mirror of
https://github.com/RPCS3/llvm-mirror.git
synced 2024-12-11 13:37:07 +00:00
f61800be05
No changes relative to last time, but after a mitigation for an AMDGPU regression landed. --- If SimplifyInstruction() does not succeed in simplifying the instruction, it will compute the known bits of the instruction in the hope that all bits are known and the instruction can be folded to a constant. I have removed a similar optimization from InstCombine in D75801, and would like to drop this one as well. On average, we spend ~1% of total compile-time performing this known bits calculation. However, if we introduce some additional statistics for known bits computations and how many of them succeed in simplifying the instruction we get (on test-suite): instsimplify.NumKnownBits: 216 instsimplify.NumKnownBitsComputed: 13828375 valuetracking.NumKnownBitsComputed: 45860806 Out of ~14M known bits calculations (accounting for approximately one third of all known bits calculations), only 0.0015% succeed in producing a constant. Those cases where we do succeed to compute all known bits will get folded by other passes like InstCombine later. On test-suite, only lencod.test and GCC-C-execute-pr44858.test show a hash difference after this change. On lencod we see an improvement (a loop phi is optimized away), on the GCC torture test a regression (a function return value is determined only after IPSCCP, preventing propagation from a noinline function.) There are various regressions in InstSimplify tests. However, all of these cases are already handled by InstCombine, and corresponding tests have already been added there. Differential Revision: https://reviews.llvm.org/D79294
226 lines
6.9 KiB
LLVM
226 lines
6.9 KiB
LLVM
; NOTE: Assertions have been autogenerated by utils/update_test_checks.py
|
|
; RUN: opt < %s -instsimplify -S | FileCheck %s
|
|
|
|
; If any bits of the shift amount are known to make it exceed or equal
|
|
; the number of bits in the type, the shift causes undefined behavior.
|
|
|
|
define i32 @shl_amount_is_known_bogus(i32 %a, i32 %b) {
|
|
; CHECK-LABEL: @shl_amount_is_known_bogus(
|
|
; CHECK-NEXT: ret i32 undef
|
|
;
|
|
%or = or i32 %b, 32
|
|
%shl = shl i32 %a, %or
|
|
ret i32 %shl
|
|
}
|
|
|
|
; Check some weird types and the other shift ops.
|
|
|
|
define i31 @lshr_amount_is_known_bogus(i31 %a, i31 %b) {
|
|
; CHECK-LABEL: @lshr_amount_is_known_bogus(
|
|
; CHECK-NEXT: ret i31 undef
|
|
;
|
|
%or = or i31 %b, 31
|
|
%shr = lshr i31 %a, %or
|
|
ret i31 %shr
|
|
}
|
|
|
|
define i33 @ashr_amount_is_known_bogus(i33 %a, i33 %b) {
|
|
; CHECK-LABEL: @ashr_amount_is_known_bogus(
|
|
; CHECK-NEXT: ret i33 undef
|
|
;
|
|
%or = or i33 %b, 33
|
|
%shr = ashr i33 %a, %or
|
|
ret i33 %shr
|
|
}
|
|
|
|
|
|
; If all valid bits of the shift amount are known 0, there's no shift.
|
|
; It doesn't matter if high bits are set because that would be undefined.
|
|
; Therefore, the only possible valid result of these shifts is %a.
|
|
|
|
define i16 @ashr_amount_is_zero(i16 %a, i16 %b) {
|
|
; CHECK-LABEL: @ashr_amount_is_zero(
|
|
; CHECK-NEXT: ret i16 [[A:%.*]]
|
|
;
|
|
%and = and i16 %b, 65520 ; 0xfff0
|
|
%shr = ashr i16 %a, %and
|
|
ret i16 %shr
|
|
}
|
|
|
|
define i300 @lshr_amount_is_zero(i300 %a, i300 %b) {
|
|
; CHECK-LABEL: @lshr_amount_is_zero(
|
|
; CHECK-NEXT: ret i300 [[A:%.*]]
|
|
;
|
|
%and = and i300 %b, 2048
|
|
%shr = lshr i300 %a, %and
|
|
ret i300 %shr
|
|
}
|
|
|
|
define i9 @shl_amount_is_zero(i9 %a, i9 %b) {
|
|
; CHECK-LABEL: @shl_amount_is_zero(
|
|
; CHECK-NEXT: ret i9 [[A:%.*]]
|
|
;
|
|
%and = and i9 %b, 496 ; 0x1f0
|
|
%shl = shl i9 %a, %and
|
|
ret i9 %shl
|
|
}
|
|
|
|
|
|
; Verify that we've calculated the log2 boundary of valid bits correctly for a weird type.
|
|
|
|
define i9 @shl_amount_is_not_known_zero(i9 %a, i9 %b) {
|
|
; CHECK-LABEL: @shl_amount_is_not_known_zero(
|
|
; CHECK-NEXT: [[AND:%.*]] = and i9 [[B:%.*]], -8
|
|
; CHECK-NEXT: [[SHL:%.*]] = shl i9 [[A:%.*]], [[AND]]
|
|
; CHECK-NEXT: ret i9 [[SHL]]
|
|
;
|
|
%and = and i9 %b, 504 ; 0x1f8
|
|
%shl = shl i9 %a, %and
|
|
ret i9 %shl
|
|
}
|
|
|
|
|
|
; For vectors, we need all scalar elements to meet the requirements to optimize.
|
|
|
|
define <2 x i32> @ashr_vector_bogus(<2 x i32> %a, <2 x i32> %b) {
|
|
; CHECK-LABEL: @ashr_vector_bogus(
|
|
; CHECK-NEXT: ret <2 x i32> undef
|
|
;
|
|
%or = or <2 x i32> %b, <i32 32, i32 32>
|
|
%shr = ashr <2 x i32> %a, %or
|
|
ret <2 x i32> %shr
|
|
}
|
|
|
|
; FIXME: This is undef, but computeKnownBits doesn't handle the union.
|
|
define <2 x i32> @shl_vector_bogus(<2 x i32> %a, <2 x i32> %b) {
|
|
; CHECK-LABEL: @shl_vector_bogus(
|
|
; CHECK-NEXT: [[OR:%.*]] = or <2 x i32> [[B:%.*]], <i32 32, i32 64>
|
|
; CHECK-NEXT: [[SHL:%.*]] = shl <2 x i32> [[A:%.*]], [[OR]]
|
|
; CHECK-NEXT: ret <2 x i32> [[SHL]]
|
|
;
|
|
%or = or <2 x i32> %b, <i32 32, i32 64>
|
|
%shl = shl <2 x i32> %a, %or
|
|
ret <2 x i32> %shl
|
|
}
|
|
|
|
define <2 x i32> @lshr_vector_zero(<2 x i32> %a, <2 x i32> %b) {
|
|
; CHECK-LABEL: @lshr_vector_zero(
|
|
; CHECK-NEXT: ret <2 x i32> [[A:%.*]]
|
|
;
|
|
%and = and <2 x i32> %b, <i32 64, i32 256>
|
|
%shr = lshr <2 x i32> %a, %and
|
|
ret <2 x i32> %shr
|
|
}
|
|
|
|
; Make sure that weird vector types work too.
|
|
define <2 x i15> @shl_vector_zero(<2 x i15> %a, <2 x i15> %b) {
|
|
; CHECK-LABEL: @shl_vector_zero(
|
|
; CHECK-NEXT: ret <2 x i15> [[A:%.*]]
|
|
;
|
|
%and = and <2 x i15> %b, <i15 1024, i15 1024>
|
|
%shl = shl <2 x i15> %a, %and
|
|
ret <2 x i15> %shl
|
|
}
|
|
|
|
define <2 x i32> @shl_vector_for_real(<2 x i32> %a, <2 x i32> %b) {
|
|
; CHECK-LABEL: @shl_vector_for_real(
|
|
; CHECK-NEXT: [[AND:%.*]] = and <2 x i32> [[B:%.*]], <i32 3, i32 3>
|
|
; CHECK-NEXT: [[SHL:%.*]] = shl <2 x i32> [[A:%.*]], [[AND]]
|
|
; CHECK-NEXT: ret <2 x i32> [[SHL]]
|
|
;
|
|
%and = and <2 x i32> %b, <i32 3, i32 3> ; a necessary mask op
|
|
%shl = shl <2 x i32> %a, %and
|
|
ret <2 x i32> %shl
|
|
}
|
|
|
|
|
|
; We calculate the valid bits of the shift using log2, and log2 of 1 (the type width) is 0.
|
|
; That should be ok. Either the shift amount is 0 or invalid (1), so we can always return %a.
|
|
|
|
define i1 @shl_i1(i1 %a, i1 %b) {
|
|
; CHECK-LABEL: @shl_i1(
|
|
; CHECK-NEXT: ret i1 [[A:%.*]]
|
|
;
|
|
%shl = shl i1 %a, %b
|
|
ret i1 %shl
|
|
}
|
|
|
|
; The following cases only get folded by InstCombine,
|
|
; see InstCombine/lshr.ll.
|
|
|
|
declare i32 @llvm.cttz.i32(i32, i1) nounwind readnone
|
|
declare i32 @llvm.ctlz.i32(i32, i1) nounwind readnone
|
|
declare <2 x i8> @llvm.cttz.v2i8(<2 x i8>, i1) nounwind readnone
|
|
declare <2 x i8> @llvm.ctlz.v2i8(<2 x i8>, i1) nounwind readnone
|
|
|
|
define i32 @lshr_ctlz_zero_is_undef(i32 %x) {
|
|
; CHECK-LABEL: @lshr_ctlz_zero_is_undef(
|
|
; CHECK-NEXT: [[CT:%.*]] = call i32 @llvm.ctlz.i32(i32 [[X:%.*]], i1 true)
|
|
; CHECK-NEXT: [[SH:%.*]] = lshr i32 [[CT]], 5
|
|
; CHECK-NEXT: ret i32 [[SH]]
|
|
;
|
|
%ct = call i32 @llvm.ctlz.i32(i32 %x, i1 true)
|
|
%sh = lshr i32 %ct, 5
|
|
ret i32 %sh
|
|
}
|
|
|
|
define i32 @lshr_cttz_zero_is_undef(i32 %x) {
|
|
; CHECK-LABEL: @lshr_cttz_zero_is_undef(
|
|
; CHECK-NEXT: [[CT:%.*]] = call i32 @llvm.cttz.i32(i32 [[X:%.*]], i1 true)
|
|
; CHECK-NEXT: [[SH:%.*]] = lshr i32 [[CT]], 5
|
|
; CHECK-NEXT: ret i32 [[SH]]
|
|
;
|
|
%ct = call i32 @llvm.cttz.i32(i32 %x, i1 true)
|
|
%sh = lshr i32 %ct, 5
|
|
ret i32 %sh
|
|
}
|
|
|
|
define <2 x i8> @lshr_ctlz_zero_is_undef_splat_vec(<2 x i8> %x) {
|
|
; CHECK-LABEL: @lshr_ctlz_zero_is_undef_splat_vec(
|
|
; CHECK-NEXT: [[CT:%.*]] = call <2 x i8> @llvm.ctlz.v2i8(<2 x i8> [[X:%.*]], i1 true)
|
|
; CHECK-NEXT: [[SH:%.*]] = lshr <2 x i8> [[CT]], <i8 3, i8 3>
|
|
; CHECK-NEXT: ret <2 x i8> [[SH]]
|
|
;
|
|
%ct = call <2 x i8> @llvm.ctlz.v2i8(<2 x i8> %x, i1 true)
|
|
%sh = lshr <2 x i8> %ct, <i8 3, i8 3>
|
|
ret <2 x i8> %sh
|
|
}
|
|
|
|
define i8 @lshr_ctlz_zero_is_undef_vec(<2 x i8> %x) {
|
|
; CHECK-LABEL: @lshr_ctlz_zero_is_undef_vec(
|
|
; CHECK-NEXT: [[CT:%.*]] = call <2 x i8> @llvm.ctlz.v2i8(<2 x i8> [[X:%.*]], i1 true)
|
|
; CHECK-NEXT: [[SH:%.*]] = lshr <2 x i8> [[CT]], <i8 3, i8 0>
|
|
; CHECK-NEXT: [[EX:%.*]] = extractelement <2 x i8> [[SH]], i32 0
|
|
; CHECK-NEXT: ret i8 [[EX]]
|
|
;
|
|
%ct = call <2 x i8> @llvm.ctlz.v2i8(<2 x i8> %x, i1 true)
|
|
%sh = lshr <2 x i8> %ct, <i8 3, i8 0>
|
|
%ex = extractelement <2 x i8> %sh, i32 0
|
|
ret i8 %ex
|
|
}
|
|
|
|
define <2 x i8> @lshr_cttz_zero_is_undef_splat_vec(<2 x i8> %x) {
|
|
; CHECK-LABEL: @lshr_cttz_zero_is_undef_splat_vec(
|
|
; CHECK-NEXT: [[CT:%.*]] = call <2 x i8> @llvm.cttz.v2i8(<2 x i8> [[X:%.*]], i1 true)
|
|
; CHECK-NEXT: [[SH:%.*]] = lshr <2 x i8> [[CT]], <i8 3, i8 3>
|
|
; CHECK-NEXT: ret <2 x i8> [[SH]]
|
|
;
|
|
%ct = call <2 x i8> @llvm.cttz.v2i8(<2 x i8> %x, i1 true)
|
|
%sh = lshr <2 x i8> %ct, <i8 3, i8 3>
|
|
ret <2 x i8> %sh
|
|
}
|
|
|
|
define i8 @lshr_cttz_zero_is_undef_vec(<2 x i8> %x) {
|
|
; CHECK-LABEL: @lshr_cttz_zero_is_undef_vec(
|
|
; CHECK-NEXT: [[CT:%.*]] = call <2 x i8> @llvm.cttz.v2i8(<2 x i8> [[X:%.*]], i1 true)
|
|
; CHECK-NEXT: [[SH:%.*]] = lshr <2 x i8> [[CT]], <i8 3, i8 0>
|
|
; CHECK-NEXT: [[EX:%.*]] = extractelement <2 x i8> [[SH]], i32 0
|
|
; CHECK-NEXT: ret i8 [[EX]]
|
|
;
|
|
%ct = call <2 x i8> @llvm.cttz.v2i8(<2 x i8> %x, i1 true)
|
|
%sh = lshr <2 x i8> %ct, <i8 3, i8 0>
|
|
%ex = extractelement <2 x i8> %sh, i32 0
|
|
ret i8 %ex
|
|
}
|
|
|