llvm-mirror/lib/Target/X86/X86InstrFPStack.td
Dale Johannesen 8c1e95810f Use ## for comment delimiter on darwin x86-32, so
llvm's output .s files will go through gcc -std=c99
without triggering preprocesser errors.  Approach
suggested by Daveed Vandevoorde.

llvm-svn: 48808
2008-03-25 23:29:30 +00:00

592 lines
31 KiB
TableGen

//==- X86InstrFPStack.td - Describe the X86 Instruction Set --*- tablegen -*-=//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file describes the X86 x87 FPU instruction set, defining the
// instructions, and properties of the instructions which are needed for code
// generation, machine code emission, and analysis.
//
//===----------------------------------------------------------------------===//
//===----------------------------------------------------------------------===//
// FPStack specific DAG Nodes.
//===----------------------------------------------------------------------===//
def SDTX86FpGet2 : SDTypeProfile<2, 0, [SDTCisVT<0, f80>,
SDTCisVT<1, f80>]>;
def SDTX86Fld : SDTypeProfile<1, 2, [SDTCisFP<0>,
SDTCisPtrTy<1>,
SDTCisVT<2, OtherVT>]>;
def SDTX86Fst : SDTypeProfile<0, 3, [SDTCisFP<0>,
SDTCisPtrTy<1>,
SDTCisVT<2, OtherVT>]>;
def SDTX86Fild : SDTypeProfile<1, 2, [SDTCisFP<0>, SDTCisPtrTy<1>,
SDTCisVT<2, OtherVT>]>;
def SDTX86FpToIMem : SDTypeProfile<0, 2, [SDTCisFP<0>, SDTCisPtrTy<1>]>;
def SDTX86CwdStore : SDTypeProfile<0, 1, [SDTCisPtrTy<0>]>;
def X86fld : SDNode<"X86ISD::FLD", SDTX86Fld,
[SDNPHasChain, SDNPMayLoad]>;
def X86fst : SDNode<"X86ISD::FST", SDTX86Fst,
[SDNPHasChain, SDNPInFlag, SDNPMayStore]>;
def X86fild : SDNode<"X86ISD::FILD", SDTX86Fild,
[SDNPHasChain, SDNPMayLoad]>;
def X86fildflag : SDNode<"X86ISD::FILD_FLAG", SDTX86Fild,
[SDNPHasChain, SDNPOutFlag, SDNPMayLoad]>;
def X86fp_to_i16mem : SDNode<"X86ISD::FP_TO_INT16_IN_MEM", SDTX86FpToIMem,
[SDNPHasChain, SDNPMayStore]>;
def X86fp_to_i32mem : SDNode<"X86ISD::FP_TO_INT32_IN_MEM", SDTX86FpToIMem,
[SDNPHasChain, SDNPMayStore]>;
def X86fp_to_i64mem : SDNode<"X86ISD::FP_TO_INT64_IN_MEM", SDTX86FpToIMem,
[SDNPHasChain, SDNPMayStore]>;
def X86fp_cwd_get16 : SDNode<"X86ISD::FNSTCW16m", SDTX86CwdStore,
[SDNPHasChain, SDNPMayStore, SDNPSideEffect]>;
//===----------------------------------------------------------------------===//
// FPStack pattern fragments
//===----------------------------------------------------------------------===//
def fpimm0 : PatLeaf<(fpimm), [{
return N->isExactlyValue(+0.0);
}]>;
def fpimmneg0 : PatLeaf<(fpimm), [{
return N->isExactlyValue(-0.0);
}]>;
def fpimm1 : PatLeaf<(fpimm), [{
return N->isExactlyValue(+1.0);
}]>;
def fpimmneg1 : PatLeaf<(fpimm), [{
return N->isExactlyValue(-1.0);
}]>;
// Some 'special' instructions
let usesCustomDAGSchedInserter = 1 in { // Expanded by the scheduler.
def FP32_TO_INT16_IN_MEM : I<0, Pseudo,
(outs), (ins i16mem:$dst, RFP32:$src),
"##FP32_TO_INT16_IN_MEM PSEUDO!",
[(X86fp_to_i16mem RFP32:$src, addr:$dst)]>;
def FP32_TO_INT32_IN_MEM : I<0, Pseudo,
(outs), (ins i32mem:$dst, RFP32:$src),
"##FP32_TO_INT32_IN_MEM PSEUDO!",
[(X86fp_to_i32mem RFP32:$src, addr:$dst)]>;
def FP32_TO_INT64_IN_MEM : I<0, Pseudo,
(outs), (ins i64mem:$dst, RFP32:$src),
"##FP32_TO_INT64_IN_MEM PSEUDO!",
[(X86fp_to_i64mem RFP32:$src, addr:$dst)]>;
def FP64_TO_INT16_IN_MEM : I<0, Pseudo,
(outs), (ins i16mem:$dst, RFP64:$src),
"##FP64_TO_INT16_IN_MEM PSEUDO!",
[(X86fp_to_i16mem RFP64:$src, addr:$dst)]>;
def FP64_TO_INT32_IN_MEM : I<0, Pseudo,
(outs), (ins i32mem:$dst, RFP64:$src),
"##FP64_TO_INT32_IN_MEM PSEUDO!",
[(X86fp_to_i32mem RFP64:$src, addr:$dst)]>;
def FP64_TO_INT64_IN_MEM : I<0, Pseudo,
(outs), (ins i64mem:$dst, RFP64:$src),
"##FP64_TO_INT64_IN_MEM PSEUDO!",
[(X86fp_to_i64mem RFP64:$src, addr:$dst)]>;
def FP80_TO_INT16_IN_MEM : I<0, Pseudo,
(outs), (ins i16mem:$dst, RFP80:$src),
"##FP80_TO_INT16_IN_MEM PSEUDO!",
[(X86fp_to_i16mem RFP80:$src, addr:$dst)]>;
def FP80_TO_INT32_IN_MEM : I<0, Pseudo,
(outs), (ins i32mem:$dst, RFP80:$src),
"##FP80_TO_INT32_IN_MEM PSEUDO!",
[(X86fp_to_i32mem RFP80:$src, addr:$dst)]>;
def FP80_TO_INT64_IN_MEM : I<0, Pseudo,
(outs), (ins i64mem:$dst, RFP80:$src),
"##FP80_TO_INT64_IN_MEM PSEUDO!",
[(X86fp_to_i64mem RFP80:$src, addr:$dst)]>;
}
let isTerminator = 1 in
let Defs = [FP0, FP1, FP2, FP3, FP4, FP5, FP6] in
def FP_REG_KILL : I<0, Pseudo, (outs), (ins), "##FP_REG_KILL", []>;
// All FP Stack operations are represented with four instructions here. The
// first three instructions, generated by the instruction selector, use "RFP32"
// "RFP64" or "RFP80" registers: traditional register files to reference 32-bit,
// 64-bit or 80-bit floating point values. These sizes apply to the values,
// not the registers, which are always 80 bits; RFP32, RFP64 and RFP80 can be
// copied to each other without losing information. These instructions are all
// pseudo instructions and use the "_Fp" suffix.
// In some cases there are additional variants with a mixture of different
// register sizes.
// The second instruction is defined with FPI, which is the actual instruction
// emitted by the assembler. These use "RST" registers, although frequently
// the actual register(s) used are implicit. These are always 80 bits.
// The FP stackifier pass converts one to the other after register allocation
// occurs.
//
// Note that the FpI instruction should have instruction selection info (e.g.
// a pattern) and the FPI instruction should have emission info (e.g. opcode
// encoding and asm printing info).
// Pseudo Instructions for FP stack return values.
def FpGET_ST0_32 : FpI_<(outs RFP32:$dst), (ins), SpecialFP, []>; // FPR = ST(0)
def FpGET_ST0_64 : FpI_<(outs RFP64:$dst), (ins), SpecialFP, []>; // FPR = ST(0)
def FpGET_ST0_80 : FpI_<(outs RFP80:$dst), (ins), SpecialFP, []>; // FPR = ST(0)
// FpGET_ST1* should only be issued *after* an FpGET_ST0* has been issued when
// there are two values live out on the stack from a call or inlineasm. This
// magic is handled by the stackifier. It is not valid to emit FpGET_ST1* and
// then FpGET_ST0*. In addition, it is invalid for any FP-using operations to
// occur between them.
def FpGET_ST1_32 : FpI_<(outs RFP32:$dst), (ins), SpecialFP, []>; // FPR = ST(1)
def FpGET_ST1_64 : FpI_<(outs RFP64:$dst), (ins), SpecialFP, []>; // FPR = ST(1)
def FpGET_ST1_80 : FpI_<(outs RFP80:$dst), (ins), SpecialFP, []>; // FPR = ST(1)
let Defs = [ST0] in {
def FpSET_ST0_32 : FpI_<(outs), (ins RFP32:$src), SpecialFP, []>; // ST(0) = FPR
def FpSET_ST0_64 : FpI_<(outs), (ins RFP64:$src), SpecialFP, []>; // ST(0) = FPR
def FpSET_ST0_80 : FpI_<(outs), (ins RFP80:$src), SpecialFP, []>; // ST(0) = FPR
}
// FpIf32, FpIf64 - Floating Point Psuedo Instruction template.
// f32 instructions can use SSE1 and are predicated on FPStackf32 == !SSE1.
// f64 instructions can use SSE2 and are predicated on FPStackf64 == !SSE2.
// f80 instructions cannot use SSE and use neither of these.
class FpIf32<dag outs, dag ins, FPFormat fp, list<dag> pattern> :
FpI_<outs, ins, fp, pattern>, Requires<[FPStackf32]>;
class FpIf64<dag outs, dag ins, FPFormat fp, list<dag> pattern> :
FpI_<outs, ins, fp, pattern>, Requires<[FPStackf64]>;
// Register copies. Just copies, the shortening ones do not truncate.
let neverHasSideEffects = 1 in {
def MOV_Fp3232 : FpIf32<(outs RFP32:$dst), (ins RFP32:$src), SpecialFP, []>;
def MOV_Fp3264 : FpIf32<(outs RFP64:$dst), (ins RFP32:$src), SpecialFP, []>;
def MOV_Fp6432 : FpIf32<(outs RFP32:$dst), (ins RFP64:$src), SpecialFP, []>;
def MOV_Fp6464 : FpIf64<(outs RFP64:$dst), (ins RFP64:$src), SpecialFP, []>;
def MOV_Fp8032 : FpIf32<(outs RFP32:$dst), (ins RFP80:$src), SpecialFP, []>;
def MOV_Fp3280 : FpIf32<(outs RFP80:$dst), (ins RFP32:$src), SpecialFP, []>;
def MOV_Fp8064 : FpIf64<(outs RFP64:$dst), (ins RFP80:$src), SpecialFP, []>;
def MOV_Fp6480 : FpIf64<(outs RFP80:$dst), (ins RFP64:$src), SpecialFP, []>;
def MOV_Fp8080 : FpI_ <(outs RFP80:$dst), (ins RFP80:$src), SpecialFP, []>;
}
// Factoring for arithmetic.
multiclass FPBinary_rr<SDNode OpNode> {
// Register op register -> register
// These are separated out because they have no reversed form.
def _Fp32 : FpIf32<(outs RFP32:$dst), (ins RFP32:$src1, RFP32:$src2), TwoArgFP,
[(set RFP32:$dst, (OpNode RFP32:$src1, RFP32:$src2))]>;
def _Fp64 : FpIf64<(outs RFP64:$dst), (ins RFP64:$src1, RFP64:$src2), TwoArgFP,
[(set RFP64:$dst, (OpNode RFP64:$src1, RFP64:$src2))]>;
def _Fp80 : FpI_<(outs RFP80:$dst), (ins RFP80:$src1, RFP80:$src2), TwoArgFP,
[(set RFP80:$dst, (OpNode RFP80:$src1, RFP80:$src2))]>;
}
// The FopST0 series are not included here because of the irregularities
// in where the 'r' goes in assembly output.
// These instructions cannot address 80-bit memory.
multiclass FPBinary<SDNode OpNode, Format fp, string asmstring> {
// ST(0) = ST(0) + [mem]
def _Fp32m : FpIf32<(outs RFP32:$dst), (ins RFP32:$src1, f32mem:$src2), OneArgFPRW,
[(set RFP32:$dst,
(OpNode RFP32:$src1, (loadf32 addr:$src2)))]>;
def _Fp64m : FpIf64<(outs RFP64:$dst), (ins RFP64:$src1, f64mem:$src2), OneArgFPRW,
[(set RFP64:$dst,
(OpNode RFP64:$src1, (loadf64 addr:$src2)))]>;
def _Fp64m32: FpIf64<(outs RFP64:$dst), (ins RFP64:$src1, f32mem:$src2), OneArgFPRW,
[(set RFP64:$dst,
(OpNode RFP64:$src1, (f64 (extloadf32 addr:$src2))))]>;
def _Fp80m32: FpI_<(outs RFP80:$dst), (ins RFP80:$src1, f32mem:$src2), OneArgFPRW,
[(set RFP80:$dst,
(OpNode RFP80:$src1, (f80 (extloadf32 addr:$src2))))]>;
def _Fp80m64: FpI_<(outs RFP80:$dst), (ins RFP80:$src1, f64mem:$src2), OneArgFPRW,
[(set RFP80:$dst,
(OpNode RFP80:$src1, (f80 (extloadf64 addr:$src2))))]>;
def _F32m : FPI<0xD8, fp, (outs), (ins f32mem:$src),
!strconcat("f", !strconcat(asmstring, "{s}\t$src"))> { let mayLoad = 1; }
def _F64m : FPI<0xDC, fp, (outs), (ins f64mem:$src),
!strconcat("f", !strconcat(asmstring, "{l}\t$src"))> { let mayLoad = 1; }
// ST(0) = ST(0) + [memint]
def _FpI16m32 : FpIf32<(outs RFP32:$dst), (ins RFP32:$src1, i16mem:$src2), OneArgFPRW,
[(set RFP32:$dst, (OpNode RFP32:$src1,
(X86fild addr:$src2, i16)))]>;
def _FpI32m32 : FpIf32<(outs RFP32:$dst), (ins RFP32:$src1, i32mem:$src2), OneArgFPRW,
[(set RFP32:$dst, (OpNode RFP32:$src1,
(X86fild addr:$src2, i32)))]>;
def _FpI16m64 : FpIf64<(outs RFP64:$dst), (ins RFP64:$src1, i16mem:$src2), OneArgFPRW,
[(set RFP64:$dst, (OpNode RFP64:$src1,
(X86fild addr:$src2, i16)))]>;
def _FpI32m64 : FpIf64<(outs RFP64:$dst), (ins RFP64:$src1, i32mem:$src2), OneArgFPRW,
[(set RFP64:$dst, (OpNode RFP64:$src1,
(X86fild addr:$src2, i32)))]>;
def _FpI16m80 : FpI_<(outs RFP80:$dst), (ins RFP80:$src1, i16mem:$src2), OneArgFPRW,
[(set RFP80:$dst, (OpNode RFP80:$src1,
(X86fild addr:$src2, i16)))]>;
def _FpI32m80 : FpI_<(outs RFP80:$dst), (ins RFP80:$src1, i32mem:$src2), OneArgFPRW,
[(set RFP80:$dst, (OpNode RFP80:$src1,
(X86fild addr:$src2, i32)))]>;
def _FI16m : FPI<0xDE, fp, (outs), (ins i16mem:$src),
!strconcat("fi", !strconcat(asmstring, "{s}\t$src"))> { let mayLoad = 1; }
def _FI32m : FPI<0xDA, fp, (outs), (ins i32mem:$src),
!strconcat("fi", !strconcat(asmstring, "{l}\t$src"))> { let mayLoad = 1; }
}
defm ADD : FPBinary_rr<fadd>;
defm SUB : FPBinary_rr<fsub>;
defm MUL : FPBinary_rr<fmul>;
defm DIV : FPBinary_rr<fdiv>;
defm ADD : FPBinary<fadd, MRM0m, "add">;
defm SUB : FPBinary<fsub, MRM4m, "sub">;
defm SUBR: FPBinary<fsub ,MRM5m, "subr">;
defm MUL : FPBinary<fmul, MRM1m, "mul">;
defm DIV : FPBinary<fdiv, MRM6m, "div">;
defm DIVR: FPBinary<fdiv, MRM7m, "divr">;
class FPST0rInst<bits<8> o, string asm>
: FPI<o, AddRegFrm, (outs), (ins RST:$op), asm>, D8;
class FPrST0Inst<bits<8> o, string asm>
: FPI<o, AddRegFrm, (outs), (ins RST:$op), asm>, DC;
class FPrST0PInst<bits<8> o, string asm>
: FPI<o, AddRegFrm, (outs), (ins RST:$op), asm>, DE;
// NOTE: GAS and apparently all other AT&T style assemblers have a broken notion
// of some of the 'reverse' forms of the fsub and fdiv instructions. As such,
// we have to put some 'r's in and take them out of weird places.
def ADD_FST0r : FPST0rInst <0xC0, "fadd\t$op">;
def ADD_FrST0 : FPrST0Inst <0xC0, "fadd\t{%st(0), $op|$op, %ST(0)}">;
def ADD_FPrST0 : FPrST0PInst<0xC0, "faddp\t$op">;
def SUBR_FST0r : FPST0rInst <0xE8, "fsubr\t$op">;
def SUB_FrST0 : FPrST0Inst <0xE8, "fsub{r}\t{%st(0), $op|$op, %ST(0)}">;
def SUB_FPrST0 : FPrST0PInst<0xE8, "fsub{r}p\t$op">;
def SUB_FST0r : FPST0rInst <0xE0, "fsub\t$op">;
def SUBR_FrST0 : FPrST0Inst <0xE0, "fsub{|r}\t{%st(0), $op|$op, %ST(0)}">;
def SUBR_FPrST0 : FPrST0PInst<0xE0, "fsub{|r}p\t$op">;
def MUL_FST0r : FPST0rInst <0xC8, "fmul\t$op">;
def MUL_FrST0 : FPrST0Inst <0xC8, "fmul\t{%st(0), $op|$op, %ST(0)}">;
def MUL_FPrST0 : FPrST0PInst<0xC8, "fmulp\t$op">;
def DIVR_FST0r : FPST0rInst <0xF8, "fdivr\t$op">;
def DIV_FrST0 : FPrST0Inst <0xF8, "fdiv{r}\t{%st(0), $op|$op, %ST(0)}">;
def DIV_FPrST0 : FPrST0PInst<0xF8, "fdiv{r}p\t$op">;
def DIV_FST0r : FPST0rInst <0xF0, "fdiv\t$op">;
def DIVR_FrST0 : FPrST0Inst <0xF0, "fdiv{|r}\t{%st(0), $op|$op, %ST(0)}">;
def DIVR_FPrST0 : FPrST0PInst<0xF0, "fdiv{|r}p\t$op">;
// Unary operations.
multiclass FPUnary<SDNode OpNode, bits<8> opcode, string asmstring> {
def _Fp32 : FpIf32<(outs RFP32:$dst), (ins RFP32:$src), OneArgFPRW,
[(set RFP32:$dst, (OpNode RFP32:$src))]>;
def _Fp64 : FpIf64<(outs RFP64:$dst), (ins RFP64:$src), OneArgFPRW,
[(set RFP64:$dst, (OpNode RFP64:$src))]>;
def _Fp80 : FpI_<(outs RFP80:$dst), (ins RFP80:$src), OneArgFPRW,
[(set RFP80:$dst, (OpNode RFP80:$src))]>;
def _F : FPI<opcode, RawFrm, (outs), (ins), asmstring>, D9;
}
defm CHS : FPUnary<fneg, 0xE0, "fchs">;
defm ABS : FPUnary<fabs, 0xE1, "fabs">;
defm SQRT: FPUnary<fsqrt,0xFA, "fsqrt">;
defm SIN : FPUnary<fsin, 0xFE, "fsin">;
defm COS : FPUnary<fcos, 0xFF, "fcos">;
let neverHasSideEffects = 1 in {
def TST_Fp32 : FpIf32<(outs), (ins RFP32:$src), OneArgFP, []>;
def TST_Fp64 : FpIf64<(outs), (ins RFP64:$src), OneArgFP, []>;
def TST_Fp80 : FpI_<(outs), (ins RFP80:$src), OneArgFP, []>;
}
def TST_F : FPI<0xE4, RawFrm, (outs), (ins), "ftst">, D9;
// Floating point cmovs.
multiclass FPCMov<PatLeaf cc> {
def _Fp32 : FpIf32<(outs RFP32:$dst), (ins RFP32:$src1, RFP32:$src2),
CondMovFP,
[(set RFP32:$dst, (X86cmov RFP32:$src1, RFP32:$src2,
cc, EFLAGS))]>;
def _Fp64 : FpIf64<(outs RFP64:$dst), (ins RFP64:$src1, RFP64:$src2),
CondMovFP,
[(set RFP64:$dst, (X86cmov RFP64:$src1, RFP64:$src2,
cc, EFLAGS))]>;
def _Fp80 : FpI_<(outs RFP80:$dst), (ins RFP80:$src1, RFP80:$src2),
CondMovFP,
[(set RFP80:$dst, (X86cmov RFP80:$src1, RFP80:$src2,
cc, EFLAGS))]>;
}
let Uses = [EFLAGS], isTwoAddress = 1 in {
defm CMOVB : FPCMov<X86_COND_B>;
defm CMOVBE : FPCMov<X86_COND_BE>;
defm CMOVE : FPCMov<X86_COND_E>;
defm CMOVP : FPCMov<X86_COND_P>;
defm CMOVNB : FPCMov<X86_COND_AE>;
defm CMOVNBE: FPCMov<X86_COND_A>;
defm CMOVNE : FPCMov<X86_COND_NE>;
defm CMOVNP : FPCMov<X86_COND_NP>;
}
// These are not factored because there's no clean way to pass DA/DB.
def CMOVB_F : FPI<0xC0, AddRegFrm, (outs RST:$op), (ins),
"fcmovb\t{$op, %st(0)|%ST(0), $op}">, DA;
def CMOVBE_F : FPI<0xD0, AddRegFrm, (outs RST:$op), (ins),
"fcmovbe\t{$op, %st(0)|%ST(0), $op}">, DA;
def CMOVE_F : FPI<0xC8, AddRegFrm, (outs RST:$op), (ins),
"fcmove\t{$op, %st(0)|%ST(0), $op}">, DA;
def CMOVP_F : FPI<0xD8, AddRegFrm, (outs RST:$op), (ins),
"fcmovu\t {$op, %st(0)|%ST(0), $op}">, DA;
def CMOVNB_F : FPI<0xC0, AddRegFrm, (outs RST:$op), (ins),
"fcmovnb\t{$op, %st(0)|%ST(0), $op}">, DB;
def CMOVNBE_F: FPI<0xD0, AddRegFrm, (outs RST:$op), (ins),
"fcmovnbe\t{$op, %st(0)|%ST(0), $op}">, DB;
def CMOVNE_F : FPI<0xC8, AddRegFrm, (outs RST:$op), (ins),
"fcmovne\t{$op, %st(0)|%ST(0), $op}">, DB;
def CMOVNP_F : FPI<0xD8, AddRegFrm, (outs RST:$op), (ins),
"fcmovnu\t{$op, %st(0)|%ST(0), $op}">, DB;
// Floating point loads & stores.
let isSimpleLoad = 1 in {
def LD_Fp32m : FpIf32<(outs RFP32:$dst), (ins f32mem:$src), ZeroArgFP,
[(set RFP32:$dst, (loadf32 addr:$src))]>;
let isReMaterializable = 1, mayHaveSideEffects = 1 in
def LD_Fp64m : FpIf64<(outs RFP64:$dst), (ins f64mem:$src), ZeroArgFP,
[(set RFP64:$dst, (loadf64 addr:$src))]>;
def LD_Fp80m : FpI_<(outs RFP80:$dst), (ins f80mem:$src), ZeroArgFP,
[(set RFP80:$dst, (loadf80 addr:$src))]>;
}
def LD_Fp32m64 : FpIf64<(outs RFP64:$dst), (ins f32mem:$src), ZeroArgFP,
[(set RFP64:$dst, (f64 (extloadf32 addr:$src)))]>;
def LD_Fp64m80 : FpI_<(outs RFP80:$dst), (ins f64mem:$src), ZeroArgFP,
[(set RFP80:$dst, (f80 (extloadf64 addr:$src)))]>;
def LD_Fp32m80 : FpI_<(outs RFP80:$dst), (ins f32mem:$src), ZeroArgFP,
[(set RFP80:$dst, (f80 (extloadf32 addr:$src)))]>;
def ILD_Fp16m32: FpIf32<(outs RFP32:$dst), (ins i16mem:$src), ZeroArgFP,
[(set RFP32:$dst, (X86fild addr:$src, i16))]>;
def ILD_Fp32m32: FpIf32<(outs RFP32:$dst), (ins i32mem:$src), ZeroArgFP,
[(set RFP32:$dst, (X86fild addr:$src, i32))]>;
def ILD_Fp64m32: FpIf32<(outs RFP32:$dst), (ins i64mem:$src), ZeroArgFP,
[(set RFP32:$dst, (X86fild addr:$src, i64))]>;
def ILD_Fp16m64: FpIf64<(outs RFP64:$dst), (ins i16mem:$src), ZeroArgFP,
[(set RFP64:$dst, (X86fild addr:$src, i16))]>;
def ILD_Fp32m64: FpIf64<(outs RFP64:$dst), (ins i32mem:$src), ZeroArgFP,
[(set RFP64:$dst, (X86fild addr:$src, i32))]>;
def ILD_Fp64m64: FpIf64<(outs RFP64:$dst), (ins i64mem:$src), ZeroArgFP,
[(set RFP64:$dst, (X86fild addr:$src, i64))]>;
def ILD_Fp16m80: FpI_<(outs RFP80:$dst), (ins i16mem:$src), ZeroArgFP,
[(set RFP80:$dst, (X86fild addr:$src, i16))]>;
def ILD_Fp32m80: FpI_<(outs RFP80:$dst), (ins i32mem:$src), ZeroArgFP,
[(set RFP80:$dst, (X86fild addr:$src, i32))]>;
def ILD_Fp64m80: FpI_<(outs RFP80:$dst), (ins i64mem:$src), ZeroArgFP,
[(set RFP80:$dst, (X86fild addr:$src, i64))]>;
def ST_Fp32m : FpIf32<(outs), (ins f32mem:$op, RFP32:$src), OneArgFP,
[(store RFP32:$src, addr:$op)]>;
def ST_Fp64m32 : FpIf64<(outs), (ins f32mem:$op, RFP64:$src), OneArgFP,
[(truncstoref32 RFP64:$src, addr:$op)]>;
def ST_Fp64m : FpIf64<(outs), (ins f64mem:$op, RFP64:$src), OneArgFP,
[(store RFP64:$src, addr:$op)]>;
def ST_Fp80m32 : FpI_<(outs), (ins f32mem:$op, RFP80:$src), OneArgFP,
[(truncstoref32 RFP80:$src, addr:$op)]>;
def ST_Fp80m64 : FpI_<(outs), (ins f64mem:$op, RFP80:$src), OneArgFP,
[(truncstoref64 RFP80:$src, addr:$op)]>;
// FST does not support 80-bit memory target; FSTP must be used.
let mayStore = 1, neverHasSideEffects = 1 in {
def ST_FpP32m : FpIf32<(outs), (ins f32mem:$op, RFP32:$src), OneArgFP, []>;
def ST_FpP64m32 : FpIf64<(outs), (ins f32mem:$op, RFP64:$src), OneArgFP, []>;
def ST_FpP64m : FpIf64<(outs), (ins f64mem:$op, RFP64:$src), OneArgFP, []>;
def ST_FpP80m32 : FpI_<(outs), (ins f32mem:$op, RFP80:$src), OneArgFP, []>;
def ST_FpP80m64 : FpI_<(outs), (ins f64mem:$op, RFP80:$src), OneArgFP, []>;
}
def ST_FpP80m : FpI_<(outs), (ins f80mem:$op, RFP80:$src), OneArgFP,
[(store RFP80:$src, addr:$op)]>;
let mayStore = 1, neverHasSideEffects = 1 in {
def IST_Fp16m32 : FpIf32<(outs), (ins i16mem:$op, RFP32:$src), OneArgFP, []>;
def IST_Fp32m32 : FpIf32<(outs), (ins i32mem:$op, RFP32:$src), OneArgFP, []>;
def IST_Fp64m32 : FpIf32<(outs), (ins i64mem:$op, RFP32:$src), OneArgFP, []>;
def IST_Fp16m64 : FpIf64<(outs), (ins i16mem:$op, RFP64:$src), OneArgFP, []>;
def IST_Fp32m64 : FpIf64<(outs), (ins i32mem:$op, RFP64:$src), OneArgFP, []>;
def IST_Fp64m64 : FpIf64<(outs), (ins i64mem:$op, RFP64:$src), OneArgFP, []>;
def IST_Fp16m80 : FpI_<(outs), (ins i16mem:$op, RFP80:$src), OneArgFP, []>;
def IST_Fp32m80 : FpI_<(outs), (ins i32mem:$op, RFP80:$src), OneArgFP, []>;
def IST_Fp64m80 : FpI_<(outs), (ins i64mem:$op, RFP80:$src), OneArgFP, []>;
}
let mayLoad = 1 in {
def LD_F32m : FPI<0xD9, MRM0m, (outs), (ins f32mem:$src), "fld{s}\t$src">;
def LD_F64m : FPI<0xDD, MRM0m, (outs), (ins f64mem:$src), "fld{l}\t$src">;
def LD_F80m : FPI<0xDB, MRM5m, (outs), (ins f80mem:$src), "fld{t}\t$src">;
def ILD_F16m : FPI<0xDF, MRM0m, (outs), (ins i16mem:$src), "fild{s}\t$src">;
def ILD_F32m : FPI<0xDB, MRM0m, (outs), (ins i32mem:$src), "fild{l}\t$src">;
def ILD_F64m : FPI<0xDF, MRM5m, (outs), (ins i64mem:$src), "fild{ll}\t$src">;
}
let mayStore = 1 in {
def ST_F32m : FPI<0xD9, MRM2m, (outs), (ins f32mem:$dst), "fst{s}\t$dst">;
def ST_F64m : FPI<0xDD, MRM2m, (outs), (ins f64mem:$dst), "fst{l}\t$dst">;
def ST_FP32m : FPI<0xD9, MRM3m, (outs), (ins f32mem:$dst), "fstp{s}\t$dst">;
def ST_FP64m : FPI<0xDD, MRM3m, (outs), (ins f64mem:$dst), "fstp{l}\t$dst">;
def ST_FP80m : FPI<0xDB, MRM7m, (outs), (ins f80mem:$dst), "fstp{t}\t$dst">;
def IST_F16m : FPI<0xDF, MRM2m, (outs), (ins i16mem:$dst), "fist{s}\t$dst">;
def IST_F32m : FPI<0xDB, MRM2m, (outs), (ins i32mem:$dst), "fist{l}\t$dst">;
def IST_FP16m : FPI<0xDF, MRM3m, (outs), (ins i16mem:$dst), "fistp{s}\t$dst">;
def IST_FP32m : FPI<0xDB, MRM3m, (outs), (ins i32mem:$dst), "fistp{l}\t$dst">;
def IST_FP64m : FPI<0xDF, MRM7m, (outs), (ins i64mem:$dst), "fistp{ll}\t$dst">;
}
// FISTTP requires SSE3 even though it's a FPStack op.
def ISTT_Fp16m32 : FpI_<(outs), (ins i16mem:$op, RFP32:$src), OneArgFP,
[(X86fp_to_i16mem RFP32:$src, addr:$op)]>,
Requires<[HasSSE3]>;
def ISTT_Fp32m32 : FpI_<(outs), (ins i32mem:$op, RFP32:$src), OneArgFP,
[(X86fp_to_i32mem RFP32:$src, addr:$op)]>,
Requires<[HasSSE3]>;
def ISTT_Fp64m32 : FpI_<(outs), (ins i64mem:$op, RFP32:$src), OneArgFP,
[(X86fp_to_i64mem RFP32:$src, addr:$op)]>,
Requires<[HasSSE3]>;
def ISTT_Fp16m64 : FpI_<(outs), (ins i16mem:$op, RFP64:$src), OneArgFP,
[(X86fp_to_i16mem RFP64:$src, addr:$op)]>,
Requires<[HasSSE3]>;
def ISTT_Fp32m64 : FpI_<(outs), (ins i32mem:$op, RFP64:$src), OneArgFP,
[(X86fp_to_i32mem RFP64:$src, addr:$op)]>,
Requires<[HasSSE3]>;
def ISTT_Fp64m64 : FpI_<(outs), (ins i64mem:$op, RFP64:$src), OneArgFP,
[(X86fp_to_i64mem RFP64:$src, addr:$op)]>,
Requires<[HasSSE3]>;
def ISTT_Fp16m80 : FpI_<(outs), (ins i16mem:$op, RFP80:$src), OneArgFP,
[(X86fp_to_i16mem RFP80:$src, addr:$op)]>,
Requires<[HasSSE3]>;
def ISTT_Fp32m80 : FpI_<(outs), (ins i32mem:$op, RFP80:$src), OneArgFP,
[(X86fp_to_i32mem RFP80:$src, addr:$op)]>,
Requires<[HasSSE3]>;
def ISTT_Fp64m80 : FpI_<(outs), (ins i64mem:$op, RFP80:$src), OneArgFP,
[(X86fp_to_i64mem RFP80:$src, addr:$op)]>,
Requires<[HasSSE3]>;
let mayStore = 1 in {
def ISTT_FP16m : FPI<0xDF, MRM1m, (outs), (ins i16mem:$dst), "fisttp{s}\t$dst">;
def ISTT_FP32m : FPI<0xDB, MRM1m, (outs), (ins i32mem:$dst), "fisttp{l}\t$dst">;
def ISTT_FP64m : FPI<0xDD, MRM1m, (outs), (ins i64mem:$dst), "fisttp{ll}\t$dst">;
}
// FP Stack manipulation instructions.
def LD_Frr : FPI<0xC0, AddRegFrm, (outs), (ins RST:$op), "fld\t$op">, D9;
def ST_Frr : FPI<0xD0, AddRegFrm, (outs), (ins RST:$op), "fst\t$op">, DD;
def ST_FPrr : FPI<0xD8, AddRegFrm, (outs), (ins RST:$op), "fstp\t$op">, DD;
def XCH_F : FPI<0xC8, AddRegFrm, (outs), (ins RST:$op), "fxch\t$op">, D9;
// Floating point constant loads.
let isReMaterializable = 1 in {
def LD_Fp032 : FpIf32<(outs RFP32:$dst), (ins), ZeroArgFP,
[(set RFP32:$dst, fpimm0)]>;
def LD_Fp132 : FpIf32<(outs RFP32:$dst), (ins), ZeroArgFP,
[(set RFP32:$dst, fpimm1)]>;
def LD_Fp064 : FpIf64<(outs RFP64:$dst), (ins), ZeroArgFP,
[(set RFP64:$dst, fpimm0)]>;
def LD_Fp164 : FpIf64<(outs RFP64:$dst), (ins), ZeroArgFP,
[(set RFP64:$dst, fpimm1)]>;
def LD_Fp080 : FpI_<(outs RFP80:$dst), (ins), ZeroArgFP,
[(set RFP80:$dst, fpimm0)]>;
def LD_Fp180 : FpI_<(outs RFP80:$dst), (ins), ZeroArgFP,
[(set RFP80:$dst, fpimm1)]>;
}
def LD_F0 : FPI<0xEE, RawFrm, (outs), (ins), "fldz">, D9;
def LD_F1 : FPI<0xE8, RawFrm, (outs), (ins), "fld1">, D9;
// Floating point compares.
let Defs = [EFLAGS] in {
def UCOM_Fpr32 : FpIf32<(outs), (ins RFP32:$lhs, RFP32:$rhs), CompareFP,
[]>; // FPSW = cmp ST(0) with ST(i)
def UCOM_Fpr64 : FpIf64<(outs), (ins RFP64:$lhs, RFP64:$rhs), CompareFP,
[]>; // FPSW = cmp ST(0) with ST(i)
def UCOM_Fpr80 : FpI_ <(outs), (ins RFP80:$lhs, RFP80:$rhs), CompareFP,
[]>; // FPSW = cmp ST(0) with ST(i)
def UCOM_FpIr32: FpIf32<(outs), (ins RFP32:$lhs, RFP32:$rhs), CompareFP,
[(X86cmp RFP32:$lhs, RFP32:$rhs),
(implicit EFLAGS)]>; // CC = ST(0) cmp ST(i)
def UCOM_FpIr64: FpIf64<(outs), (ins RFP64:$lhs, RFP64:$rhs), CompareFP,
[(X86cmp RFP64:$lhs, RFP64:$rhs),
(implicit EFLAGS)]>; // CC = ST(0) cmp ST(i)
def UCOM_FpIr80: FpI_<(outs), (ins RFP80:$lhs, RFP80:$rhs), CompareFP,
[(X86cmp RFP80:$lhs, RFP80:$rhs),
(implicit EFLAGS)]>; // CC = ST(0) cmp ST(i)
}
let Defs = [EFLAGS], Uses = [ST0] in {
def UCOM_Fr : FPI<0xE0, AddRegFrm, // FPSW = cmp ST(0) with ST(i)
(outs), (ins RST:$reg),
"fucom\t$reg">, DD;
def UCOM_FPr : FPI<0xE8, AddRegFrm, // FPSW = cmp ST(0) with ST(i), pop
(outs), (ins RST:$reg),
"fucomp\t$reg">, DD;
def UCOM_FPPr : FPI<0xE9, RawFrm, // cmp ST(0) with ST(1), pop, pop
(outs), (ins),
"fucompp">, DA;
def UCOM_FIr : FPI<0xE8, AddRegFrm, // CC = cmp ST(0) with ST(i)
(outs), (ins RST:$reg),
"fucomi\t{$reg, %st(0)|%ST(0), $reg}">, DB;
def UCOM_FIPr : FPI<0xE8, AddRegFrm, // CC = cmp ST(0) with ST(i), pop
(outs), (ins RST:$reg),
"fucomip\t{$reg, %st(0)|%ST(0), $reg}">, DF;
}
// Floating point flag ops.
let Defs = [AX] in
def FNSTSW8r : I<0xE0, RawFrm, // AX = fp flags
(outs), (ins), "fnstsw", []>, DF;
def FNSTCW16m : I<0xD9, MRM7m, // [mem16] = X87 control world
(outs), (ins i16mem:$dst), "fnstcw\t$dst",
[(X86fp_cwd_get16 addr:$dst)]>;
let mayLoad = 1 in
def FLDCW16m : I<0xD9, MRM5m, // X87 control world = [mem16]
(outs), (ins i16mem:$dst), "fldcw\t$dst", []>;
//===----------------------------------------------------------------------===//
// Non-Instruction Patterns
//===----------------------------------------------------------------------===//
// Required for RET of f32 / f64 / f80 values.
def : Pat<(X86fld addr:$src, f32), (LD_Fp32m addr:$src)>;
def : Pat<(X86fld addr:$src, f64), (LD_Fp64m addr:$src)>;
def : Pat<(X86fld addr:$src, f80), (LD_Fp80m addr:$src)>;
// Required for CALL which return f32 / f64 / f80 values.
def : Pat<(X86fst RFP32:$src, addr:$op, f32), (ST_Fp32m addr:$op, RFP32:$src)>;
def : Pat<(X86fst RFP64:$src, addr:$op, f32), (ST_Fp64m32 addr:$op, RFP64:$src)>;
def : Pat<(X86fst RFP64:$src, addr:$op, f64), (ST_Fp64m addr:$op, RFP64:$src)>;
def : Pat<(X86fst RFP80:$src, addr:$op, f32), (ST_Fp80m32 addr:$op, RFP80:$src)>;
def : Pat<(X86fst RFP80:$src, addr:$op, f64), (ST_Fp80m64 addr:$op, RFP80:$src)>;
def : Pat<(X86fst RFP80:$src, addr:$op, f80), (ST_FpP80m addr:$op, RFP80:$src)>;
// Floating point constant -0.0 and -1.0
def : Pat<(f32 fpimmneg0), (CHS_Fp32 (LD_Fp032))>, Requires<[FPStackf32]>;
def : Pat<(f32 fpimmneg1), (CHS_Fp32 (LD_Fp132))>, Requires<[FPStackf32]>;
def : Pat<(f64 fpimmneg0), (CHS_Fp64 (LD_Fp064))>, Requires<[FPStackf64]>;
def : Pat<(f64 fpimmneg1), (CHS_Fp64 (LD_Fp164))>, Requires<[FPStackf64]>;
def : Pat<(f80 fpimmneg0), (CHS_Fp80 (LD_Fp080))>;
def : Pat<(f80 fpimmneg1), (CHS_Fp80 (LD_Fp180))>;
// Used to conv. i64 to f64 since there isn't a SSE version.
def : Pat<(X86fildflag addr:$src, i64), (ILD_Fp64m64 addr:$src)>;
// FP extensions map onto simple pseudo-value conversions if they are to/from
// the FP stack.
def : Pat<(f64 (fextend RFP32:$src)), (MOV_Fp3264 RFP32:$src)>,
Requires<[FPStackf32]>;
def : Pat<(f80 (fextend RFP32:$src)), (MOV_Fp3280 RFP32:$src)>,
Requires<[FPStackf32]>;
def : Pat<(f80 (fextend RFP64:$src)), (MOV_Fp6480 RFP64:$src)>,
Requires<[FPStackf64]>;
// FP truncations map onto simple pseudo-value conversions if they are to/from
// the FP stack. We have validated that only value-preserving truncations make
// it through isel.
def : Pat<(f32 (fround RFP64:$src)), (MOV_Fp6432 RFP64:$src)>,
Requires<[FPStackf32]>;
def : Pat<(f32 (fround RFP80:$src)), (MOV_Fp8032 RFP80:$src)>,
Requires<[FPStackf32]>;
def : Pat<(f64 (fround RFP80:$src)), (MOV_Fp8064 RFP80:$src)>,
Requires<[FPStackf64]>;