(Function &F, FunctionAnalysisManager &AM);
|
|
};
|
|
|
|
/// Printer pass for the \c RegionInfo.
|
|
class RegionInfoPrinterPass : public PassInfoMixin<RegionInfoPrinterPass> {
|
|
raw_ostream &OS;
|
|
|
|
public:
|
|
explicit RegionInfoPrinterPass(raw_ostream &OS);
|
|
|
|
PreservedAnalyses run(Function &F, FunctionAnalysisManager &AM);
|
|
};
|
|
|
|
/// Verifier pass for the \c RegionInfo.
|
|
struct RegionInfoVerifierPass : PassInfoMixin<RegionInfoVerifierPass> {
|
|
PreservedAnalyses run(Function &F, FunctionAnalysisManager &AM);
|
|
};
|
|
|
|
template <>
|
|
template <>
|
|
inline BasicBlock *
|
|
RegionNodeBase<RegionTraits<Function>>::getNodeAs<BasicBlock>() const {
|
|
assert(!isSubRegion() && "This is not a BasicBlock RegionNode!");
|
|
return getEntry();
|
|
}
|
|
|
|
template <>
|
|
template <>
|
|
inline Region *
|
|
RegionNodeBase<RegionTraits<Function>>::getNodeAs<Region>() const {
|
|
assert(isSubRegion() && "This is not a subregion RegionNode!");
|
|
auto Unconst = const_cast<RegionNodeBase<RegionTraits<Function>> *>(this);
|
|
return reinterpret_cast<Region *>(Unconst);
|
|
}
|
|
|
|
template <class Tr>
|
|
inline raw_ostream &operator<<(raw_ostream &OS,
|
|
const RegionNodeBase<Tr> &Node) {
|
|
using BlockT = typename Tr::BlockT;
|
|
using RegionT = typename Tr::RegionT;
|
|
|
|
if (Node.isSubRegion())
|
|
return OS << Node.template getNodeAs<RegionT>()->getNameStr();
|
|
else
|
|
return OS << Node.template getNodeAs<BlockT>()->getName();
|
|
}
|
|
|
|
extern template class RegionBase<RegionTraits<Function>>;
|
|
extern template class RegionNodeBase<RegionTraits<Function>>;
|
|
extern template class RegionInfoBase<RegionTraits<Function>>;
|
|
|
|
} // end namespace llvm
|
|
|
|
#endif // LLVM_ANALYSIS_REGIONINFO_H
|