llvm-mirror/lib/Transforms/Utils/SSAUpdater.cpp
Bob Wilson ad00f21093 Re-commit my previous SSAUpdater changes. The previous version naively tried
to determine where to place PHIs by iteratively comparing reaching definitions
at each block.  That was just plain wrong.  This version now computes the
dominator tree within the subset of the CFG where PHIs may need to be placed,
and then places the PHIs in the iterated dominance frontier of each definition.
The rest of the patch is mostly the same, with a few more performance
improvements added in.

llvm-svn: 101612
2010-04-17 03:08:24 +00:00

652 lines
23 KiB
C++

//===- SSAUpdater.cpp - Unstructured SSA Update Tool ----------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements the SSAUpdater class.
//
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "ssaupdater"
#include "llvm/Transforms/Utils/SSAUpdater.h"
#include "llvm/Instructions.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/Support/AlignOf.h"
#include "llvm/Support/Allocator.h"
#include "llvm/Support/CFG.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
using namespace llvm;
/// BBInfo - Per-basic block information used internally by SSAUpdater.
/// The predecessors of each block are cached here since pred_iterator is
/// slow and we need to iterate over the blocks at least a few times.
class SSAUpdater::BBInfo {
public:
BasicBlock *BB; // Back-pointer to the corresponding block.
Value *AvailableVal; // Value to use in this block.
BBInfo *DefBB; // Block that defines the available value.
int BlkNum; // Postorder number.
BBInfo *IDom; // Immediate dominator.
unsigned NumPreds; // Number of predecessor blocks.
BBInfo **Preds; // Array[NumPreds] of predecessor blocks.
PHINode *PHITag; // Marker for existing PHIs that match.
BBInfo(BasicBlock *ThisBB, Value *V)
: BB(ThisBB), AvailableVal(V), DefBB(V ? this : 0), BlkNum(0), IDom(0),
NumPreds(0), Preds(0), PHITag(0) { }
};
typedef DenseMap<BasicBlock*, SSAUpdater::BBInfo*> BBMapTy;
typedef DenseMap<BasicBlock*, Value*> AvailableValsTy;
static AvailableValsTy &getAvailableVals(void *AV) {
return *static_cast<AvailableValsTy*>(AV);
}
static BBMapTy *getBBMap(void *BM) {
return static_cast<BBMapTy*>(BM);
}
SSAUpdater::SSAUpdater(SmallVectorImpl<PHINode*> *NewPHI)
: AV(0), PrototypeValue(0), BM(0), InsertedPHIs(NewPHI) {}
SSAUpdater::~SSAUpdater() {
delete &getAvailableVals(AV);
}
/// Initialize - Reset this object to get ready for a new set of SSA
/// updates. ProtoValue is the value used to name PHI nodes.
void SSAUpdater::Initialize(Value *ProtoValue) {
if (AV == 0)
AV = new AvailableValsTy();
else
getAvailableVals(AV).clear();
PrototypeValue = ProtoValue;
}
/// HasValueForBlock - Return true if the SSAUpdater already has a value for
/// the specified block.
bool SSAUpdater::HasValueForBlock(BasicBlock *BB) const {
return getAvailableVals(AV).count(BB);
}
/// AddAvailableValue - Indicate that a rewritten value is available in the
/// specified block with the specified value.
void SSAUpdater::AddAvailableValue(BasicBlock *BB, Value *V) {
assert(PrototypeValue != 0 && "Need to initialize SSAUpdater");
assert(PrototypeValue->getType() == V->getType() &&
"All rewritten values must have the same type");
getAvailableVals(AV)[BB] = V;
}
/// IsEquivalentPHI - Check if PHI has the same incoming value as specified
/// in ValueMapping for each predecessor block.
static bool IsEquivalentPHI(PHINode *PHI,
DenseMap<BasicBlock*, Value*> &ValueMapping) {
unsigned PHINumValues = PHI->getNumIncomingValues();
if (PHINumValues != ValueMapping.size())
return false;
// Scan the phi to see if it matches.
for (unsigned i = 0, e = PHINumValues; i != e; ++i)
if (ValueMapping[PHI->getIncomingBlock(i)] !=
PHI->getIncomingValue(i)) {
return false;
}
return true;
}
/// GetValueAtEndOfBlock - Construct SSA form, materializing a value that is
/// live at the end of the specified block.
Value *SSAUpdater::GetValueAtEndOfBlock(BasicBlock *BB) {
assert(BM == 0 && "Unexpected Internal State");
Value *Res = GetValueAtEndOfBlockInternal(BB);
assert(BM == 0 && "Unexpected Internal State");
return Res;
}
/// GetValueInMiddleOfBlock - Construct SSA form, materializing a value that
/// is live in the middle of the specified block.
///
/// GetValueInMiddleOfBlock is the same as GetValueAtEndOfBlock except in one
/// important case: if there is a definition of the rewritten value after the
/// 'use' in BB. Consider code like this:
///
/// X1 = ...
/// SomeBB:
/// use(X)
/// X2 = ...
/// br Cond, SomeBB, OutBB
///
/// In this case, there are two values (X1 and X2) added to the AvailableVals
/// set by the client of the rewriter, and those values are both live out of
/// their respective blocks. However, the use of X happens in the *middle* of
/// a block. Because of this, we need to insert a new PHI node in SomeBB to
/// merge the appropriate values, and this value isn't live out of the block.
///
Value *SSAUpdater::GetValueInMiddleOfBlock(BasicBlock *BB) {
// If there is no definition of the renamed variable in this block, just use
// GetValueAtEndOfBlock to do our work.
if (!HasValueForBlock(BB))
return GetValueAtEndOfBlock(BB);
// Otherwise, we have the hard case. Get the live-in values for each
// predecessor.
SmallVector<std::pair<BasicBlock*, Value*>, 8> PredValues;
Value *SingularValue = 0;
// We can get our predecessor info by walking the pred_iterator list, but it
// is relatively slow. If we already have PHI nodes in this block, walk one
// of them to get the predecessor list instead.
if (PHINode *SomePhi = dyn_cast<PHINode>(BB->begin())) {
for (unsigned i = 0, e = SomePhi->getNumIncomingValues(); i != e; ++i) {
BasicBlock *PredBB = SomePhi->getIncomingBlock(i);
Value *PredVal = GetValueAtEndOfBlock(PredBB);
PredValues.push_back(std::make_pair(PredBB, PredVal));
// Compute SingularValue.
if (i == 0)
SingularValue = PredVal;
else if (PredVal != SingularValue)
SingularValue = 0;
}
} else {
bool isFirstPred = true;
for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
BasicBlock *PredBB = *PI;
Value *PredVal = GetValueAtEndOfBlock(PredBB);
PredValues.push_back(std::make_pair(PredBB, PredVal));
// Compute SingularValue.
if (isFirstPred) {
SingularValue = PredVal;
isFirstPred = false;
} else if (PredVal != SingularValue)
SingularValue = 0;
}
}
// If there are no predecessors, just return undef.
if (PredValues.empty())
return UndefValue::get(PrototypeValue->getType());
// Otherwise, if all the merged values are the same, just use it.
if (SingularValue != 0)
return SingularValue;
// Otherwise, we do need a PHI: check to see if we already have one available
// in this block that produces the right value.
if (isa<PHINode>(BB->begin())) {
DenseMap<BasicBlock*, Value*> ValueMapping(PredValues.begin(),
PredValues.end());
PHINode *SomePHI;
for (BasicBlock::iterator It = BB->begin();
(SomePHI = dyn_cast<PHINode>(It)); ++It) {
if (IsEquivalentPHI(SomePHI, ValueMapping))
return SomePHI;
}
}
// Ok, we have no way out, insert a new one now.
PHINode *InsertedPHI = PHINode::Create(PrototypeValue->getType(),
PrototypeValue->getName(),
&BB->front());
InsertedPHI->reserveOperandSpace(PredValues.size());
// Fill in all the predecessors of the PHI.
for (unsigned i = 0, e = PredValues.size(); i != e; ++i)
InsertedPHI->addIncoming(PredValues[i].second, PredValues[i].first);
// See if the PHI node can be merged to a single value. This can happen in
// loop cases when we get a PHI of itself and one other value.
if (Value *ConstVal = InsertedPHI->hasConstantValue()) {
InsertedPHI->eraseFromParent();
return ConstVal;
}
// If the client wants to know about all new instructions, tell it.
if (InsertedPHIs) InsertedPHIs->push_back(InsertedPHI);
DEBUG(dbgs() << " Inserted PHI: " << *InsertedPHI << "\n");
return InsertedPHI;
}
/// RewriteUse - Rewrite a use of the symbolic value. This handles PHI nodes,
/// which use their value in the corresponding predecessor.
void SSAUpdater::RewriteUse(Use &U) {
Instruction *User = cast<Instruction>(U.getUser());
Value *V;
if (PHINode *UserPN = dyn_cast<PHINode>(User))
V = GetValueAtEndOfBlock(UserPN->getIncomingBlock(U));
else
V = GetValueInMiddleOfBlock(User->getParent());
U.set(V);
}
/// GetValueAtEndOfBlockInternal - Check to see if AvailableVals has an entry
/// for the specified BB and if so, return it. If not, construct SSA form by
/// first calculating the required placement of PHIs and then inserting new
/// PHIs where needed.
Value *SSAUpdater::GetValueAtEndOfBlockInternal(BasicBlock *BB) {
AvailableValsTy &AvailableVals = getAvailableVals(AV);
if (Value *V = AvailableVals[BB])
return V;
// Pool allocation used internally by GetValueAtEndOfBlock.
BumpPtrAllocator Allocator;
BBMapTy BBMapObj;
BM = &BBMapObj;
SmallVector<BBInfo*, 100> BlockList;
BuildBlockList(BB, &BlockList, &Allocator);
// Special case: bail out if BB is unreachable.
if (BlockList.size() == 0) {
BM = 0;
return UndefValue::get(PrototypeValue->getType());
}
FindDominators(&BlockList);
FindPHIPlacement(&BlockList);
FindAvailableVals(&BlockList);
BM = 0;
return BBMapObj[BB]->DefBB->AvailableVal;
}
/// FindPredecessorBlocks - Put the predecessors of Info->BB into the Preds
/// vector, set Info->NumPreds, and allocate space in Info->Preds.
static void FindPredecessorBlocks(SSAUpdater::BBInfo *Info,
SmallVectorImpl<BasicBlock*> *Preds,
BumpPtrAllocator *Allocator) {
// We can get our predecessor info by walking the pred_iterator list,
// but it is relatively slow. If we already have PHI nodes in this
// block, walk one of them to get the predecessor list instead.
BasicBlock *BB = Info->BB;
if (PHINode *SomePhi = dyn_cast<PHINode>(BB->begin())) {
for (unsigned PI = 0, E = SomePhi->getNumIncomingValues(); PI != E; ++PI)
Preds->push_back(SomePhi->getIncomingBlock(PI));
} else {
for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI)
Preds->push_back(*PI);
}
Info->NumPreds = Preds->size();
Info->Preds = static_cast<SSAUpdater::BBInfo**>
(Allocator->Allocate(Info->NumPreds * sizeof(SSAUpdater::BBInfo*),
AlignOf<SSAUpdater::BBInfo*>::Alignment));
}
/// BuildBlockList - Starting from the specified basic block, traverse back
/// through its predecessors until reaching blocks with known values. Create
/// BBInfo structures for the blocks and append them to the block list.
void SSAUpdater::BuildBlockList(BasicBlock *BB, BlockListTy *BlockList,
BumpPtrAllocator *Allocator) {
AvailableValsTy &AvailableVals = getAvailableVals(AV);
BBMapTy *BBMap = getBBMap(BM);
SmallVector<BBInfo*, 10> RootList;
SmallVector<BBInfo*, 64> WorkList;
BBInfo *Info = new (*Allocator) BBInfo(BB, 0);
(*BBMap)[BB] = Info;
WorkList.push_back(Info);
// Search backward from BB, creating BBInfos along the way and stopping when
// reaching blocks that define the value. Record those defining blocks on
// the RootList.
SmallVector<BasicBlock*, 10> Preds;
while (!WorkList.empty()) {
Info = WorkList.pop_back_val();
Preds.clear();
FindPredecessorBlocks(Info, &Preds, Allocator);
// Treat an unreachable predecessor as a definition with 'undef'.
if (Info->NumPreds == 0) {
Info->AvailableVal = UndefValue::get(PrototypeValue->getType());
Info->DefBB = Info;
RootList.push_back(Info);
continue;
}
for (unsigned p = 0; p != Info->NumPreds; ++p) {
BasicBlock *Pred = Preds[p];
// Check if BBMap already has a BBInfo for the predecessor block.
BBMapTy::value_type &BBMapBucket = BBMap->FindAndConstruct(Pred);
if (BBMapBucket.second) {
Info->Preds[p] = BBMapBucket.second;
continue;
}
// Create a new BBInfo for the predecessor.
Value *PredVal = AvailableVals.lookup(Pred);
BBInfo *PredInfo = new (*Allocator) BBInfo(Pred, PredVal);
BBMapBucket.second = PredInfo;
Info->Preds[p] = PredInfo;
if (PredInfo->AvailableVal) {
RootList.push_back(PredInfo);
continue;
}
WorkList.push_back(PredInfo);
}
}
// Now that we know what blocks are backwards-reachable from the starting
// block, do a forward depth-first traversal to assign postorder numbers
// to those blocks.
BBInfo *PseudoEntry = new (*Allocator) BBInfo(0, 0);
unsigned BlkNum = 1;
// Initialize the worklist with the roots from the backward traversal.
while (!RootList.empty()) {
Info = RootList.pop_back_val();
Info->IDom = PseudoEntry;
Info->BlkNum = -1;
WorkList.push_back(Info);
}
while (!WorkList.empty()) {
Info = WorkList.back();
if (Info->BlkNum == -2) {
// All the successors have been handled; assign the postorder number.
Info->BlkNum = BlkNum++;
// If not a root, put it on the BlockList.
if (!Info->AvailableVal)
BlockList->push_back(Info);
WorkList.pop_back();
continue;
}
// Leave this entry on the worklist, but set its BlkNum to mark that its
// successors have been put on the worklist. When it returns to the top
// the list, after handling its successors, it will be assigned a number.
Info->BlkNum = -2;
// Add unvisited successors to the work list.
for (succ_iterator SI = succ_begin(Info->BB), E = succ_end(Info->BB);
SI != E; ++SI) {
BBInfo *SuccInfo = (*BBMap)[*SI];
if (!SuccInfo || SuccInfo->BlkNum)
continue;
SuccInfo->BlkNum = -1;
WorkList.push_back(SuccInfo);
}
}
PseudoEntry->BlkNum = BlkNum;
}
/// IntersectDominators - This is the dataflow lattice "meet" operation for
/// finding dominators. Given two basic blocks, it walks up the dominator
/// tree until it finds a common dominator of both. It uses the postorder
/// number of the blocks to determine how to do that.
static SSAUpdater::BBInfo *IntersectDominators(SSAUpdater::BBInfo *Blk1,
SSAUpdater::BBInfo *Blk2) {
while (Blk1 != Blk2) {
while (Blk1->BlkNum < Blk2->BlkNum) {
Blk1 = Blk1->IDom;
if (!Blk1)
return Blk2;
}
while (Blk2->BlkNum < Blk1->BlkNum) {
Blk2 = Blk2->IDom;
if (!Blk2)
return Blk1;
}
}
return Blk1;
}
/// FindDominators - Calculate the dominator tree for the subset of the CFG
/// corresponding to the basic blocks on the BlockList. This uses the
/// algorithm from: "A Simple, Fast Dominance Algorithm" by Cooper, Harvey and
/// Kennedy, published in Software--Practice and Experience, 2001, 4:1-10.
/// Because the CFG subset does not include any edges leading into blocks that
/// define the value, the results are not the usual dominator tree. The CFG
/// subset has a single pseudo-entry node with edges to a set of root nodes
/// for blocks that define the value. The dominators for this subset CFG are
/// not the standard dominators but they are adequate for placing PHIs within
/// the subset CFG.
void SSAUpdater::FindDominators(BlockListTy *BlockList) {
bool Changed;
do {
Changed = false;
// Iterate over the list in reverse order, i.e., forward on CFG edges.
for (BlockListTy::reverse_iterator I = BlockList->rbegin(),
E = BlockList->rend(); I != E; ++I) {
BBInfo *Info = *I;
// Start with the first predecessor.
assert(Info->NumPreds > 0 && "unreachable block");
BBInfo *NewIDom = Info->Preds[0];
// Iterate through the block's other predecessors.
for (unsigned p = 1; p != Info->NumPreds; ++p) {
BBInfo *Pred = Info->Preds[p];
NewIDom = IntersectDominators(NewIDom, Pred);
}
// Check if the IDom value has changed.
if (NewIDom != Info->IDom) {
Info->IDom = NewIDom;
Changed = true;
}
}
} while (Changed);
}
/// IsDefInDomFrontier - Search up the dominator tree from Pred to IDom for
/// any blocks containing definitions of the value. If one is found, then the
/// successor of Pred is in the dominance frontier for the definition, and
/// this function returns true.
static bool IsDefInDomFrontier(const SSAUpdater::BBInfo *Pred,
const SSAUpdater::BBInfo *IDom) {
for (; Pred != IDom; Pred = Pred->IDom) {
if (Pred->DefBB == Pred)
return true;
}
return false;
}
/// FindPHIPlacement - PHIs are needed in the iterated dominance frontiers of
/// the known definitions. Iteratively add PHIs in the dom frontiers until
/// nothing changes. Along the way, keep track of the nearest dominating
/// definitions for non-PHI blocks.
void SSAUpdater::FindPHIPlacement(BlockListTy *BlockList) {
bool Changed;
do {
Changed = false;
// Iterate over the list in reverse order, i.e., forward on CFG edges.
for (BlockListTy::reverse_iterator I = BlockList->rbegin(),
E = BlockList->rend(); I != E; ++I) {
BBInfo *Info = *I;
// If this block already needs a PHI, there is nothing to do here.
if (Info->DefBB == Info)
continue;
// Default to use the same def as the immediate dominator.
BBInfo *NewDefBB = Info->IDom->DefBB;
for (unsigned p = 0; p != Info->NumPreds; ++p) {
if (IsDefInDomFrontier(Info->Preds[p], Info->IDom)) {
// Need a PHI here.
NewDefBB = Info;
break;
}
}
// Check if anything changed.
if (NewDefBB != Info->DefBB) {
Info->DefBB = NewDefBB;
Changed = true;
}
}
} while (Changed);
}
/// FindAvailableVal - If this block requires a PHI, first check if an existing
/// PHI matches the PHI placement and reaching definitions computed earlier,
/// and if not, create a new PHI. Visit all the block's predecessors to
/// calculate the available value for each one and fill in the incoming values
/// for a new PHI.
void SSAUpdater::FindAvailableVals(BlockListTy *BlockList) {
AvailableValsTy &AvailableVals = getAvailableVals(AV);
// Go through the worklist in forward order (i.e., backward through the CFG)
// and check if existing PHIs can be used. If not, create empty PHIs where
// they are needed.
for (BlockListTy::iterator I = BlockList->begin(), E = BlockList->end();
I != E; ++I) {
BBInfo *Info = *I;
// Check if there needs to be a PHI in BB.
if (Info->DefBB != Info)
continue;
// Look for an existing PHI.
FindExistingPHI(Info->BB, BlockList);
if (Info->AvailableVal)
continue;
PHINode *PHI = PHINode::Create(PrototypeValue->getType(),
PrototypeValue->getName(),
&Info->BB->front());
PHI->reserveOperandSpace(Info->NumPreds);
Info->AvailableVal = PHI;
AvailableVals[Info->BB] = PHI;
}
// Now go back through the worklist in reverse order to fill in the arguments
// for any new PHIs added in the forward traversal.
for (BlockListTy::reverse_iterator I = BlockList->rbegin(),
E = BlockList->rend(); I != E; ++I) {
BBInfo *Info = *I;
// Check if this block contains a newly added PHI.
if (Info->DefBB != Info)
continue;
PHINode *PHI = dyn_cast<PHINode>(Info->AvailableVal);
if (!PHI || PHI->getNumIncomingValues() == Info->NumPreds)
continue;
// Iterate through the block's predecessors.
for (unsigned p = 0; p != Info->NumPreds; ++p) {
BBInfo *PredInfo = Info->Preds[p];
BasicBlock *Pred = PredInfo->BB;
// Skip to the nearest preceding definition.
if (PredInfo->DefBB != PredInfo)
PredInfo = PredInfo->DefBB;
PHI->addIncoming(PredInfo->AvailableVal, Pred);
}
DEBUG(dbgs() << " Inserted PHI: " << *PHI << "\n");
// If the client wants to know about all new instructions, tell it.
if (InsertedPHIs) InsertedPHIs->push_back(PHI);
}
}
/// FindExistingPHI - Look through the PHI nodes in a block to see if any of
/// them match what is needed.
void SSAUpdater::FindExistingPHI(BasicBlock *BB, BlockListTy *BlockList) {
PHINode *SomePHI;
for (BasicBlock::iterator It = BB->begin();
(SomePHI = dyn_cast<PHINode>(It)); ++It) {
if (CheckIfPHIMatches(SomePHI)) {
RecordMatchingPHI(SomePHI);
break;
}
// Match failed: clear all the PHITag values.
for (BlockListTy::iterator I = BlockList->begin(), E = BlockList->end();
I != E; ++I)
(*I)->PHITag = 0;
}
}
/// CheckIfPHIMatches - Check if a PHI node matches the placement and values
/// in the BBMap.
bool SSAUpdater::CheckIfPHIMatches(PHINode *PHI) {
BBMapTy *BBMap = getBBMap(BM);
SmallVector<PHINode*, 20> WorkList;
WorkList.push_back(PHI);
// Mark that the block containing this PHI has been visited.
(*BBMap)[PHI->getParent()]->PHITag = PHI;
while (!WorkList.empty()) {
PHI = WorkList.pop_back_val();
// Iterate through the PHI's incoming values.
for (unsigned i = 0, e = PHI->getNumIncomingValues(); i != e; ++i) {
Value *IncomingVal = PHI->getIncomingValue(i);
BBInfo *PredInfo = (*BBMap)[PHI->getIncomingBlock(i)];
// Skip to the nearest preceding definition.
if (PredInfo->DefBB != PredInfo)
PredInfo = PredInfo->DefBB;
// Check if it matches the expected value.
if (PredInfo->AvailableVal) {
if (IncomingVal == PredInfo->AvailableVal)
continue;
return false;
}
// Check if the value is a PHI in the correct block.
PHINode *IncomingPHIVal = dyn_cast<PHINode>(IncomingVal);
if (!IncomingPHIVal || IncomingPHIVal->getParent() != PredInfo->BB)
return false;
// If this block has already been visited, check if this PHI matches.
if (PredInfo->PHITag) {
if (IncomingPHIVal == PredInfo->PHITag)
continue;
return false;
}
PredInfo->PHITag = IncomingPHIVal;
WorkList.push_back(IncomingPHIVal);
}
}
return true;
}
/// RecordMatchingPHI - For a PHI node that matches, record it and its input
/// PHIs in both the BBMap and the AvailableVals mapping.
void SSAUpdater::RecordMatchingPHI(PHINode *PHI) {
BBMapTy *BBMap = getBBMap(BM);
AvailableValsTy &AvailableVals = getAvailableVals(AV);
SmallVector<PHINode*, 20> WorkList;
WorkList.push_back(PHI);
// Record this PHI.
BasicBlock *BB = PHI->getParent();
AvailableVals[BB] = PHI;
(*BBMap)[BB]->AvailableVal = PHI;
while (!WorkList.empty()) {
PHI = WorkList.pop_back_val();
// Iterate through the PHI's incoming values.
for (unsigned i = 0, e = PHI->getNumIncomingValues(); i != e; ++i) {
PHINode *IncomingPHIVal = dyn_cast<PHINode>(PHI->getIncomingValue(i));
if (!IncomingPHIVal) continue;
BB = IncomingPHIVal->getParent();
BBInfo *Info = (*BBMap)[BB];
if (!Info || Info->AvailableVal)
continue;
// Record the PHI and add it to the worklist.
AvailableVals[BB] = IncomingPHIVal;
Info->AvailableVal = IncomingPHIVal;
WorkList.push_back(IncomingPHIVal);
}
}
}