llvm-mirror/include/llvm/Analysis/ModuleSummaryAnalysis.h
Piotr Padlewski 3152e057e1 [thinlto] Basic thinlto fdo heuristic
Summary:
This patch improves thinlto importer
by importing 3x larger functions that are called from hot block.

I compared performance with the trunk on spec, and there
were about 2% on povray and 3.33% on milc. These results seems
to be consistant and match the results Teresa got with her simple
heuristic. Some benchmarks got slower but I think they are just
noisy (mcf, xalancbmki, omnetpp)- running the benchmarks again with
more iterations to confirm. Geomean of all benchmarks including the noisy ones
were about +0.02%.

I see much better improvement on google branch with Easwaran patch
for pgo callsite inlining (the inliner actually inline those big functions)
Over all I see +0.5% improvement, and I get +8.65% on povray.
So I guess we will see much bigger change when Easwaran patch will land
(it depends on new pass manager), but it is still worth putting this to trunk
before it.

Implementation details changes:
- Removed CallsiteCount.
- ProfileCount got replaced by Hotness
- hot-import-multiplier is set to 3.0 for now,
didn't have time to tune it up, but I see that we get most of the interesting
functions with 3, so there is no much performance difference with higher, and
binary size doesn't grow as much as with 10.0.

Reviewers: eraman, mehdi_amini, tejohnson

Subscribers: mehdi_amini, llvm-commits

Differential Revision: https://reviews.llvm.org/D24638

llvm-svn: 282437
2016-09-26 20:37:32 +00:00

81 lines
2.6 KiB
C++

//===- ModuleSummaryAnalysis.h - Module summary index builder ---*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
/// \file
/// This is the interface to build a ModuleSummaryIndex for a module.
///
//===----------------------------------------------------------------------===//
#ifndef LLVM_ANALYSIS_MODULESUMMARYANALYSIS_H
#define LLVM_ANALYSIS_MODULESUMMARYANALYSIS_H
#include "llvm/ADT/STLExtras.h"
#include "llvm/IR/ModuleSummaryIndex.h"
#include "llvm/IR/PassManager.h"
#include "llvm/Pass.h"
namespace llvm {
class BlockFrequencyInfo;
class ProfileSummaryInfo;
/// Direct function to compute a \c ModuleSummaryIndex from a given module.
///
/// If operating within a pass manager which has defined ways to compute the \c
/// BlockFrequencyInfo for a given function, that can be provided via
/// a std::function callback. Otherwise, this routine will manually construct
/// that information.
ModuleSummaryIndex buildModuleSummaryIndex(
const Module &M,
std::function<BlockFrequencyInfo *(const Function &F)> GetBFICallback,
ProfileSummaryInfo *PSI);
/// Analysis pass to provide the ModuleSummaryIndex object.
class ModuleSummaryIndexAnalysis
: public AnalysisInfoMixin<ModuleSummaryIndexAnalysis> {
friend AnalysisInfoMixin<ModuleSummaryIndexAnalysis>;
static char PassID;
public:
typedef ModuleSummaryIndex Result;
Result run(Module &M, ModuleAnalysisManager &AM);
};
/// Legacy wrapper pass to provide the ModuleSummaryIndex object.
class ModuleSummaryIndexWrapperPass : public ModulePass {
Optional<ModuleSummaryIndex> Index;
public:
static char ID;
ModuleSummaryIndexWrapperPass();
/// Get the index built by pass
ModuleSummaryIndex &getIndex() { return *Index; }
const ModuleSummaryIndex &getIndex() const { return *Index; }
bool runOnModule(Module &M) override;
bool doFinalization(Module &M) override;
void getAnalysisUsage(AnalysisUsage &AU) const override;
};
//===--------------------------------------------------------------------===//
//
// createModuleSummaryIndexWrapperPass - This pass builds a ModuleSummaryIndex
// object for the module, to be written to bitcode or LLVM assembly.
//
ModulePass *createModuleSummaryIndexWrapperPass();
/// Returns true if \p M is eligible for ThinLTO promotion.
///
/// Currently we check if it has any any InlineASM that uses an internal symbol.
bool moduleCanBeRenamedForThinLTO(const Module &M);
}
#endif