mirror of
https://github.com/RPCS3/llvm-mirror.git
synced 2024-12-22 03:28:35 +00:00
03e1ab9c5b
llvm-svn: 157416
314 lines
9.7 KiB
C++
314 lines
9.7 KiB
C++
//===- SetTheory.cpp - Generate ordered sets from DAG expressions ---------===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file implements the SetTheory class that computes ordered sets of
|
|
// Records from DAG expressions.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "SetTheory.h"
|
|
#include "llvm/TableGen/Error.h"
|
|
#include "llvm/TableGen/Record.h"
|
|
#include "llvm/Support/Format.h"
|
|
|
|
using namespace llvm;
|
|
|
|
// Define the standard operators.
|
|
namespace {
|
|
|
|
typedef SetTheory::RecSet RecSet;
|
|
typedef SetTheory::RecVec RecVec;
|
|
|
|
// (add a, b, ...) Evaluate and union all arguments.
|
|
struct AddOp : public SetTheory::Operator {
|
|
void apply(SetTheory &ST, DagInit *Expr, RecSet &Elts) {
|
|
ST.evaluate(Expr->arg_begin(), Expr->arg_end(), Elts);
|
|
}
|
|
};
|
|
|
|
// (sub Add, Sub, ...) Set difference.
|
|
struct SubOp : public SetTheory::Operator {
|
|
void apply(SetTheory &ST, DagInit *Expr, RecSet &Elts) {
|
|
if (Expr->arg_size() < 2)
|
|
throw "Set difference needs at least two arguments: " +
|
|
Expr->getAsString();
|
|
RecSet Add, Sub;
|
|
ST.evaluate(*Expr->arg_begin(), Add);
|
|
ST.evaluate(Expr->arg_begin() + 1, Expr->arg_end(), Sub);
|
|
for (RecSet::iterator I = Add.begin(), E = Add.end(); I != E; ++I)
|
|
if (!Sub.count(*I))
|
|
Elts.insert(*I);
|
|
}
|
|
};
|
|
|
|
// (and S1, S2) Set intersection.
|
|
struct AndOp : public SetTheory::Operator {
|
|
void apply(SetTheory &ST, DagInit *Expr, RecSet &Elts) {
|
|
if (Expr->arg_size() != 2)
|
|
throw "Set intersection requires two arguments: " + Expr->getAsString();
|
|
RecSet S1, S2;
|
|
ST.evaluate(Expr->arg_begin()[0], S1);
|
|
ST.evaluate(Expr->arg_begin()[1], S2);
|
|
for (RecSet::iterator I = S1.begin(), E = S1.end(); I != E; ++I)
|
|
if (S2.count(*I))
|
|
Elts.insert(*I);
|
|
}
|
|
};
|
|
|
|
// SetIntBinOp - Abstract base class for (Op S, N) operators.
|
|
struct SetIntBinOp : public SetTheory::Operator {
|
|
virtual void apply2(SetTheory &ST, DagInit *Expr,
|
|
RecSet &Set, int64_t N,
|
|
RecSet &Elts) =0;
|
|
|
|
void apply(SetTheory &ST, DagInit *Expr, RecSet &Elts) {
|
|
if (Expr->arg_size() != 2)
|
|
throw "Operator requires (Op Set, Int) arguments: " + Expr->getAsString();
|
|
RecSet Set;
|
|
ST.evaluate(Expr->arg_begin()[0], Set);
|
|
IntInit *II = dynamic_cast<IntInit*>(Expr->arg_begin()[1]);
|
|
if (!II)
|
|
throw "Second argument must be an integer: " + Expr->getAsString();
|
|
apply2(ST, Expr, Set, II->getValue(), Elts);
|
|
}
|
|
};
|
|
|
|
// (shl S, N) Shift left, remove the first N elements.
|
|
struct ShlOp : public SetIntBinOp {
|
|
void apply2(SetTheory &ST, DagInit *Expr,
|
|
RecSet &Set, int64_t N,
|
|
RecSet &Elts) {
|
|
if (N < 0)
|
|
throw "Positive shift required: " + Expr->getAsString();
|
|
if (unsigned(N) < Set.size())
|
|
Elts.insert(Set.begin() + N, Set.end());
|
|
}
|
|
};
|
|
|
|
// (trunc S, N) Truncate after the first N elements.
|
|
struct TruncOp : public SetIntBinOp {
|
|
void apply2(SetTheory &ST, DagInit *Expr,
|
|
RecSet &Set, int64_t N,
|
|
RecSet &Elts) {
|
|
if (N < 0)
|
|
throw "Positive length required: " + Expr->getAsString();
|
|
if (unsigned(N) > Set.size())
|
|
N = Set.size();
|
|
Elts.insert(Set.begin(), Set.begin() + N);
|
|
}
|
|
};
|
|
|
|
// Left/right rotation.
|
|
struct RotOp : public SetIntBinOp {
|
|
const bool Reverse;
|
|
|
|
RotOp(bool Rev) : Reverse(Rev) {}
|
|
|
|
void apply2(SetTheory &ST, DagInit *Expr,
|
|
RecSet &Set, int64_t N,
|
|
RecSet &Elts) {
|
|
if (Reverse)
|
|
N = -N;
|
|
// N > 0 -> rotate left, N < 0 -> rotate right.
|
|
if (Set.empty())
|
|
return;
|
|
if (N < 0)
|
|
N = Set.size() - (-N % Set.size());
|
|
else
|
|
N %= Set.size();
|
|
Elts.insert(Set.begin() + N, Set.end());
|
|
Elts.insert(Set.begin(), Set.begin() + N);
|
|
}
|
|
};
|
|
|
|
// (decimate S, N) Pick every N'th element of S.
|
|
struct DecimateOp : public SetIntBinOp {
|
|
void apply2(SetTheory &ST, DagInit *Expr,
|
|
RecSet &Set, int64_t N,
|
|
RecSet &Elts) {
|
|
if (N <= 0)
|
|
throw "Positive stride required: " + Expr->getAsString();
|
|
for (unsigned I = 0; I < Set.size(); I += N)
|
|
Elts.insert(Set[I]);
|
|
}
|
|
};
|
|
|
|
// (interleave S1, S2, ...) Interleave elements of the arguments.
|
|
struct InterleaveOp : public SetTheory::Operator {
|
|
void apply(SetTheory &ST, DagInit *Expr, RecSet &Elts) {
|
|
// Evaluate the arguments individually.
|
|
SmallVector<RecSet, 4> Args(Expr->getNumArgs());
|
|
unsigned MaxSize = 0;
|
|
for (unsigned i = 0, e = Expr->getNumArgs(); i != e; ++i) {
|
|
ST.evaluate(Expr->getArg(i), Args[i]);
|
|
MaxSize = std::max(MaxSize, unsigned(Args[i].size()));
|
|
}
|
|
// Interleave arguments into Elts.
|
|
for (unsigned n = 0; n != MaxSize; ++n)
|
|
for (unsigned i = 0, e = Expr->getNumArgs(); i != e; ++i)
|
|
if (n < Args[i].size())
|
|
Elts.insert(Args[i][n]);
|
|
}
|
|
};
|
|
|
|
// (sequence "Format", From, To) Generate a sequence of records by name.
|
|
struct SequenceOp : public SetTheory::Operator {
|
|
void apply(SetTheory &ST, DagInit *Expr, RecSet &Elts) {
|
|
int Step = 1;
|
|
if (Expr->arg_size() > 4)
|
|
throw "Bad args to (sequence \"Format\", From, To): " +
|
|
Expr->getAsString();
|
|
else if (Expr->arg_size() == 4) {
|
|
if (IntInit *II = dynamic_cast<IntInit*>(Expr->arg_begin()[3])) {
|
|
Step = II->getValue();
|
|
} else
|
|
throw "Stride must be an integer: " + Expr->getAsString();
|
|
}
|
|
|
|
std::string Format;
|
|
if (StringInit *SI = dynamic_cast<StringInit*>(Expr->arg_begin()[0]))
|
|
Format = SI->getValue();
|
|
else
|
|
throw "Format must be a string: " + Expr->getAsString();
|
|
|
|
int64_t From, To;
|
|
if (IntInit *II = dynamic_cast<IntInit*>(Expr->arg_begin()[1]))
|
|
From = II->getValue();
|
|
else
|
|
throw "From must be an integer: " + Expr->getAsString();
|
|
if (From < 0 || From >= (1 << 30))
|
|
throw "From out of range";
|
|
|
|
if (IntInit *II = dynamic_cast<IntInit*>(Expr->arg_begin()[2]))
|
|
To = II->getValue();
|
|
else
|
|
throw "From must be an integer: " + Expr->getAsString();
|
|
if (To < 0 || To >= (1 << 30))
|
|
throw "To out of range";
|
|
|
|
RecordKeeper &Records =
|
|
dynamic_cast<DefInit&>(*Expr->getOperator()).getDef()->getRecords();
|
|
|
|
Step *= From <= To ? 1 : -1;
|
|
while (true) {
|
|
if (Step > 0 && From > To)
|
|
break;
|
|
else if (Step < 0 && From < To)
|
|
break;
|
|
std::string Name;
|
|
raw_string_ostream OS(Name);
|
|
OS << format(Format.c_str(), unsigned(From));
|
|
Record *Rec = Records.getDef(OS.str());
|
|
if (!Rec)
|
|
throw "No def named '" + Name + "': " + Expr->getAsString();
|
|
// Try to reevaluate Rec in case it is a set.
|
|
if (const RecVec *Result = ST.expand(Rec))
|
|
Elts.insert(Result->begin(), Result->end());
|
|
else
|
|
Elts.insert(Rec);
|
|
|
|
From += Step;
|
|
}
|
|
}
|
|
};
|
|
|
|
// Expand a Def into a set by evaluating one of its fields.
|
|
struct FieldExpander : public SetTheory::Expander {
|
|
StringRef FieldName;
|
|
|
|
FieldExpander(StringRef fn) : FieldName(fn) {}
|
|
|
|
void expand(SetTheory &ST, Record *Def, RecSet &Elts) {
|
|
ST.evaluate(Def->getValueInit(FieldName), Elts);
|
|
}
|
|
};
|
|
} // end anonymous namespace
|
|
|
|
void SetTheory::Operator::anchor() { }
|
|
|
|
void SetTheory::Expander::anchor() { }
|
|
|
|
SetTheory::SetTheory() {
|
|
addOperator("add", new AddOp);
|
|
addOperator("sub", new SubOp);
|
|
addOperator("and", new AndOp);
|
|
addOperator("shl", new ShlOp);
|
|
addOperator("trunc", new TruncOp);
|
|
addOperator("rotl", new RotOp(false));
|
|
addOperator("rotr", new RotOp(true));
|
|
addOperator("decimate", new DecimateOp);
|
|
addOperator("interleave", new InterleaveOp);
|
|
addOperator("sequence", new SequenceOp);
|
|
}
|
|
|
|
void SetTheory::addOperator(StringRef Name, Operator *Op) {
|
|
Operators[Name] = Op;
|
|
}
|
|
|
|
void SetTheory::addExpander(StringRef ClassName, Expander *E) {
|
|
Expanders[ClassName] = E;
|
|
}
|
|
|
|
void SetTheory::addFieldExpander(StringRef ClassName, StringRef FieldName) {
|
|
addExpander(ClassName, new FieldExpander(FieldName));
|
|
}
|
|
|
|
void SetTheory::evaluate(Init *Expr, RecSet &Elts) {
|
|
// A def in a list can be a just an element, or it may expand.
|
|
if (DefInit *Def = dynamic_cast<DefInit*>(Expr)) {
|
|
if (const RecVec *Result = expand(Def->getDef()))
|
|
return Elts.insert(Result->begin(), Result->end());
|
|
Elts.insert(Def->getDef());
|
|
return;
|
|
}
|
|
|
|
// Lists simply expand.
|
|
if (ListInit *LI = dynamic_cast<ListInit*>(Expr))
|
|
return evaluate(LI->begin(), LI->end(), Elts);
|
|
|
|
// Anything else must be a DAG.
|
|
DagInit *DagExpr = dynamic_cast<DagInit*>(Expr);
|
|
if (!DagExpr)
|
|
throw "Invalid set element: " + Expr->getAsString();
|
|
DefInit *OpInit = dynamic_cast<DefInit*>(DagExpr->getOperator());
|
|
if (!OpInit)
|
|
throw "Bad set expression: " + Expr->getAsString();
|
|
Operator *Op = Operators.lookup(OpInit->getDef()->getName());
|
|
if (!Op)
|
|
throw "Unknown set operator: " + Expr->getAsString();
|
|
Op->apply(*this, DagExpr, Elts);
|
|
}
|
|
|
|
const RecVec *SetTheory::expand(Record *Set) {
|
|
// Check existing entries for Set and return early.
|
|
ExpandMap::iterator I = Expansions.find(Set);
|
|
if (I != Expansions.end())
|
|
return &I->second;
|
|
|
|
// This is the first time we see Set. Find a suitable expander.
|
|
try {
|
|
const std::vector<Record*> &SC = Set->getSuperClasses();
|
|
for (unsigned i = 0, e = SC.size(); i != e; ++i)
|
|
if (Expander *Exp = Expanders.lookup(SC[i]->getName())) {
|
|
// This breaks recursive definitions.
|
|
RecVec &EltVec = Expansions[Set];
|
|
RecSet Elts;
|
|
Exp->expand(*this, Set, Elts);
|
|
EltVec.assign(Elts.begin(), Elts.end());
|
|
return &EltVec;
|
|
}
|
|
} catch (const std::string &Error) {
|
|
throw TGError(Set->getLoc(), Error);
|
|
}
|
|
|
|
// Set is not expandable.
|
|
return 0;
|
|
}
|
|
|