llvm-mirror/lib/Analysis/CostModel.cpp
Andrea Di Biagio 5c282923d9 [CostModel][x86] Improved cost model for alternate shuffles.
This patch:
 1) Improves the cost model for x86 alternate shuffles (originally
added at revision 211339);
 2) Teaches the Cost Model Analysis pass how to analyze alternate shuffles.

Alternate shuffles are a special kind of blend; on x86, we can often
easily lowered alternate shuffled into single blend
instruction (depending on the subtarget features).

The existing cost model didn't take into account subtarget features.
Also, it had a couple of "dead" entries for vector types that are never
legal (example: on x86 types v2i32 and v2f32 are not legal; those are
always either promoted or widened to 128-bit vector types).

The new x86 cost model takes into account what target features we have
before returning the shuffle cost (i.e. the number of instructions
after the blend is lowered/expanded).

This patch also teaches the Cost Model Analysis how to identify and analyze
alternate shuffles (i.e. 'SK_Alternate' shufflevector instructions):
 - added function 'isAlternateVectorMask';
 - added some logic to check if an instruction is a alternate shuffle and, in
   case, call the target specific TTI to get the corresponding shuffle cost;
 - added a test to verify the cost model analysis on alternate shuffles.

llvm-svn: 212296
2014-07-03 22:24:18 +00:00

538 lines
18 KiB
C++

//===- CostModel.cpp ------ Cost Model Analysis ---------------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines the cost model analysis. It provides a very basic cost
// estimation for LLVM-IR. This analysis uses the services of the codegen
// to approximate the cost of any IR instruction when lowered to machine
// instructions. The cost results are unit-less and the cost number represents
// the throughput of the machine assuming that all loads hit the cache, all
// branches are predicted, etc. The cost numbers can be added in order to
// compare two or more transformation alternatives.
//
//===----------------------------------------------------------------------===//
#include "llvm/ADT/STLExtras.h"
#include "llvm/Analysis/Passes.h"
#include "llvm/Analysis/TargetTransformInfo.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/Value.h"
#include "llvm/Pass.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
using namespace llvm;
#define CM_NAME "cost-model"
#define DEBUG_TYPE CM_NAME
static cl::opt<bool> EnableReduxCost("costmodel-reduxcost", cl::init(false),
cl::Hidden,
cl::desc("Recognize reduction patterns."));
namespace {
class CostModelAnalysis : public FunctionPass {
public:
static char ID; // Class identification, replacement for typeinfo
CostModelAnalysis() : FunctionPass(ID), F(nullptr), TTI(nullptr) {
initializeCostModelAnalysisPass(
*PassRegistry::getPassRegistry());
}
/// Returns the expected cost of the instruction.
/// Returns -1 if the cost is unknown.
/// Note, this method does not cache the cost calculation and it
/// can be expensive in some cases.
unsigned getInstructionCost(const Instruction *I) const;
private:
void getAnalysisUsage(AnalysisUsage &AU) const override;
bool runOnFunction(Function &F) override;
void print(raw_ostream &OS, const Module*) const override;
/// The function that we analyze.
Function *F;
/// Target information.
const TargetTransformInfo *TTI;
};
} // End of anonymous namespace
// Register this pass.
char CostModelAnalysis::ID = 0;
static const char cm_name[] = "Cost Model Analysis";
INITIALIZE_PASS_BEGIN(CostModelAnalysis, CM_NAME, cm_name, false, true)
INITIALIZE_PASS_END (CostModelAnalysis, CM_NAME, cm_name, false, true)
FunctionPass *llvm::createCostModelAnalysisPass() {
return new CostModelAnalysis();
}
void
CostModelAnalysis::getAnalysisUsage(AnalysisUsage &AU) const {
AU.setPreservesAll();
}
bool
CostModelAnalysis::runOnFunction(Function &F) {
this->F = &F;
TTI = getAnalysisIfAvailable<TargetTransformInfo>();
return false;
}
static bool isReverseVectorMask(SmallVectorImpl<int> &Mask) {
for (unsigned i = 0, MaskSize = Mask.size(); i < MaskSize; ++i)
if (Mask[i] > 0 && Mask[i] != (int)(MaskSize - 1 - i))
return false;
return true;
}
static bool isAlternateVectorMask(SmallVectorImpl<int> &Mask) {
bool isAlternate = true;
unsigned MaskSize = Mask.size();
// Example: shufflevector A, B, <0,5,2,7>
for (unsigned i = 0; i < MaskSize && isAlternate; ++i) {
if (Mask[i] < 0)
continue;
isAlternate = Mask[i] == (int)((i & 1) ? MaskSize + i : i);
}
if (isAlternate)
return true;
isAlternate = true;
// Example: shufflevector A, B, <4,1,6,3>
for (unsigned i = 0; i < MaskSize && isAlternate; ++i) {
if (Mask[i] < 0)
continue;
isAlternate = Mask[i] == (int)((i & 1) ? i : MaskSize + i);
}
return isAlternate;
}
static TargetTransformInfo::OperandValueKind getOperandInfo(Value *V) {
TargetTransformInfo::OperandValueKind OpInfo =
TargetTransformInfo::OK_AnyValue;
// Check for a splat of a constant or for a non uniform vector of constants.
if (isa<ConstantVector>(V) || isa<ConstantDataVector>(V)) {
OpInfo = TargetTransformInfo::OK_NonUniformConstantValue;
if (cast<Constant>(V)->getSplatValue() != nullptr)
OpInfo = TargetTransformInfo::OK_UniformConstantValue;
}
return OpInfo;
}
static bool matchPairwiseShuffleMask(ShuffleVectorInst *SI, bool IsLeft,
unsigned Level) {
// We don't need a shuffle if we just want to have element 0 in position 0 of
// the vector.
if (!SI && Level == 0 && IsLeft)
return true;
else if (!SI)
return false;
SmallVector<int, 32> Mask(SI->getType()->getVectorNumElements(), -1);
// Build a mask of 0, 2, ... (left) or 1, 3, ... (right) depending on whether
// we look at the left or right side.
for (unsigned i = 0, e = (1 << Level), val = !IsLeft; i != e; ++i, val += 2)
Mask[i] = val;
SmallVector<int, 16> ActualMask = SI->getShuffleMask();
if (Mask != ActualMask)
return false;
return true;
}
static bool matchPairwiseReductionAtLevel(const BinaryOperator *BinOp,
unsigned Level, unsigned NumLevels) {
// Match one level of pairwise operations.
// %rdx.shuf.0.0 = shufflevector <4 x float> %rdx, <4 x float> undef,
// <4 x i32> <i32 0, i32 2 , i32 undef, i32 undef>
// %rdx.shuf.0.1 = shufflevector <4 x float> %rdx, <4 x float> undef,
// <4 x i32> <i32 1, i32 3, i32 undef, i32 undef>
// %bin.rdx.0 = fadd <4 x float> %rdx.shuf.0.0, %rdx.shuf.0.1
if (BinOp == nullptr)
return false;
assert(BinOp->getType()->isVectorTy() && "Expecting a vector type");
unsigned Opcode = BinOp->getOpcode();
Value *L = BinOp->getOperand(0);
Value *R = BinOp->getOperand(1);
ShuffleVectorInst *LS = dyn_cast<ShuffleVectorInst>(L);
if (!LS && Level)
return false;
ShuffleVectorInst *RS = dyn_cast<ShuffleVectorInst>(R);
if (!RS && Level)
return false;
// On level 0 we can omit one shufflevector instruction.
if (!Level && !RS && !LS)
return false;
// Shuffle inputs must match.
Value *NextLevelOpL = LS ? LS->getOperand(0) : nullptr;
Value *NextLevelOpR = RS ? RS->getOperand(0) : nullptr;
Value *NextLevelOp = nullptr;
if (NextLevelOpR && NextLevelOpL) {
// If we have two shuffles their operands must match.
if (NextLevelOpL != NextLevelOpR)
return false;
NextLevelOp = NextLevelOpL;
} else if (Level == 0 && (NextLevelOpR || NextLevelOpL)) {
// On the first level we can omit the shufflevector <0, undef,...>. So the
// input to the other shufflevector <1, undef> must match with one of the
// inputs to the current binary operation.
// Example:
// %NextLevelOpL = shufflevector %R, <1, undef ...>
// %BinOp = fadd %NextLevelOpL, %R
if (NextLevelOpL && NextLevelOpL != R)
return false;
else if (NextLevelOpR && NextLevelOpR != L)
return false;
NextLevelOp = NextLevelOpL ? R : L;
} else
return false;
// Check that the next levels binary operation exists and matches with the
// current one.
BinaryOperator *NextLevelBinOp = nullptr;
if (Level + 1 != NumLevels) {
if (!(NextLevelBinOp = dyn_cast<BinaryOperator>(NextLevelOp)))
return false;
else if (NextLevelBinOp->getOpcode() != Opcode)
return false;
}
// Shuffle mask for pairwise operation must match.
if (matchPairwiseShuffleMask(LS, true, Level)) {
if (!matchPairwiseShuffleMask(RS, false, Level))
return false;
} else if (matchPairwiseShuffleMask(RS, true, Level)) {
if (!matchPairwiseShuffleMask(LS, false, Level))
return false;
} else
return false;
if (++Level == NumLevels)
return true;
// Match next level.
return matchPairwiseReductionAtLevel(NextLevelBinOp, Level, NumLevels);
}
static bool matchPairwiseReduction(const ExtractElementInst *ReduxRoot,
unsigned &Opcode, Type *&Ty) {
if (!EnableReduxCost)
return false;
// Need to extract the first element.
ConstantInt *CI = dyn_cast<ConstantInt>(ReduxRoot->getOperand(1));
unsigned Idx = ~0u;
if (CI)
Idx = CI->getZExtValue();
if (Idx != 0)
return false;
BinaryOperator *RdxStart = dyn_cast<BinaryOperator>(ReduxRoot->getOperand(0));
if (!RdxStart)
return false;
Type *VecTy = ReduxRoot->getOperand(0)->getType();
unsigned NumVecElems = VecTy->getVectorNumElements();
if (!isPowerOf2_32(NumVecElems))
return false;
// We look for a sequence of shuffle,shuffle,add triples like the following
// that builds a pairwise reduction tree.
//
// (X0, X1, X2, X3)
// (X0 + X1, X2 + X3, undef, undef)
// ((X0 + X1) + (X2 + X3), undef, undef, undef)
//
// %rdx.shuf.0.0 = shufflevector <4 x float> %rdx, <4 x float> undef,
// <4 x i32> <i32 0, i32 2 , i32 undef, i32 undef>
// %rdx.shuf.0.1 = shufflevector <4 x float> %rdx, <4 x float> undef,
// <4 x i32> <i32 1, i32 3, i32 undef, i32 undef>
// %bin.rdx.0 = fadd <4 x float> %rdx.shuf.0.0, %rdx.shuf.0.1
// %rdx.shuf.1.0 = shufflevector <4 x float> %bin.rdx.0, <4 x float> undef,
// <4 x i32> <i32 0, i32 undef, i32 undef, i32 undef>
// %rdx.shuf.1.1 = shufflevector <4 x float> %bin.rdx.0, <4 x float> undef,
// <4 x i32> <i32 1, i32 undef, i32 undef, i32 undef>
// %bin.rdx8 = fadd <4 x float> %rdx.shuf.1.0, %rdx.shuf.1.1
// %r = extractelement <4 x float> %bin.rdx8, i32 0
if (!matchPairwiseReductionAtLevel(RdxStart, 0, Log2_32(NumVecElems)))
return false;
Opcode = RdxStart->getOpcode();
Ty = VecTy;
return true;
}
static std::pair<Value *, ShuffleVectorInst *>
getShuffleAndOtherOprd(BinaryOperator *B) {
Value *L = B->getOperand(0);
Value *R = B->getOperand(1);
ShuffleVectorInst *S = nullptr;
if ((S = dyn_cast<ShuffleVectorInst>(L)))
return std::make_pair(R, S);
S = dyn_cast<ShuffleVectorInst>(R);
return std::make_pair(L, S);
}
static bool matchVectorSplittingReduction(const ExtractElementInst *ReduxRoot,
unsigned &Opcode, Type *&Ty) {
if (!EnableReduxCost)
return false;
// Need to extract the first element.
ConstantInt *CI = dyn_cast<ConstantInt>(ReduxRoot->getOperand(1));
unsigned Idx = ~0u;
if (CI)
Idx = CI->getZExtValue();
if (Idx != 0)
return false;
BinaryOperator *RdxStart = dyn_cast<BinaryOperator>(ReduxRoot->getOperand(0));
if (!RdxStart)
return false;
unsigned RdxOpcode = RdxStart->getOpcode();
Type *VecTy = ReduxRoot->getOperand(0)->getType();
unsigned NumVecElems = VecTy->getVectorNumElements();
if (!isPowerOf2_32(NumVecElems))
return false;
// We look for a sequence of shuffles and adds like the following matching one
// fadd, shuffle vector pair at a time.
//
// %rdx.shuf = shufflevector <4 x float> %rdx, <4 x float> undef,
// <4 x i32> <i32 2, i32 3, i32 undef, i32 undef>
// %bin.rdx = fadd <4 x float> %rdx, %rdx.shuf
// %rdx.shuf7 = shufflevector <4 x float> %bin.rdx, <4 x float> undef,
// <4 x i32> <i32 1, i32 undef, i32 undef, i32 undef>
// %bin.rdx8 = fadd <4 x float> %bin.rdx, %rdx.shuf7
// %r = extractelement <4 x float> %bin.rdx8, i32 0
unsigned MaskStart = 1;
Value *RdxOp = RdxStart;
SmallVector<int, 32> ShuffleMask(NumVecElems, 0);
unsigned NumVecElemsRemain = NumVecElems;
while (NumVecElemsRemain - 1) {
// Check for the right reduction operation.
BinaryOperator *BinOp;
if (!(BinOp = dyn_cast<BinaryOperator>(RdxOp)))
return false;
if (BinOp->getOpcode() != RdxOpcode)
return false;
Value *NextRdxOp;
ShuffleVectorInst *Shuffle;
std::tie(NextRdxOp, Shuffle) = getShuffleAndOtherOprd(BinOp);
// Check the current reduction operation and the shuffle use the same value.
if (Shuffle == nullptr)
return false;
if (Shuffle->getOperand(0) != NextRdxOp)
return false;
// Check that shuffle masks matches.
for (unsigned j = 0; j != MaskStart; ++j)
ShuffleMask[j] = MaskStart + j;
// Fill the rest of the mask with -1 for undef.
std::fill(&ShuffleMask[MaskStart], ShuffleMask.end(), -1);
SmallVector<int, 16> Mask = Shuffle->getShuffleMask();
if (ShuffleMask != Mask)
return false;
RdxOp = NextRdxOp;
NumVecElemsRemain /= 2;
MaskStart *= 2;
}
Opcode = RdxOpcode;
Ty = VecTy;
return true;
}
unsigned CostModelAnalysis::getInstructionCost(const Instruction *I) const {
if (!TTI)
return -1;
switch (I->getOpcode()) {
case Instruction::GetElementPtr:{
Type *ValTy = I->getOperand(0)->getType()->getPointerElementType();
return TTI->getAddressComputationCost(ValTy);
}
case Instruction::Ret:
case Instruction::PHI:
case Instruction::Br: {
return TTI->getCFInstrCost(I->getOpcode());
}
case Instruction::Add:
case Instruction::FAdd:
case Instruction::Sub:
case Instruction::FSub:
case Instruction::Mul:
case Instruction::FMul:
case Instruction::UDiv:
case Instruction::SDiv:
case Instruction::FDiv:
case Instruction::URem:
case Instruction::SRem:
case Instruction::FRem:
case Instruction::Shl:
case Instruction::LShr:
case Instruction::AShr:
case Instruction::And:
case Instruction::Or:
case Instruction::Xor: {
TargetTransformInfo::OperandValueKind Op1VK =
getOperandInfo(I->getOperand(0));
TargetTransformInfo::OperandValueKind Op2VK =
getOperandInfo(I->getOperand(1));
return TTI->getArithmeticInstrCost(I->getOpcode(), I->getType(), Op1VK,
Op2VK);
}
case Instruction::Select: {
const SelectInst *SI = cast<SelectInst>(I);
Type *CondTy = SI->getCondition()->getType();
return TTI->getCmpSelInstrCost(I->getOpcode(), I->getType(), CondTy);
}
case Instruction::ICmp:
case Instruction::FCmp: {
Type *ValTy = I->getOperand(0)->getType();
return TTI->getCmpSelInstrCost(I->getOpcode(), ValTy);
}
case Instruction::Store: {
const StoreInst *SI = cast<StoreInst>(I);
Type *ValTy = SI->getValueOperand()->getType();
return TTI->getMemoryOpCost(I->getOpcode(), ValTy,
SI->getAlignment(),
SI->getPointerAddressSpace());
}
case Instruction::Load: {
const LoadInst *LI = cast<LoadInst>(I);
return TTI->getMemoryOpCost(I->getOpcode(), I->getType(),
LI->getAlignment(),
LI->getPointerAddressSpace());
}
case Instruction::ZExt:
case Instruction::SExt:
case Instruction::FPToUI:
case Instruction::FPToSI:
case Instruction::FPExt:
case Instruction::PtrToInt:
case Instruction::IntToPtr:
case Instruction::SIToFP:
case Instruction::UIToFP:
case Instruction::Trunc:
case Instruction::FPTrunc:
case Instruction::BitCast:
case Instruction::AddrSpaceCast: {
Type *SrcTy = I->getOperand(0)->getType();
return TTI->getCastInstrCost(I->getOpcode(), I->getType(), SrcTy);
}
case Instruction::ExtractElement: {
const ExtractElementInst * EEI = cast<ExtractElementInst>(I);
ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(1));
unsigned Idx = -1;
if (CI)
Idx = CI->getZExtValue();
// Try to match a reduction sequence (series of shufflevector and vector
// adds followed by a extractelement).
unsigned ReduxOpCode;
Type *ReduxType;
if (matchVectorSplittingReduction(EEI, ReduxOpCode, ReduxType))
return TTI->getReductionCost(ReduxOpCode, ReduxType, false);
else if (matchPairwiseReduction(EEI, ReduxOpCode, ReduxType))
return TTI->getReductionCost(ReduxOpCode, ReduxType, true);
return TTI->getVectorInstrCost(I->getOpcode(),
EEI->getOperand(0)->getType(), Idx);
}
case Instruction::InsertElement: {
const InsertElementInst * IE = cast<InsertElementInst>(I);
ConstantInt *CI = dyn_cast<ConstantInt>(IE->getOperand(2));
unsigned Idx = -1;
if (CI)
Idx = CI->getZExtValue();
return TTI->getVectorInstrCost(I->getOpcode(),
IE->getType(), Idx);
}
case Instruction::ShuffleVector: {
const ShuffleVectorInst *Shuffle = cast<ShuffleVectorInst>(I);
Type *VecTypOp0 = Shuffle->getOperand(0)->getType();
unsigned NumVecElems = VecTypOp0->getVectorNumElements();
SmallVector<int, 16> Mask = Shuffle->getShuffleMask();
if (NumVecElems == Mask.size()) {
if (isReverseVectorMask(Mask))
return TTI->getShuffleCost(TargetTransformInfo::SK_Reverse, VecTypOp0,
0, nullptr);
if (isAlternateVectorMask(Mask))
return TTI->getShuffleCost(TargetTransformInfo::SK_Alternate,
VecTypOp0, 0, nullptr);
}
return -1;
}
case Instruction::Call:
if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
SmallVector<Type*, 4> Tys;
for (unsigned J = 0, JE = II->getNumArgOperands(); J != JE; ++J)
Tys.push_back(II->getArgOperand(J)->getType());
return TTI->getIntrinsicInstrCost(II->getIntrinsicID(), II->getType(),
Tys);
}
return -1;
default:
// We don't have any information on this instruction.
return -1;
}
}
void CostModelAnalysis::print(raw_ostream &OS, const Module*) const {
if (!F)
return;
for (Function::iterator B = F->begin(), BE = F->end(); B != BE; ++B) {
for (BasicBlock::iterator it = B->begin(), e = B->end(); it != e; ++it) {
Instruction *Inst = it;
unsigned Cost = getInstructionCost(Inst);
if (Cost != (unsigned)-1)
OS << "Cost Model: Found an estimated cost of " << Cost;
else
OS << "Cost Model: Unknown cost";
OS << " for instruction: "<< *Inst << "\n";
}
}
}