mirror of
https://github.com/RPCS3/llvm-mirror.git
synced 2025-01-13 23:20:41 +00:00
fd1cfeeb1d
llvm-svn: 12871
456 lines
17 KiB
C++
456 lines
17 KiB
C++
//===- LoopInfo.cpp - Natural Loop Calculator -----------------------------===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file was developed by the LLVM research group and is distributed under
|
|
// the University of Illinois Open Source License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file defines the LoopInfo class that is used to identify natural loops
|
|
// and determine the loop depth of various nodes of the CFG. Note that the
|
|
// loops identified may actually be several natural loops that share the same
|
|
// header node... not just a single natural loop.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "llvm/Analysis/Dominators.h"
|
|
#include "llvm/Analysis/LoopInfo.h"
|
|
#include "llvm/Assembly/Writer.h"
|
|
#include "llvm/Support/CFG.h"
|
|
#include "Support/DepthFirstIterator.h"
|
|
#include <algorithm>
|
|
using namespace llvm;
|
|
|
|
static RegisterAnalysis<LoopInfo>
|
|
X("loops", "Natural Loop Construction", true);
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Loop implementation
|
|
//
|
|
bool Loop::contains(const BasicBlock *BB) const {
|
|
return find(Blocks.begin(), Blocks.end(), BB) != Blocks.end();
|
|
}
|
|
|
|
bool Loop::isLoopExit(const BasicBlock *BB) const {
|
|
for (succ_const_iterator SI = succ_begin(BB), SE = succ_end(BB);
|
|
SI != SE; ++SI) {
|
|
if (!contains(*SI))
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
/// getNumBackEdges - Calculate the number of back edges to the loop header.
|
|
///
|
|
unsigned Loop::getNumBackEdges() const {
|
|
unsigned NumBackEdges = 0;
|
|
BasicBlock *H = getHeader();
|
|
|
|
for (pred_iterator I = pred_begin(H), E = pred_end(H); I != E; ++I)
|
|
if (contains(*I))
|
|
++NumBackEdges;
|
|
|
|
return NumBackEdges;
|
|
}
|
|
|
|
void Loop::print(std::ostream &OS, unsigned Depth) const {
|
|
OS << std::string(Depth*2, ' ') << "Loop Containing: ";
|
|
|
|
for (unsigned i = 0; i < getBlocks().size(); ++i) {
|
|
if (i) OS << ",";
|
|
WriteAsOperand(OS, getBlocks()[i], false);
|
|
}
|
|
if (!ExitBlocks.empty()) {
|
|
OS << "\tExitBlocks: ";
|
|
for (unsigned i = 0; i < getExitBlocks().size(); ++i) {
|
|
if (i) OS << ",";
|
|
WriteAsOperand(OS, getExitBlocks()[i], false);
|
|
}
|
|
}
|
|
|
|
OS << "\n";
|
|
|
|
for (iterator I = begin(), E = end(); I != E; ++I)
|
|
(*I)->print(OS, Depth+2);
|
|
}
|
|
|
|
void Loop::dump() const {
|
|
print(std::cerr);
|
|
}
|
|
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// LoopInfo implementation
|
|
//
|
|
void LoopInfo::stub() {}
|
|
|
|
bool LoopInfo::runOnFunction(Function &) {
|
|
releaseMemory();
|
|
Calculate(getAnalysis<DominatorSet>()); // Update
|
|
return false;
|
|
}
|
|
|
|
void LoopInfo::releaseMemory() {
|
|
for (std::vector<Loop*>::iterator I = TopLevelLoops.begin(),
|
|
E = TopLevelLoops.end(); I != E; ++I)
|
|
delete *I; // Delete all of the loops...
|
|
|
|
BBMap.clear(); // Reset internal state of analysis
|
|
TopLevelLoops.clear();
|
|
}
|
|
|
|
|
|
void LoopInfo::Calculate(const DominatorSet &DS) {
|
|
BasicBlock *RootNode = DS.getRoot();
|
|
|
|
for (df_iterator<BasicBlock*> NI = df_begin(RootNode),
|
|
NE = df_end(RootNode); NI != NE; ++NI)
|
|
if (Loop *L = ConsiderForLoop(*NI, DS))
|
|
TopLevelLoops.push_back(L);
|
|
|
|
for (unsigned i = 0; i < TopLevelLoops.size(); ++i)
|
|
TopLevelLoops[i]->setLoopDepth(1);
|
|
}
|
|
|
|
void LoopInfo::getAnalysisUsage(AnalysisUsage &AU) const {
|
|
AU.setPreservesAll();
|
|
AU.addRequired<DominatorSet>();
|
|
}
|
|
|
|
void LoopInfo::print(std::ostream &OS) const {
|
|
for (unsigned i = 0; i < TopLevelLoops.size(); ++i)
|
|
TopLevelLoops[i]->print(OS);
|
|
#if 0
|
|
for (std::map<BasicBlock*, Loop*>::const_iterator I = BBMap.begin(),
|
|
E = BBMap.end(); I != E; ++I)
|
|
OS << "BB '" << I->first->getName() << "' level = "
|
|
<< I->second->LoopDepth << "\n";
|
|
#endif
|
|
}
|
|
|
|
static bool isNotAlreadyContainedIn(Loop *SubLoop, Loop *ParentLoop) {
|
|
if (SubLoop == 0) return true;
|
|
if (SubLoop == ParentLoop) return false;
|
|
return isNotAlreadyContainedIn(SubLoop->getParentLoop(), ParentLoop);
|
|
}
|
|
|
|
Loop *LoopInfo::ConsiderForLoop(BasicBlock *BB, const DominatorSet &DS) {
|
|
if (BBMap.find(BB) != BBMap.end()) return 0; // Haven't processed this node?
|
|
|
|
std::vector<BasicBlock *> TodoStack;
|
|
|
|
// Scan the predecessors of BB, checking to see if BB dominates any of
|
|
// them. This identifies backedges which target this node...
|
|
for (pred_iterator I = pred_begin(BB), E = pred_end(BB); I != E; ++I)
|
|
if (DS.dominates(BB, *I)) // If BB dominates it's predecessor...
|
|
TodoStack.push_back(*I);
|
|
|
|
if (TodoStack.empty()) return 0; // No backedges to this block...
|
|
|
|
// Create a new loop to represent this basic block...
|
|
Loop *L = new Loop(BB);
|
|
BBMap[BB] = L;
|
|
|
|
BasicBlock *EntryBlock = &BB->getParent()->getEntryBlock();
|
|
|
|
while (!TodoStack.empty()) { // Process all the nodes in the loop
|
|
BasicBlock *X = TodoStack.back();
|
|
TodoStack.pop_back();
|
|
|
|
if (!L->contains(X) && // As of yet unprocessed??
|
|
DS.dominates(EntryBlock, X)) { // X is reachable from entry block?
|
|
// Check to see if this block already belongs to a loop. If this occurs
|
|
// then we have a case where a loop that is supposed to be a child of the
|
|
// current loop was processed before the current loop. When this occurs,
|
|
// this child loop gets added to a part of the current loop, making it a
|
|
// sibling to the current loop. We have to reparent this loop.
|
|
if (Loop *SubLoop = const_cast<Loop*>(getLoopFor(X)))
|
|
if (SubLoop->getHeader() == X && isNotAlreadyContainedIn(SubLoop, L)) {
|
|
// Remove the subloop from it's current parent...
|
|
assert(SubLoop->ParentLoop && SubLoop->ParentLoop != L);
|
|
Loop *SLP = SubLoop->ParentLoop; // SubLoopParent
|
|
std::vector<Loop*>::iterator I =
|
|
std::find(SLP->SubLoops.begin(), SLP->SubLoops.end(), SubLoop);
|
|
assert(I != SLP->SubLoops.end() && "SubLoop not a child of parent?");
|
|
SLP->SubLoops.erase(I); // Remove from parent...
|
|
|
|
// Add the subloop to THIS loop...
|
|
SubLoop->ParentLoop = L;
|
|
L->SubLoops.push_back(SubLoop);
|
|
}
|
|
|
|
// Normal case, add the block to our loop...
|
|
L->Blocks.push_back(X);
|
|
|
|
// Add all of the predecessors of X to the end of the work stack...
|
|
TodoStack.insert(TodoStack.end(), pred_begin(X), pred_end(X));
|
|
}
|
|
}
|
|
|
|
// If there are any loops nested within this loop, create them now!
|
|
for (std::vector<BasicBlock*>::iterator I = L->Blocks.begin(),
|
|
E = L->Blocks.end(); I != E; ++I)
|
|
if (Loop *NewLoop = ConsiderForLoop(*I, DS)) {
|
|
L->SubLoops.push_back(NewLoop);
|
|
NewLoop->ParentLoop = L;
|
|
}
|
|
|
|
// Add the basic blocks that comprise this loop to the BBMap so that this
|
|
// loop can be found for them.
|
|
//
|
|
for (std::vector<BasicBlock*>::iterator I = L->Blocks.begin(),
|
|
E = L->Blocks.end(); I != E; ++I) {
|
|
std::map<BasicBlock*, Loop*>::iterator BBMI = BBMap.lower_bound(*I);
|
|
if (BBMI == BBMap.end() || BBMI->first != *I) // Not in map yet...
|
|
BBMap.insert(BBMI, std::make_pair(*I, L)); // Must be at this level
|
|
}
|
|
|
|
// Now that we have a list of all of the child loops of this loop, check to
|
|
// see if any of them should actually be nested inside of each other. We can
|
|
// accidentally pull loops our of their parents, so we must make sure to
|
|
// organize the loop nests correctly now.
|
|
{
|
|
std::map<BasicBlock*, Loop*> ContainingLoops;
|
|
for (unsigned i = 0; i != L->SubLoops.size(); ++i) {
|
|
Loop *Child = L->SubLoops[i];
|
|
assert(Child->getParentLoop() == L && "Not proper child loop?");
|
|
|
|
if (Loop *ContainingLoop = ContainingLoops[Child->getHeader()]) {
|
|
// If there is already a loop which contains this loop, move this loop
|
|
// into the containing loop.
|
|
MoveSiblingLoopInto(Child, ContainingLoop);
|
|
--i; // The loop got removed from the SubLoops list.
|
|
} else {
|
|
// This is currently considered to be a top-level loop. Check to see if
|
|
// any of the contained blocks are loop headers for subloops we have
|
|
// already processed.
|
|
for (unsigned b = 0, e = Child->Blocks.size(); b != e; ++b) {
|
|
Loop *&BlockLoop = ContainingLoops[Child->Blocks[b]];
|
|
if (BlockLoop == 0) { // Child block not processed yet...
|
|
BlockLoop = Child;
|
|
} else if (BlockLoop != Child) {
|
|
Loop *SubLoop = BlockLoop;
|
|
// Reparent all of the blocks which used to belong to BlockLoops
|
|
for (unsigned j = 0, e = SubLoop->Blocks.size(); j != e; ++j)
|
|
ContainingLoops[SubLoop->Blocks[j]] = Child;
|
|
|
|
// There is already a loop which contains this block, that means
|
|
// that we should reparent the loop which the block is currently
|
|
// considered to belong to to be a child of this loop.
|
|
MoveSiblingLoopInto(SubLoop, Child);
|
|
--i; // We just shrunk the SubLoops list.
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// Now that we know all of the blocks that make up this loop, see if there are
|
|
// any branches to outside of the loop... building the ExitBlocks list.
|
|
for (std::vector<BasicBlock*>::iterator BI = L->Blocks.begin(),
|
|
BE = L->Blocks.end(); BI != BE; ++BI)
|
|
for (succ_iterator I = succ_begin(*BI), E = succ_end(*BI); I != E; ++I)
|
|
if (!L->contains(*I)) // Not in current loop?
|
|
L->ExitBlocks.push_back(*I); // It must be an exit block...
|
|
|
|
return L;
|
|
}
|
|
|
|
/// MoveSiblingLoopInto - This method moves the NewChild loop to live inside of
|
|
/// the NewParent Loop, instead of being a sibling of it.
|
|
void LoopInfo::MoveSiblingLoopInto(Loop *NewChild, Loop *NewParent) {
|
|
Loop *OldParent = NewChild->getParentLoop();
|
|
assert(OldParent && OldParent == NewParent->getParentLoop() &&
|
|
NewChild != NewParent && "Not sibling loops!");
|
|
|
|
// Remove NewChild from being a child of OldParent
|
|
std::vector<Loop*>::iterator I =
|
|
std::find(OldParent->SubLoops.begin(), OldParent->SubLoops.end(), NewChild);
|
|
assert(I != OldParent->SubLoops.end() && "Parent fields incorrect??");
|
|
OldParent->SubLoops.erase(I); // Remove from parent's subloops list
|
|
NewChild->ParentLoop = 0;
|
|
|
|
InsertLoopInto(NewChild, NewParent);
|
|
}
|
|
|
|
/// InsertLoopInto - This inserts loop L into the specified parent loop. If the
|
|
/// parent loop contains a loop which should contain L, the loop gets inserted
|
|
/// into L instead.
|
|
void LoopInfo::InsertLoopInto(Loop *L, Loop *Parent) {
|
|
BasicBlock *LHeader = L->getHeader();
|
|
assert(Parent->contains(LHeader) && "This loop should not be inserted here!");
|
|
|
|
// Check to see if it belongs in a child loop...
|
|
for (unsigned i = 0, e = Parent->SubLoops.size(); i != e; ++i)
|
|
if (Parent->SubLoops[i]->contains(LHeader)) {
|
|
InsertLoopInto(L, Parent->SubLoops[i]);
|
|
return;
|
|
}
|
|
|
|
// If not, insert it here!
|
|
Parent->SubLoops.push_back(L);
|
|
L->ParentLoop = Parent;
|
|
}
|
|
|
|
/// changeLoopFor - Change the top-level loop that contains BB to the
|
|
/// specified loop. This should be used by transformations that restructure
|
|
/// the loop hierarchy tree.
|
|
void LoopInfo::changeLoopFor(BasicBlock *BB, Loop *L) {
|
|
Loop *&OldLoop = BBMap[BB];
|
|
assert(OldLoop && "Block not in a loop yet!");
|
|
OldLoop = L;
|
|
}
|
|
|
|
/// changeTopLevelLoop - Replace the specified loop in the top-level loops
|
|
/// list with the indicated loop.
|
|
void LoopInfo::changeTopLevelLoop(Loop *OldLoop, Loop *NewLoop) {
|
|
std::vector<Loop*>::iterator I = std::find(TopLevelLoops.begin(),
|
|
TopLevelLoops.end(), OldLoop);
|
|
assert(I != TopLevelLoops.end() && "Old loop not at top level!");
|
|
*I = NewLoop;
|
|
assert(NewLoop->ParentLoop == 0 && OldLoop->ParentLoop == 0 &&
|
|
"Loops already embedded into a subloop!");
|
|
}
|
|
|
|
/// getLoopPreheader - If there is a preheader for this loop, return it. A
|
|
/// loop has a preheader if there is only one edge to the header of the loop
|
|
/// from outside of the loop. If this is the case, the block branching to the
|
|
/// header of the loop is the preheader node. The "preheaders" pass can be
|
|
/// "Required" to ensure that there is always a preheader node for every loop.
|
|
///
|
|
/// This method returns null if there is no preheader for the loop (either
|
|
/// because the loop is dead or because multiple blocks branch to the header
|
|
/// node of this loop).
|
|
///
|
|
BasicBlock *Loop::getLoopPreheader() const {
|
|
// Keep track of nodes outside the loop branching to the header...
|
|
BasicBlock *Out = 0;
|
|
|
|
// Loop over the predecessors of the header node...
|
|
BasicBlock *Header = getHeader();
|
|
for (pred_iterator PI = pred_begin(Header), PE = pred_end(Header);
|
|
PI != PE; ++PI)
|
|
if (!contains(*PI)) { // If the block is not in the loop...
|
|
if (Out && Out != *PI)
|
|
return 0; // Multiple predecessors outside the loop
|
|
Out = *PI;
|
|
}
|
|
|
|
// Make sure there is only one exit out of the preheader...
|
|
succ_iterator SI = succ_begin(Out);
|
|
++SI;
|
|
if (SI != succ_end(Out))
|
|
return 0; // Multiple exits from the block, must not be a preheader.
|
|
|
|
|
|
// If there is exactly one preheader, return it. If there was zero, then Out
|
|
// is still null.
|
|
return Out;
|
|
}
|
|
|
|
/// addBasicBlockToLoop - This function is used by other analyses to update loop
|
|
/// information. NewBB is set to be a new member of the current loop. Because
|
|
/// of this, it is added as a member of all parent loops, and is added to the
|
|
/// specified LoopInfo object as being in the current basic block. It is not
|
|
/// valid to replace the loop header with this method.
|
|
///
|
|
void Loop::addBasicBlockToLoop(BasicBlock *NewBB, LoopInfo &LI) {
|
|
assert((Blocks.empty() || LI[getHeader()] == this) &&
|
|
"Incorrect LI specified for this loop!");
|
|
assert(NewBB && "Cannot add a null basic block to the loop!");
|
|
assert(LI[NewBB] == 0 && "BasicBlock already in the loop!");
|
|
|
|
// Add the loop mapping to the LoopInfo object...
|
|
LI.BBMap[NewBB] = this;
|
|
|
|
// Add the basic block to this loop and all parent loops...
|
|
Loop *L = this;
|
|
while (L) {
|
|
L->Blocks.push_back(NewBB);
|
|
L = L->getParentLoop();
|
|
}
|
|
}
|
|
|
|
/// changeExitBlock - This method is used to update loop information. All
|
|
/// instances of the specified Old basic block are removed from the exit list
|
|
/// and replaced with New.
|
|
///
|
|
void Loop::changeExitBlock(BasicBlock *Old, BasicBlock *New) {
|
|
assert(Old != New && "Cannot changeExitBlock to the same thing!");
|
|
assert(Old && New && "Cannot changeExitBlock to or from a null node!");
|
|
assert(hasExitBlock(Old) && "Old exit block not found!");
|
|
std::vector<BasicBlock*>::iterator
|
|
I = std::find(ExitBlocks.begin(), ExitBlocks.end(), Old);
|
|
while (I != ExitBlocks.end()) {
|
|
*I = New;
|
|
I = std::find(I+1, ExitBlocks.end(), Old);
|
|
}
|
|
}
|
|
|
|
/// replaceChildLoopWith - This is used when splitting loops up. It replaces
|
|
/// the OldChild entry in our children list with NewChild, and updates the
|
|
/// parent pointers of the two loops as appropriate.
|
|
void Loop::replaceChildLoopWith(Loop *OldChild, Loop *NewChild) {
|
|
assert(OldChild->ParentLoop == this && "This loop is already broken!");
|
|
assert(NewChild->ParentLoop == 0 && "NewChild already has a parent!");
|
|
std::vector<Loop*>::iterator I = std::find(SubLoops.begin(), SubLoops.end(),
|
|
OldChild);
|
|
assert(I != SubLoops.end() && "OldChild not in loop!");
|
|
*I = NewChild;
|
|
OldChild->ParentLoop = 0;
|
|
NewChild->ParentLoop = this;
|
|
|
|
// Update the loop depth of the new child.
|
|
NewChild->setLoopDepth(LoopDepth+1);
|
|
}
|
|
|
|
/// addChildLoop - Add the specified loop to be a child of this loop.
|
|
///
|
|
void Loop::addChildLoop(Loop *NewChild) {
|
|
assert(NewChild->ParentLoop == 0 && "NewChild already has a parent!");
|
|
NewChild->ParentLoop = this;
|
|
SubLoops.push_back(NewChild);
|
|
|
|
// Update the loop depth of the new child.
|
|
NewChild->setLoopDepth(LoopDepth+1);
|
|
}
|
|
|
|
template<typename T>
|
|
static void RemoveFromVector(std::vector<T*> &V, T *N) {
|
|
typename std::vector<T*>::iterator I = std::find(V.begin(), V.end(), N);
|
|
assert(I != V.end() && "N is not in this list!");
|
|
V.erase(I);
|
|
}
|
|
|
|
/// removeChildLoop - This removes the specified child from being a subloop of
|
|
/// this loop. The loop is not deleted, as it will presumably be inserted
|
|
/// into another loop.
|
|
Loop *Loop::removeChildLoop(iterator I) {
|
|
assert(I != SubLoops.end() && "Cannot remove end iterator!");
|
|
Loop *Child = *I;
|
|
assert(Child->ParentLoop == this && "Child is not a child of this loop!");
|
|
SubLoops.erase(SubLoops.begin()+(I-begin()));
|
|
Child->ParentLoop = 0;
|
|
return Child;
|
|
}
|
|
|
|
|
|
/// removeBlockFromLoop - This removes the specified basic block from the
|
|
/// current loop, updating the Blocks and ExitBlocks lists as appropriate. This
|
|
/// does not update the mapping in the LoopInfo class.
|
|
void Loop::removeBlockFromLoop(BasicBlock *BB) {
|
|
RemoveFromVector(Blocks, BB);
|
|
|
|
// If this block branched out of this loop, remove any exit blocks entries due
|
|
// to it.
|
|
for (succ_iterator SI = succ_begin(BB), E = succ_end(BB); SI != E; ++SI)
|
|
if (!contains(*SI) && *SI != BB)
|
|
RemoveFromVector(ExitBlocks, *SI);
|
|
|
|
// If any blocks in this loop branch to BB, add it to the exit blocks set.
|
|
for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI)
|
|
if (contains(*PI))
|
|
ExitBlocks.push_back(BB);
|
|
}
|