llvm-mirror/lib/VMCore/AsmWriter.cpp
2003-10-18 05:57:43 +00:00

1033 lines
34 KiB
C++

//===-- AsmWriter.cpp - Printing LLVM as an assembly file -----------------===//
//
// This library implements the functionality defined in llvm/Assembly/Writer.h
//
// Note that these routines must be extremely tolerant of various errors in the
// LLVM code, because it can be used for debugging transformations.
//
//===----------------------------------------------------------------------===//
#include "llvm/Assembly/CachedWriter.h"
#include "llvm/Assembly/Writer.h"
#include "llvm/Assembly/PrintModulePass.h"
#include "llvm/SlotCalculator.h"
#include "llvm/DerivedTypes.h"
#include "llvm/Instruction.h"
#include "llvm/Module.h"
#include "llvm/Constants.h"
#include "llvm/iMemory.h"
#include "llvm/iTerminators.h"
#include "llvm/iPHINode.h"
#include "llvm/iOther.h"
#include "llvm/SymbolTable.h"
#include "llvm/Support/CFG.h"
#include "Support/StringExtras.h"
#include "Support/STLExtras.h"
#include <algorithm>
static RegisterPass<PrintModulePass>
X("printm", "Print module to stderr",PassInfo::Analysis|PassInfo::Optimization);
static RegisterPass<PrintFunctionPass>
Y("print","Print function to stderr",PassInfo::Analysis|PassInfo::Optimization);
static void WriteAsOperandInternal(std::ostream &Out, const Value *V,
bool PrintName,
std::map<const Type *, std::string> &TypeTable,
SlotCalculator *Table);
static const Module *getModuleFromVal(const Value *V) {
if (const Argument *MA = dyn_cast<Argument>(V))
return MA->getParent() ? MA->getParent()->getParent() : 0;
else if (const BasicBlock *BB = dyn_cast<BasicBlock>(V))
return BB->getParent() ? BB->getParent()->getParent() : 0;
else if (const Instruction *I = dyn_cast<Instruction>(V)) {
const Function *M = I->getParent() ? I->getParent()->getParent() : 0;
return M ? M->getParent() : 0;
} else if (const GlobalValue *GV = dyn_cast<GlobalValue>(V))
return GV->getParent();
return 0;
}
static SlotCalculator *createSlotCalculator(const Value *V) {
assert(!isa<Type>(V) && "Can't create an SC for a type!");
if (const Argument *FA = dyn_cast<Argument>(V)) {
return new SlotCalculator(FA->getParent(), true);
} else if (const Instruction *I = dyn_cast<Instruction>(V)) {
return new SlotCalculator(I->getParent()->getParent(), true);
} else if (const BasicBlock *BB = dyn_cast<BasicBlock>(V)) {
return new SlotCalculator(BB->getParent(), true);
} else if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(V)){
return new SlotCalculator(GV->getParent(), true);
} else if (const Function *Func = dyn_cast<Function>(V)) {
return new SlotCalculator(Func, true);
}
return 0;
}
// getLLVMName - Turn the specified string into an 'LLVM name', which is either
// prefixed with % (if the string only contains simple characters) or is
// surrounded with ""'s (if it has special chars in it).
static std::string getLLVMName(const std::string &Name) {
assert(!Name.empty() && "Cannot get empty name!");
// First character cannot start with a number...
if (Name[0] >= '0' && Name[0] <= '9')
return "\"" + Name + "\"";
// Scan to see if we have any characters that are not on the "white list"
for (unsigned i = 0, e = Name.size(); i != e; ++i) {
char C = Name[i];
assert(C != '"' && "Illegal character in LLVM value name!");
if ((C < 'a' || C > 'z') && (C < 'A' || C > 'Z') && (C < '0' || C > '9') &&
C != '-' && C != '.' && C != '_')
return "\"" + Name + "\"";
}
// If we get here, then the identifier is legal to use as a "VarID".
return "%"+Name;
}
// If the module has a symbol table, take all global types and stuff their
// names into the TypeNames map.
//
static void fillTypeNameTable(const Module *M,
std::map<const Type *, std::string> &TypeNames) {
if (!M) return;
const SymbolTable &ST = M->getSymbolTable();
SymbolTable::const_iterator PI = ST.find(Type::TypeTy);
if (PI != ST.end()) {
SymbolTable::type_const_iterator I = PI->second.begin();
for (; I != PI->second.end(); ++I) {
// As a heuristic, don't insert pointer to primitive types, because
// they are used too often to have a single useful name.
//
const Type *Ty = cast<Type>(I->second);
if (!isa<PointerType>(Ty) ||
!cast<PointerType>(Ty)->getElementType()->isPrimitiveType())
TypeNames.insert(std::make_pair(Ty, getLLVMName(I->first)));
}
}
}
static std::string calcTypeName(const Type *Ty,
std::vector<const Type *> &TypeStack,
std::map<const Type *, std::string> &TypeNames){
if (Ty->isPrimitiveType()) return Ty->getDescription(); // Base case
// Check to see if the type is named.
std::map<const Type *, std::string>::iterator I = TypeNames.find(Ty);
if (I != TypeNames.end()) return I->second;
// Check to see if the Type is already on the stack...
unsigned Slot = 0, CurSize = TypeStack.size();
while (Slot < CurSize && TypeStack[Slot] != Ty) ++Slot; // Scan for type
// This is another base case for the recursion. In this case, we know
// that we have looped back to a type that we have previously visited.
// Generate the appropriate upreference to handle this.
//
if (Slot < CurSize)
return "\\" + utostr(CurSize-Slot); // Here's the upreference
TypeStack.push_back(Ty); // Recursive case: Add us to the stack..
std::string Result;
switch (Ty->getPrimitiveID()) {
case Type::FunctionTyID: {
const FunctionType *FTy = cast<FunctionType>(Ty);
Result = calcTypeName(FTy->getReturnType(), TypeStack, TypeNames) + " (";
for (FunctionType::ParamTypes::const_iterator
I = FTy->getParamTypes().begin(),
E = FTy->getParamTypes().end(); I != E; ++I) {
if (I != FTy->getParamTypes().begin())
Result += ", ";
Result += calcTypeName(*I, TypeStack, TypeNames);
}
if (FTy->isVarArg()) {
if (!FTy->getParamTypes().empty()) Result += ", ";
Result += "...";
}
Result += ")";
break;
}
case Type::StructTyID: {
const StructType *STy = cast<StructType>(Ty);
Result = "{ ";
for (StructType::ElementTypes::const_iterator
I = STy->getElementTypes().begin(),
E = STy->getElementTypes().end(); I != E; ++I) {
if (I != STy->getElementTypes().begin())
Result += ", ";
Result += calcTypeName(*I, TypeStack, TypeNames);
}
Result += " }";
break;
}
case Type::PointerTyID:
Result = calcTypeName(cast<PointerType>(Ty)->getElementType(),
TypeStack, TypeNames) + "*";
break;
case Type::ArrayTyID: {
const ArrayType *ATy = cast<ArrayType>(Ty);
Result = "[" + utostr(ATy->getNumElements()) + " x ";
Result += calcTypeName(ATy->getElementType(), TypeStack, TypeNames) + "]";
break;
}
case Type::OpaqueTyID:
Result = "opaque";
break;
default:
Result = "<unrecognized-type>";
}
TypeStack.pop_back(); // Remove self from stack...
return Result;
}
// printTypeInt - The internal guts of printing out a type that has a
// potentially named portion.
//
static std::ostream &printTypeInt(std::ostream &Out, const Type *Ty,
std::map<const Type *, std::string> &TypeNames) {
// Primitive types always print out their description, regardless of whether
// they have been named or not.
//
if (Ty->isPrimitiveType()) return Out << Ty->getDescription();
// Check to see if the type is named.
std::map<const Type *, std::string>::iterator I = TypeNames.find(Ty);
if (I != TypeNames.end()) return Out << I->second;
// Otherwise we have a type that has not been named but is a derived type.
// Carefully recurse the type hierarchy to print out any contained symbolic
// names.
//
std::vector<const Type *> TypeStack;
std::string TypeName = calcTypeName(Ty, TypeStack, TypeNames);
TypeNames.insert(std::make_pair(Ty, TypeName));//Cache type name for later use
return Out << TypeName;
}
// WriteTypeSymbolic - This attempts to write the specified type as a symbolic
// type, iff there is an entry in the modules symbol table for the specified
// type or one of it's component types. This is slower than a simple x << Type;
//
std::ostream &WriteTypeSymbolic(std::ostream &Out, const Type *Ty,
const Module *M) {
Out << " ";
// If they want us to print out a type, attempt to make it symbolic if there
// is a symbol table in the module...
if (M) {
std::map<const Type *, std::string> TypeNames;
fillTypeNameTable(M, TypeNames);
return printTypeInt(Out, Ty, TypeNames);
} else {
return Out << Ty->getDescription();
}
}
static void WriteConstantInt(std::ostream &Out, const Constant *CV,
bool PrintName,
std::map<const Type *, std::string> &TypeTable,
SlotCalculator *Table) {
if (const ConstantBool *CB = dyn_cast<ConstantBool>(CV)) {
Out << (CB == ConstantBool::True ? "true" : "false");
} else if (const ConstantSInt *CI = dyn_cast<ConstantSInt>(CV)) {
Out << CI->getValue();
} else if (const ConstantUInt *CI = dyn_cast<ConstantUInt>(CV)) {
Out << CI->getValue();
} else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CV)) {
// We would like to output the FP constant value in exponential notation,
// but we cannot do this if doing so will lose precision. Check here to
// make sure that we only output it in exponential format if we can parse
// the value back and get the same value.
//
std::string StrVal = ftostr(CFP->getValue());
// Check to make sure that the stringized number is not some string like
// "Inf" or NaN, that atof will accept, but the lexer will not. Check that
// the string matches the "[-+]?[0-9]" regex.
//
if ((StrVal[0] >= '0' && StrVal[0] <= '9') ||
((StrVal[0] == '-' || StrVal[0] == '+') &&
(StrVal[1] >= '0' && StrVal[1] <= '9')))
// Reparse stringized version!
if (atof(StrVal.c_str()) == CFP->getValue()) {
Out << StrVal; return;
}
// Otherwise we could not reparse it to exactly the same value, so we must
// output the string in hexadecimal format!
//
// Behave nicely in the face of C TBAA rules... see:
// http://www.nullstone.com/htmls/category/aliastyp.htm
//
double Val = CFP->getValue();
char *Ptr = (char*)&Val;
assert(sizeof(double) == sizeof(uint64_t) && sizeof(double) == 8 &&
"assuming that double is 64 bits!");
Out << "0x" << utohexstr(*(uint64_t*)Ptr);
} else if (const ConstantArray *CA = dyn_cast<ConstantArray>(CV)) {
if (CA->getNumOperands() > 5 && CA->isNullValue()) {
Out << "zeroinitializer";
return;
}
// As a special case, print the array as a string if it is an array of
// ubytes or an array of sbytes with positive values.
//
const Type *ETy = CA->getType()->getElementType();
bool isString = (ETy == Type::SByteTy || ETy == Type::UByteTy);
if (ETy == Type::SByteTy)
for (unsigned i = 0; i < CA->getNumOperands(); ++i)
if (cast<ConstantSInt>(CA->getOperand(i))->getValue() < 0) {
isString = false;
break;
}
if (isString) {
Out << "c\"";
for (unsigned i = 0; i < CA->getNumOperands(); ++i) {
unsigned char C = cast<ConstantInt>(CA->getOperand(i))->getRawValue();
if (isprint(C) && C != '"' && C != '\\') {
Out << C;
} else {
Out << '\\'
<< (char) ((C/16 < 10) ? ( C/16 +'0') : ( C/16 -10+'A'))
<< (char)(((C&15) < 10) ? ((C&15)+'0') : ((C&15)-10+'A'));
}
}
Out << "\"";
} else { // Cannot output in string format...
Out << "[";
if (CA->getNumOperands()) {
Out << " ";
printTypeInt(Out, ETy, TypeTable);
WriteAsOperandInternal(Out, CA->getOperand(0),
PrintName, TypeTable, Table);
for (unsigned i = 1, e = CA->getNumOperands(); i != e; ++i) {
Out << ", ";
printTypeInt(Out, ETy, TypeTable);
WriteAsOperandInternal(Out, CA->getOperand(i), PrintName,
TypeTable, Table);
}
}
Out << " ]";
}
} else if (const ConstantStruct *CS = dyn_cast<ConstantStruct>(CV)) {
if (CS->getNumOperands() > 5 && CS->isNullValue()) {
Out << "zeroinitializer";
return;
}
Out << "{";
if (CS->getNumOperands()) {
Out << " ";
printTypeInt(Out, CS->getOperand(0)->getType(), TypeTable);
WriteAsOperandInternal(Out, CS->getOperand(0),
PrintName, TypeTable, Table);
for (unsigned i = 1; i < CS->getNumOperands(); i++) {
Out << ", ";
printTypeInt(Out, CS->getOperand(i)->getType(), TypeTable);
WriteAsOperandInternal(Out, CS->getOperand(i),
PrintName, TypeTable, Table);
}
}
Out << " }";
} else if (isa<ConstantPointerNull>(CV)) {
Out << "null";
} else if (const ConstantPointerRef *PR = dyn_cast<ConstantPointerRef>(CV)) {
const GlobalValue *V = PR->getValue();
if (V->hasName()) {
Out << getLLVMName(V->getName());
} else if (Table) {
int Slot = Table->getSlot(V);
if (Slot >= 0)
Out << "%" << Slot;
else
Out << "<pointer reference badref>";
} else {
Out << "<pointer reference without context info>";
}
} else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV)) {
Out << CE->getOpcodeName() << " (";
for (User::const_op_iterator OI=CE->op_begin(); OI != CE->op_end(); ++OI) {
printTypeInt(Out, (*OI)->getType(), TypeTable);
WriteAsOperandInternal(Out, *OI, PrintName, TypeTable, Table);
if (OI+1 != CE->op_end())
Out << ", ";
}
if (CE->getOpcode() == Instruction::Cast) {
Out << " to ";
printTypeInt(Out, CE->getType(), TypeTable);
}
Out << ")";
} else {
Out << "<placeholder or erroneous Constant>";
}
}
// WriteAsOperand - Write the name of the specified value out to the specified
// ostream. This can be useful when you just want to print int %reg126, not the
// whole instruction that generated it.
//
static void WriteAsOperandInternal(std::ostream &Out, const Value *V,
bool PrintName,
std::map<const Type*, std::string> &TypeTable,
SlotCalculator *Table) {
Out << " ";
if (PrintName && V->hasName()) {
Out << getLLVMName(V->getName());
} else {
if (const Constant *CV = dyn_cast<Constant>(V)) {
WriteConstantInt(Out, CV, PrintName, TypeTable, Table);
} else {
int Slot;
if (Table) {
Slot = Table->getSlot(V);
} else {
if (const Type *Ty = dyn_cast<Type>(V)) {
Out << Ty->getDescription();
return;
}
Table = createSlotCalculator(V);
if (Table == 0) { Out << "BAD VALUE TYPE!"; return; }
Slot = Table->getSlot(V);
delete Table;
}
if (Slot >= 0) Out << "%" << Slot;
else if (PrintName)
Out << "<badref>"; // Not embedded into a location?
}
}
}
// WriteAsOperand - Write the name of the specified value out to the specified
// ostream. This can be useful when you just want to print int %reg126, not the
// whole instruction that generated it.
//
std::ostream &WriteAsOperand(std::ostream &Out, const Value *V, bool PrintType,
bool PrintName, const Module *Context) {
std::map<const Type *, std::string> TypeNames;
if (Context == 0) Context = getModuleFromVal(V);
if (Context)
fillTypeNameTable(Context, TypeNames);
if (PrintType)
printTypeInt(Out, V->getType(), TypeNames);
WriteAsOperandInternal(Out, V, PrintName, TypeNames, 0);
return Out;
}
class AssemblyWriter {
std::ostream &Out;
SlotCalculator &Table;
const Module *TheModule;
std::map<const Type *, std::string> TypeNames;
public:
inline AssemblyWriter(std::ostream &o, SlotCalculator &Tab, const Module *M)
: Out(o), Table(Tab), TheModule(M) {
// If the module has a symbol table, take all global types and stuff their
// names into the TypeNames map.
//
fillTypeNameTable(M, TypeNames);
}
inline void write(const Module *M) { printModule(M); }
inline void write(const GlobalVariable *G) { printGlobal(G); }
inline void write(const Function *F) { printFunction(F); }
inline void write(const BasicBlock *BB) { printBasicBlock(BB); }
inline void write(const Instruction *I) { printInstruction(*I); }
inline void write(const Constant *CPV) { printConstant(CPV); }
inline void write(const Type *Ty) { printType(Ty); }
void writeOperand(const Value *Op, bool PrintType, bool PrintName = true);
private :
void printModule(const Module *M);
void printSymbolTable(const SymbolTable &ST);
void printConstant(const Constant *CPV);
void printGlobal(const GlobalVariable *GV);
void printFunction(const Function *F);
void printArgument(const Argument *FA);
void printBasicBlock(const BasicBlock *BB);
void printInstruction(const Instruction &I);
// printType - Go to extreme measures to attempt to print out a short,
// symbolic version of a type name.
//
std::ostream &printType(const Type *Ty) {
return printTypeInt(Out, Ty, TypeNames);
}
// printTypeAtLeastOneLevel - Print out one level of the possibly complex type
// without considering any symbolic types that we may have equal to it.
//
std::ostream &printTypeAtLeastOneLevel(const Type *Ty);
// printInfoComment - Print a little comment after the instruction indicating
// which slot it occupies.
void printInfoComment(const Value &V);
};
// printTypeAtLeastOneLevel - Print out one level of the possibly complex type
// without considering any symbolic types that we may have equal to it.
//
std::ostream &AssemblyWriter::printTypeAtLeastOneLevel(const Type *Ty) {
if (const FunctionType *FTy = dyn_cast<FunctionType>(Ty)) {
printType(FTy->getReturnType()) << " (";
for (FunctionType::ParamTypes::const_iterator
I = FTy->getParamTypes().begin(),
E = FTy->getParamTypes().end(); I != E; ++I) {
if (I != FTy->getParamTypes().begin())
Out << ", ";
printType(*I);
}
if (FTy->isVarArg()) {
if (!FTy->getParamTypes().empty()) Out << ", ";
Out << "...";
}
Out << ")";
} else if (const StructType *STy = dyn_cast<StructType>(Ty)) {
Out << "{ ";
for (StructType::ElementTypes::const_iterator
I = STy->getElementTypes().begin(),
E = STy->getElementTypes().end(); I != E; ++I) {
if (I != STy->getElementTypes().begin())
Out << ", ";
printType(*I);
}
Out << " }";
} else if (const PointerType *PTy = dyn_cast<PointerType>(Ty)) {
printType(PTy->getElementType()) << "*";
} else if (const ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
Out << "[" << ATy->getNumElements() << " x ";
printType(ATy->getElementType()) << "]";
} else if (const OpaqueType *OTy = dyn_cast<OpaqueType>(Ty)) {
Out << "opaque";
} else {
if (!Ty->isPrimitiveType())
Out << "<unknown derived type>";
printType(Ty);
}
return Out;
}
void AssemblyWriter::writeOperand(const Value *Operand, bool PrintType,
bool PrintName) {
if (PrintType) { Out << " "; printType(Operand->getType()); }
WriteAsOperandInternal(Out, Operand, PrintName, TypeNames, &Table);
}
void AssemblyWriter::printModule(const Module *M) {
switch (M->getEndianness()) {
case Module::LittleEndian: Out << "target endian = little\n"; break;
case Module::BigEndian: Out << "target endian = big\n"; break;
case Module::AnyEndianness: break;
}
switch (M->getPointerSize()) {
case Module::Pointer32: Out << "target pointersize = 32\n"; break;
case Module::Pointer64: Out << "target pointersize = 64\n"; break;
case Module::AnyPointerSize: break;
}
// Loop over the symbol table, emitting all named constants...
printSymbolTable(M->getSymbolTable());
for (Module::const_giterator I = M->gbegin(), E = M->gend(); I != E; ++I)
printGlobal(I);
Out << "\nimplementation ; Functions:\n";
// Output all of the functions...
for (Module::const_iterator I = M->begin(), E = M->end(); I != E; ++I)
printFunction(I);
}
void AssemblyWriter::printGlobal(const GlobalVariable *GV) {
if (GV->hasName()) Out << getLLVMName(GV->getName()) << " = ";
if (!GV->hasInitializer())
Out << "external ";
else
switch (GV->getLinkage()) {
case GlobalValue::InternalLinkage: Out << "internal "; break;
case GlobalValue::LinkOnceLinkage: Out << "linkonce "; break;
case GlobalValue::WeakLinkage: Out << "weak "; break;
case GlobalValue::AppendingLinkage: Out << "appending "; break;
case GlobalValue::ExternalLinkage: break;
}
Out << (GV->isConstant() ? "constant " : "global ");
printType(GV->getType()->getElementType());
if (GV->hasInitializer())
writeOperand(GV->getInitializer(), false, false);
printInfoComment(*GV);
Out << "\n";
}
// printSymbolTable - Run through symbol table looking for named constants
// if a named constant is found, emit it's declaration...
//
void AssemblyWriter::printSymbolTable(const SymbolTable &ST) {
for (SymbolTable::const_iterator TI = ST.begin(); TI != ST.end(); ++TI) {
SymbolTable::type_const_iterator I = ST.type_begin(TI->first);
SymbolTable::type_const_iterator End = ST.type_end(TI->first);
for (; I != End; ++I) {
const Value *V = I->second;
if (const Constant *CPV = dyn_cast<Constant>(V)) {
printConstant(CPV);
} else if (const Type *Ty = dyn_cast<Type>(V)) {
Out << "\t" << getLLVMName(I->first) << " = type ";
// Make sure we print out at least one level of the type structure, so
// that we do not get %FILE = type %FILE
//
printTypeAtLeastOneLevel(Ty) << "\n";
}
}
}
}
// printConstant - Print out a constant pool entry...
//
void AssemblyWriter::printConstant(const Constant *CPV) {
// Don't print out unnamed constants, they will be inlined
if (!CPV->hasName()) return;
// Print out name...
Out << "\t" << getLLVMName(CPV->getName()) << " =";
// Write the value out now...
writeOperand(CPV, true, false);
printInfoComment(*CPV);
Out << "\n";
}
// printFunction - Print all aspects of a function.
//
void AssemblyWriter::printFunction(const Function *F) {
// Print out the return type and name...
Out << "\n";
if (F->isExternal())
Out << "declare ";
else
switch (F->getLinkage()) {
case GlobalValue::InternalLinkage: Out << "internal "; break;
case GlobalValue::LinkOnceLinkage: Out << "linkonce "; break;
case GlobalValue::WeakLinkage: Out << "weak "; break;
case GlobalValue::AppendingLinkage: Out << "appending "; break;
case GlobalValue::ExternalLinkage: break;
}
printType(F->getReturnType()) << " ";
if (!F->getName().empty())
Out << getLLVMName(F->getName());
else
Out << "\"\"";
Out << "(";
Table.incorporateFunction(F);
// Loop over the arguments, printing them...
const FunctionType *FT = F->getFunctionType();
for(Function::const_aiterator I = F->abegin(), E = F->aend(); I != E; ++I)
printArgument(I);
// Finish printing arguments...
if (FT->isVarArg()) {
if (FT->getParamTypes().size()) Out << ", ";
Out << "..."; // Output varargs portion of signature!
}
Out << ")";
if (F->isExternal()) {
Out << "\n";
} else {
Out << " {";
// Output all of its basic blocks... for the function
for (Function::const_iterator I = F->begin(), E = F->end(); I != E; ++I)
printBasicBlock(I);
Out << "}\n";
}
Table.purgeFunction();
}
// printArgument - This member is called for every argument that
// is passed into the function. Simply print it out
//
void AssemblyWriter::printArgument(const Argument *Arg) {
// Insert commas as we go... the first arg doesn't get a comma
if (Arg != &Arg->getParent()->afront()) Out << ", ";
// Output type...
printType(Arg->getType());
// Output name, if available...
if (Arg->hasName())
Out << " " << getLLVMName(Arg->getName());
else if (Table.getSlot(Arg) < 0)
Out << "<badref>";
}
// printBasicBlock - This member is called for each basic block in a method.
//
void AssemblyWriter::printBasicBlock(const BasicBlock *BB) {
if (BB->hasName()) { // Print out the label if it exists...
Out << "\n" << BB->getName() << ":";
} else if (!BB->use_empty()) { // Don't print block # of no uses...
int Slot = Table.getSlot(BB);
Out << "\n; <label>:";
if (Slot >= 0)
Out << Slot; // Extra newline separates out label's
else
Out << "<badref>";
}
// Output predecessors for the block...
Out << "\t\t;";
pred_const_iterator PI = pred_begin(BB), PE = pred_end(BB);
if (PI == PE) {
Out << " No predecessors!";
} else {
Out << " preds =";
writeOperand(*PI, false, true);
for (++PI; PI != PE; ++PI) {
Out << ",";
writeOperand(*PI, false, true);
}
}
Out << "\n";
// Output all of the instructions in the basic block...
for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); I != E; ++I)
printInstruction(*I);
}
// printInfoComment - Print a little comment after the instruction indicating
// which slot it occupies.
//
void AssemblyWriter::printInfoComment(const Value &V) {
if (V.getType() != Type::VoidTy) {
Out << "\t\t; <";
printType(V.getType()) << ">";
if (!V.hasName()) {
int Slot = Table.getSlot(&V); // Print out the def slot taken...
if (Slot >= 0) Out << ":" << Slot;
else Out << ":<badref>";
}
Out << " [#uses=" << V.use_size() << "]"; // Output # uses
}
}
// printInstruction - This member is called for each Instruction in a method.
//
void AssemblyWriter::printInstruction(const Instruction &I) {
Out << "\t";
// Print out name if it exists...
if (I.hasName())
Out << getLLVMName(I.getName()) << " = ";
// If this is a volatile load or store, print out the volatile marker
if ((isa<LoadInst>(I) && cast<LoadInst>(I).isVolatile()) ||
(isa<StoreInst>(I) && cast<StoreInst>(I).isVolatile()))
Out << "volatile ";
// Print out the opcode...
Out << I.getOpcodeName();
// Print out the type of the operands...
const Value *Operand = I.getNumOperands() ? I.getOperand(0) : 0;
// Special case conditional branches to swizzle the condition out to the front
if (isa<BranchInst>(I) && I.getNumOperands() > 1) {
writeOperand(I.getOperand(2), true);
Out << ",";
writeOperand(Operand, true);
Out << ",";
writeOperand(I.getOperand(1), true);
} else if (isa<SwitchInst>(I)) {
// Special case switch statement to get formatting nice and correct...
writeOperand(Operand , true); Out << ",";
writeOperand(I.getOperand(1), true); Out << " [";
for (unsigned op = 2, Eop = I.getNumOperands(); op < Eop; op += 2) {
Out << "\n\t\t";
writeOperand(I.getOperand(op ), true); Out << ",";
writeOperand(I.getOperand(op+1), true);
}
Out << "\n\t]";
} else if (isa<PHINode>(I)) {
Out << " ";
printType(I.getType());
Out << " ";
for (unsigned op = 0, Eop = I.getNumOperands(); op < Eop; op += 2) {
if (op) Out << ", ";
Out << "[";
writeOperand(I.getOperand(op ), false); Out << ",";
writeOperand(I.getOperand(op+1), false); Out << " ]";
}
} else if (isa<ReturnInst>(I) && !Operand) {
Out << " void";
} else if (isa<CallInst>(I)) {
const PointerType *PTy = cast<PointerType>(Operand->getType());
const FunctionType *FTy = cast<FunctionType>(PTy->getElementType());
const Type *RetTy = FTy->getReturnType();
// If possible, print out the short form of the call instruction. We can
// only do this if the first argument is a pointer to a nonvararg function,
// and if the return type is not a pointer to a function.
//
if (!FTy->isVarArg() &&
(!isa<PointerType>(RetTy) ||
!isa<FunctionType>(cast<PointerType>(RetTy)->getElementType()))) {
Out << " "; printType(RetTy);
writeOperand(Operand, false);
} else {
writeOperand(Operand, true);
}
Out << "(";
if (I.getNumOperands() > 1) writeOperand(I.getOperand(1), true);
for (unsigned op = 2, Eop = I.getNumOperands(); op < Eop; ++op) {
Out << ",";
writeOperand(I.getOperand(op), true);
}
Out << " )";
} else if (const InvokeInst *II = dyn_cast<InvokeInst>(&I)) {
const PointerType *PTy = cast<PointerType>(Operand->getType());
const FunctionType *FTy = cast<FunctionType>(PTy->getElementType());
const Type *RetTy = FTy->getReturnType();
// If possible, print out the short form of the invoke instruction. We can
// only do this if the first argument is a pointer to a nonvararg function,
// and if the return type is not a pointer to a function.
//
if (!FTy->isVarArg() &&
(!isa<PointerType>(RetTy) ||
!isa<FunctionType>(cast<PointerType>(RetTy)->getElementType()))) {
Out << " "; printType(RetTy);
writeOperand(Operand, false);
} else {
writeOperand(Operand, true);
}
Out << "(";
if (I.getNumOperands() > 3) writeOperand(I.getOperand(3), true);
for (unsigned op = 4, Eop = I.getNumOperands(); op < Eop; ++op) {
Out << ",";
writeOperand(I.getOperand(op), true);
}
Out << " )\n\t\t\tto";
writeOperand(II->getNormalDest(), true);
Out << " except";
writeOperand(II->getExceptionalDest(), true);
} else if (const AllocationInst *AI = dyn_cast<AllocationInst>(&I)) {
Out << " ";
printType(AI->getType()->getElementType());
if (AI->isArrayAllocation()) {
Out << ",";
writeOperand(AI->getArraySize(), true);
}
} else if (isa<CastInst>(I)) {
writeOperand(Operand, true);
Out << " to ";
printType(I.getType());
} else if (isa<VAArgInst>(I)) {
writeOperand(Operand, true);
Out << ", ";
printType(I.getType());
} else if (const VANextInst *VAN = dyn_cast<VANextInst>(&I)) {
writeOperand(Operand, true);
Out << ", ";
printType(VAN->getArgType());
} else if (Operand) { // Print the normal way...
// PrintAllTypes - Instructions who have operands of all the same type
// omit the type from all but the first operand. If the instruction has
// different type operands (for example br), then they are all printed.
bool PrintAllTypes = false;
const Type *TheType = Operand->getType();
// Shift Left & Right print both types even for Ubyte LHS
if (isa<ShiftInst>(I)) {
PrintAllTypes = true;
} else {
for (unsigned i = 1, E = I.getNumOperands(); i != E; ++i) {
Operand = I.getOperand(i);
if (Operand->getType() != TheType) {
PrintAllTypes = true; // We have differing types! Print them all!
break;
}
}
}
if (!PrintAllTypes) {
Out << " ";
printType(TheType);
}
for (unsigned i = 0, E = I.getNumOperands(); i != E; ++i) {
if (i) Out << ",";
writeOperand(I.getOperand(i), PrintAllTypes);
}
}
printInfoComment(I);
Out << "\n";
}
//===----------------------------------------------------------------------===//
// External Interface declarations
//===----------------------------------------------------------------------===//
void Module::print(std::ostream &o) const {
SlotCalculator SlotTable(this, true);
AssemblyWriter W(o, SlotTable, this);
W.write(this);
}
void GlobalVariable::print(std::ostream &o) const {
SlotCalculator SlotTable(getParent(), true);
AssemblyWriter W(o, SlotTable, getParent());
W.write(this);
}
void Function::print(std::ostream &o) const {
SlotCalculator SlotTable(getParent(), true);
AssemblyWriter W(o, SlotTable, getParent());
W.write(this);
}
void BasicBlock::print(std::ostream &o) const {
SlotCalculator SlotTable(getParent(), true);
AssemblyWriter W(o, SlotTable,
getParent() ? getParent()->getParent() : 0);
W.write(this);
}
void Instruction::print(std::ostream &o) const {
const Function *F = getParent() ? getParent()->getParent() : 0;
SlotCalculator SlotTable(F, true);
AssemblyWriter W(o, SlotTable, F ? F->getParent() : 0);
W.write(this);
}
void Constant::print(std::ostream &o) const {
if (this == 0) { o << "<null> constant value\n"; return; }
// Handle CPR's special, because they have context information...
if (const ConstantPointerRef *CPR = dyn_cast<ConstantPointerRef>(this)) {
CPR->getValue()->print(o); // Print as a global value, with context info.
return;
}
o << " " << getType()->getDescription() << " ";
std::map<const Type *, std::string> TypeTable;
WriteConstantInt(o, this, false, TypeTable, 0);
}
void Type::print(std::ostream &o) const {
if (this == 0)
o << "<null Type>";
else
o << getDescription();
}
void Argument::print(std::ostream &o) const {
o << getType() << " " << getName();
}
void Value::dump() const { print(std::cerr); }
//===----------------------------------------------------------------------===//
// CachedWriter Class Implementation
//===----------------------------------------------------------------------===//
void CachedWriter::setModule(const Module *M) {
delete SC; delete AW;
if (M) {
SC = new SlotCalculator(M, true);
AW = new AssemblyWriter(Out, *SC, M);
} else {
SC = 0; AW = 0;
}
}
CachedWriter::~CachedWriter() {
delete AW;
delete SC;
}
CachedWriter &CachedWriter::operator<<(const Value *V) {
assert(AW && SC && "CachedWriter does not have a current module!");
switch (V->getValueType()) {
case Value::ConstantVal:
case Value::ArgumentVal: AW->writeOperand(V, true, true); break;
case Value::TypeVal: AW->write(cast<Type>(V)); break;
case Value::InstructionVal: AW->write(cast<Instruction>(V)); break;
case Value::BasicBlockVal: AW->write(cast<BasicBlock>(V)); break;
case Value::FunctionVal: AW->write(cast<Function>(V)); break;
case Value::GlobalVariableVal: AW->write(cast<GlobalVariable>(V)); break;
default: Out << "<unknown value type: " << V->getValueType() << ">"; break;
}
return *this;
}