llvm-mirror/lib/Transforms/Vectorize/LoopVectorizationPlanner.h
Diego Caballero 300aaa4d61 [VPlan] Reland r332654 and silence unused func warning
r332654 was reverted due to an unused function warning in
release build. This commit includes the same code with the
warning silenced.

Differential Revision: https://reviews.llvm.org/D44338

llvm-svn: 332860
2018-05-21 18:14:23 +00:00

355 lines
13 KiB
C++

//===- LoopVectorizationPlanner.h - Planner for LoopVectorization ---------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
///
/// \file
/// This file provides a LoopVectorizationPlanner class.
/// InnerLoopVectorizer vectorizes loops which contain only one basic
/// LoopVectorizationPlanner - drives the vectorization process after having
/// passed Legality checks.
/// The planner builds and optimizes the Vectorization Plans which record the
/// decisions how to vectorize the given loop. In particular, represent the
/// control-flow of the vectorized version, the replication of instructions that
/// are to be scalarized, and interleave access groups.
///
/// Also provides a VPlan-based builder utility analogous to IRBuilder.
/// It provides an instruction-level API for generating VPInstructions while
/// abstracting away the Recipe manipulation details.
//===----------------------------------------------------------------------===//
#ifndef LLVM_TRANSFORMS_VECTORIZE_LOOPVECTORIZATIONPLANNER_H
#define LLVM_TRANSFORMS_VECTORIZE_LOOPVECTORIZATIONPLANNER_H
#include "VPlan.h"
#include "llvm/Analysis/LoopInfo.h"
#include "llvm/Analysis/TargetLibraryInfo.h"
#include "llvm/Analysis/TargetTransformInfo.h"
namespace llvm {
/// VPlan-based builder utility analogous to IRBuilder.
class VPBuilder {
private:
VPBasicBlock *BB = nullptr;
VPBasicBlock::iterator InsertPt = VPBasicBlock::iterator();
VPInstruction *createInstruction(unsigned Opcode,
ArrayRef<VPValue *> Operands) {
VPInstruction *Instr = new VPInstruction(Opcode, Operands);
if (BB)
BB->insert(Instr, InsertPt);
return Instr;
}
VPInstruction *createInstruction(unsigned Opcode,
std::initializer_list<VPValue *> Operands) {
return createInstruction(Opcode, ArrayRef<VPValue *>(Operands));
}
public:
VPBuilder() {}
/// Clear the insertion point: created instructions will not be inserted into
/// a block.
void clearInsertionPoint() {
BB = nullptr;
InsertPt = VPBasicBlock::iterator();
}
VPBasicBlock *getInsertBlock() const { return BB; }
VPBasicBlock::iterator getInsertPoint() const { return InsertPt; }
/// InsertPoint - A saved insertion point.
class VPInsertPoint {
VPBasicBlock *Block = nullptr;
VPBasicBlock::iterator Point;
public:
/// Creates a new insertion point which doesn't point to anything.
VPInsertPoint() = default;
/// Creates a new insertion point at the given location.
VPInsertPoint(VPBasicBlock *InsertBlock, VPBasicBlock::iterator InsertPoint)
: Block(InsertBlock), Point(InsertPoint) {}
/// Returns true if this insert point is set.
bool isSet() const { return Block != nullptr; }
VPBasicBlock *getBlock() const { return Block; }
VPBasicBlock::iterator getPoint() const { return Point; }
};
/// Sets the current insert point to a previously-saved location.
void restoreIP(VPInsertPoint IP) {
if (IP.isSet())
setInsertPoint(IP.getBlock(), IP.getPoint());
else
clearInsertionPoint();
}
/// This specifies that created VPInstructions should be appended to the end
/// of the specified block.
void setInsertPoint(VPBasicBlock *TheBB) {
assert(TheBB && "Attempting to set a null insert point");
BB = TheBB;
InsertPt = BB->end();
}
/// This specifies that created instructions should be inserted at the
/// specified point.
void setInsertPoint(VPBasicBlock *TheBB, VPBasicBlock::iterator IP) {
BB = TheBB;
InsertPt = IP;
}
/// Insert and return the specified instruction.
VPInstruction *insert(VPInstruction *I) const {
BB->insert(I, InsertPt);
return I;
}
/// Create an N-ary operation with \p Opcode, \p Operands and set \p Inst as
/// its underlying Instruction.
VPValue *createNaryOp(unsigned Opcode, ArrayRef<VPValue *> Operands,
Instruction *Inst = nullptr) {
VPInstruction *NewVPInst = createInstruction(Opcode, Operands);
NewVPInst->setUnderlyingValue(Inst);
return NewVPInst;
}
VPValue *createNaryOp(unsigned Opcode,
std::initializer_list<VPValue *> Operands,
Instruction *Inst = nullptr) {
return createNaryOp(Opcode, ArrayRef<VPValue *>(Operands), Inst);
}
VPValue *createNot(VPValue *Operand) {
return createInstruction(VPInstruction::Not, {Operand});
}
VPValue *createAnd(VPValue *LHS, VPValue *RHS) {
return createInstruction(Instruction::BinaryOps::And, {LHS, RHS});
}
VPValue *createOr(VPValue *LHS, VPValue *RHS) {
return createInstruction(Instruction::BinaryOps::Or, {LHS, RHS});
}
//===--------------------------------------------------------------------===//
// RAII helpers.
//===--------------------------------------------------------------------===//
/// RAII object that stores the current insertion point and restores it when
/// the object is destroyed.
class InsertPointGuard {
VPBuilder &Builder;
VPBasicBlock *Block;
VPBasicBlock::iterator Point;
public:
InsertPointGuard(VPBuilder &B)
: Builder(B), Block(B.getInsertBlock()), Point(B.getInsertPoint()) {}
InsertPointGuard(const InsertPointGuard &) = delete;
InsertPointGuard &operator=(const InsertPointGuard &) = delete;
~InsertPointGuard() { Builder.restoreIP(VPInsertPoint(Block, Point)); }
};
};
/// TODO: The following VectorizationFactor was pulled out of
/// LoopVectorizationCostModel class. LV also deals with
/// VectorizerParams::VectorizationFactor and VectorizationCostTy.
/// We need to streamline them.
/// Information about vectorization costs
struct VectorizationFactor {
// Vector width with best cost
unsigned Width;
// Cost of the loop with that width
unsigned Cost;
};
/// Planner drives the vectorization process after having passed
/// Legality checks.
class LoopVectorizationPlanner {
/// The loop that we evaluate.
Loop *OrigLoop;
/// Loop Info analysis.
LoopInfo *LI;
/// Target Library Info.
const TargetLibraryInfo *TLI;
/// Target Transform Info.
const TargetTransformInfo *TTI;
/// The legality analysis.
LoopVectorizationLegality *Legal;
/// The profitablity analysis.
LoopVectorizationCostModel &CM;
using VPlanPtr = std::unique_ptr<VPlan>;
SmallVector<VPlanPtr, 4> VPlans;
/// This class is used to enable the VPlan to invoke a method of ILV. This is
/// needed until the method is refactored out of ILV and becomes reusable.
struct VPCallbackILV : public VPCallback {
InnerLoopVectorizer &ILV;
VPCallbackILV(InnerLoopVectorizer &ILV) : ILV(ILV) {}
Value *getOrCreateVectorValues(Value *V, unsigned Part) override;
};
/// A builder used to construct the current plan.
VPBuilder Builder;
/// When we if-convert we need to create edge masks. We have to cache values
/// so that we don't end up with exponential recursion/IR. Note that
/// if-conversion currently takes place during VPlan-construction, so these
/// caches are only used at that stage.
using EdgeMaskCacheTy =
DenseMap<std::pair<BasicBlock *, BasicBlock *>, VPValue *>;
using BlockMaskCacheTy = DenseMap<BasicBlock *, VPValue *>;
EdgeMaskCacheTy EdgeMaskCache;
BlockMaskCacheTy BlockMaskCache;
unsigned BestVF = 0;
unsigned BestUF = 0;
public:
LoopVectorizationPlanner(Loop *L, LoopInfo *LI, const TargetLibraryInfo *TLI,
const TargetTransformInfo *TTI,
LoopVectorizationLegality *Legal,
LoopVectorizationCostModel &CM)
: OrigLoop(L), LI(LI), TLI(TLI), TTI(TTI), Legal(Legal), CM(CM) {}
/// Plan how to best vectorize, return the best VF and its cost.
VectorizationFactor plan(bool OptForSize, unsigned UserVF);
/// Use the VPlan-native path to plan how to best vectorize, return the best
/// VF and its cost.
VectorizationFactor planInVPlanNativePath(bool OptForSize, unsigned UserVF);
/// Finalize the best decision and dispose of all other VPlans.
void setBestPlan(unsigned VF, unsigned UF);
/// Generate the IR code for the body of the vectorized loop according to the
/// best selected VPlan.
void executePlan(InnerLoopVectorizer &LB, DominatorTree *DT);
void printPlans(raw_ostream &O) {
for (const auto &Plan : VPlans)
O << *Plan;
}
protected:
/// Collect the instructions from the original loop that would be trivially
/// dead in the vectorized loop if generated.
void collectTriviallyDeadInstructions(
SmallPtrSetImpl<Instruction *> &DeadInstructions);
/// A range of powers-of-2 vectorization factors with fixed start and
/// adjustable end. The range includes start and excludes end, e.g.,:
/// [1, 9) = {1, 2, 4, 8}
struct VFRange {
// A power of 2.
const unsigned Start;
// Need not be a power of 2. If End <= Start range is empty.
unsigned End;
};
/// Test a \p Predicate on a \p Range of VF's. Return the value of applying
/// \p Predicate on Range.Start, possibly decreasing Range.End such that the
/// returned value holds for the entire \p Range.
bool getDecisionAndClampRange(const std::function<bool(unsigned)> &Predicate,
VFRange &Range);
/// Build VPlans for power-of-2 VF's between \p MinVF and \p MaxVF inclusive,
/// according to the information gathered by Legal when it checked if it is
/// legal to vectorize the loop.
void buildVPlans(unsigned MinVF, unsigned MaxVF);
private:
/// A helper function that computes the predicate of the block BB, assuming
/// that the header block of the loop is set to True. It returns the *entry*
/// mask for the block BB.
VPValue *createBlockInMask(BasicBlock *BB, VPlanPtr &Plan);
/// A helper function that computes the predicate of the edge between SRC
/// and DST.
VPValue *createEdgeMask(BasicBlock *Src, BasicBlock *Dst, VPlanPtr &Plan);
/// Check if \I belongs to an Interleave Group within the given VF \p Range,
/// \return true in the first returned value if so and false otherwise.
/// Build a new VPInterleaveGroup Recipe if \I is the primary member of an IG
/// for \p Range.Start, and provide it as the second returned value.
/// Note that if \I is an adjunct member of an IG for \p Range.Start, the
/// \return value is <true, nullptr>, as it is handled by another recipe.
/// \p Range.End may be decreased to ensure same decision from \p Range.Start
/// to \p Range.End.
VPInterleaveRecipe *tryToInterleaveMemory(Instruction *I, VFRange &Range);
// Check if \I is a memory instruction to be widened for \p Range.Start and
// potentially masked. Such instructions are handled by a recipe that takes an
// additional VPInstruction for the mask.
VPWidenMemoryInstructionRecipe *tryToWidenMemory(Instruction *I,
VFRange &Range,
VPlanPtr &Plan);
/// Check if an induction recipe should be constructed for \I within the given
/// VF \p Range. If so build and return it. If not, return null. \p Range.End
/// may be decreased to ensure same decision from \p Range.Start to
/// \p Range.End.
VPWidenIntOrFpInductionRecipe *tryToOptimizeInduction(Instruction *I,
VFRange &Range);
/// Handle non-loop phi nodes. Currently all such phi nodes are turned into
/// a sequence of select instructions as the vectorizer currently performs
/// full if-conversion.
VPBlendRecipe *tryToBlend(Instruction *I, VPlanPtr &Plan);
/// Check if \p I can be widened within the given VF \p Range. If \p I can be
/// widened for \p Range.Start, check if the last recipe of \p VPBB can be
/// extended to include \p I or else build a new VPWidenRecipe for it and
/// append it to \p VPBB. Return true if \p I can be widened for Range.Start,
/// false otherwise. Range.End may be decreased to ensure same decision from
/// \p Range.Start to \p Range.End.
bool tryToWiden(Instruction *I, VPBasicBlock *VPBB, VFRange &Range);
/// Build a VPReplicationRecipe for \p I and enclose it within a Region if it
/// is predicated. \return \p VPBB augmented with this new recipe if \p I is
/// not predicated, otherwise \return a new VPBasicBlock that succeeds the new
/// Region. Update the packing decision of predicated instructions if they
/// feed \p I. Range.End may be decreased to ensure same recipe behavior from
/// \p Range.Start to \p Range.End.
VPBasicBlock *handleReplication(
Instruction *I, VFRange &Range, VPBasicBlock *VPBB,
DenseMap<Instruction *, VPReplicateRecipe *> &PredInst2Recipe,
VPlanPtr &Plan);
/// Create a replicating region for instruction \p I that requires
/// predication. \p PredRecipe is a VPReplicateRecipe holding \p I.
VPRegionBlock *createReplicateRegion(Instruction *I, VPRecipeBase *PredRecipe,
VPlanPtr &Plan);
/// Build a VPlan according to the information gathered by Legal. \return a
/// VPlan for vectorization factors \p Range.Start and up to \p Range.End
/// exclusive, possibly decreasing \p Range.End.
VPlanPtr buildVPlan(VFRange &Range,
const SmallPtrSetImpl<Value *> &NeedDef);
};
} // namespace llvm
#endif // LLVM_TRANSFORMS_VECTORIZE_LOOPVECTORIZATIONPLANNER_H