llvm-mirror/tools/yaml2obj/yaml2coff.cpp
David Majnemer 4534e0a71a Object: Provide a richer means of describing auxiliary symbols
The current state of affairs has auxiliary symbols described as a big
bag of bytes. This is less than satisfying, it detracts from the YAML
file as being human readable.

Instead, allow for symbols to optionally contain their auxiliary data.
This allows us to have a much higher level way of describing things like
weak symbols, function definitions and section definitions.

This depends on D3105.

Differential Revision: http://llvm-reviews.chandlerc.com/D3092

llvm-svn: 204214
2014-03-19 04:47:47 +00:00

355 lines
12 KiB
C++

//===- yaml2coff - Convert YAML to a COFF object file ---------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
///
/// \file
/// \brief The COFF component of yaml2obj.
///
//===----------------------------------------------------------------------===//
#include "yaml2obj.h"
#include "llvm/ADT/SmallString.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/ADT/StringMap.h"
#include "llvm/ADT/StringSwitch.h"
#include "llvm/Object/COFFYAML.h"
#include "llvm/Support/Endian.h"
#include "llvm/Support/MemoryBuffer.h"
#include "llvm/Support/SourceMgr.h"
#include "llvm/Support/raw_ostream.h"
#include <vector>
using namespace llvm;
/// This parses a yaml stream that represents a COFF object file.
/// See docs/yaml2obj for the yaml scheema.
struct COFFParser {
COFFParser(COFFYAML::Object &Obj) : Obj(Obj) {
// A COFF string table always starts with a 4 byte size field. Offsets into
// it include this size, so allocate it now.
StringTable.append(4, char(0));
}
bool parseSections() {
for (std::vector<COFFYAML::Section>::iterator i = Obj.Sections.begin(),
e = Obj.Sections.end(); i != e; ++i) {
COFFYAML::Section &Sec = *i;
// If the name is less than 8 bytes, store it in place, otherwise
// store it in the string table.
StringRef Name = Sec.Name;
if (Name.size() <= COFF::NameSize) {
std::copy(Name.begin(), Name.end(), Sec.Header.Name);
} else {
// Add string to the string table and format the index for output.
unsigned Index = getStringIndex(Name);
std::string str = utostr(Index);
if (str.size() > 7) {
errs() << "String table got too large";
return false;
}
Sec.Header.Name[0] = '/';
std::copy(str.begin(), str.end(), Sec.Header.Name + 1);
}
Sec.Header.Characteristics |= (Log2_32(Sec.Alignment) + 1) << 20;
}
return true;
}
bool parseSymbols() {
for (std::vector<COFFYAML::Symbol>::iterator i = Obj.Symbols.begin(),
e = Obj.Symbols.end(); i != e; ++i) {
COFFYAML::Symbol &Sym = *i;
// If the name is less than 8 bytes, store it in place, otherwise
// store it in the string table.
StringRef Name = Sym.Name;
if (Name.size() <= COFF::NameSize) {
std::copy(Name.begin(), Name.end(), Sym.Header.Name);
} else {
// Add string to the string table and format the index for output.
unsigned Index = getStringIndex(Name);
*reinterpret_cast<support::aligned_ulittle32_t*>(
Sym.Header.Name + 4) = Index;
}
Sym.Header.Type = Sym.SimpleType;
Sym.Header.Type |= Sym.ComplexType << COFF::SCT_COMPLEX_TYPE_SHIFT;
}
return true;
}
bool parse() {
if (!parseSections())
return false;
if (!parseSymbols())
return false;
return true;
}
unsigned getStringIndex(StringRef Str) {
StringMap<unsigned>::iterator i = StringTableMap.find(Str);
if (i == StringTableMap.end()) {
unsigned Index = StringTable.size();
StringTable.append(Str.begin(), Str.end());
StringTable.push_back(0);
StringTableMap[Str] = Index;
return Index;
}
return i->second;
}
COFFYAML::Object &Obj;
StringMap<unsigned> StringTableMap;
std::string StringTable;
};
// Take a CP and assign addresses and sizes to everything. Returns false if the
// layout is not valid to do.
static bool layoutCOFF(COFFParser &CP) {
uint32_t SectionTableStart = 0;
uint32_t SectionTableSize = 0;
// The section table starts immediately after the header, including the
// optional header.
SectionTableStart = sizeof(COFF::header) + CP.Obj.Header.SizeOfOptionalHeader;
SectionTableSize = sizeof(COFF::section) * CP.Obj.Sections.size();
uint32_t CurrentSectionDataOffset = SectionTableStart + SectionTableSize;
// Assign each section data address consecutively.
for (std::vector<COFFYAML::Section>::iterator i = CP.Obj.Sections.begin(),
e = CP.Obj.Sections.end();
i != e; ++i) {
if (i->SectionData.binary_size() > 0) {
i->Header.SizeOfRawData = i->SectionData.binary_size();
i->Header.PointerToRawData = CurrentSectionDataOffset;
CurrentSectionDataOffset += i->Header.SizeOfRawData;
if (!i->Relocations.empty()) {
i->Header.PointerToRelocations = CurrentSectionDataOffset;
i->Header.NumberOfRelocations = i->Relocations.size();
CurrentSectionDataOffset += i->Header.NumberOfRelocations *
COFF::RelocationSize;
}
// TODO: Handle alignment.
} else {
i->Header.SizeOfRawData = 0;
i->Header.PointerToRawData = 0;
}
}
uint32_t SymbolTableStart = CurrentSectionDataOffset;
// Calculate number of symbols.
uint32_t NumberOfSymbols = 0;
for (std::vector<COFFYAML::Symbol>::iterator i = CP.Obj.Symbols.begin(),
e = CP.Obj.Symbols.end();
i != e; ++i) {
uint32_t NumberOfAuxSymbols = 0;
if (i->FunctionDefinition)
NumberOfAuxSymbols += 1;
if (i->bfAndefSymbol)
NumberOfAuxSymbols += 1;
if (i->WeakExternal)
NumberOfAuxSymbols += 1;
if (!i->File.empty())
NumberOfAuxSymbols +=
(i->File.size() + COFF::SymbolSize - 1) / COFF::SymbolSize;
if (i->SectionDefinition)
NumberOfAuxSymbols += 1;
if (i->CLRToken)
NumberOfAuxSymbols += 1;
i->Header.NumberOfAuxSymbols = NumberOfAuxSymbols;
NumberOfSymbols += 1 + NumberOfAuxSymbols;
}
// Store all the allocated start addresses in the header.
CP.Obj.Header.NumberOfSections = CP.Obj.Sections.size();
CP.Obj.Header.NumberOfSymbols = NumberOfSymbols;
CP.Obj.Header.PointerToSymbolTable = SymbolTableStart;
*reinterpret_cast<support::ulittle32_t *>(&CP.StringTable[0])
= CP.StringTable.size();
return true;
}
template <typename value_type>
struct binary_le_impl {
value_type Value;
binary_le_impl(value_type V) : Value(V) {}
};
template <typename value_type>
raw_ostream &operator <<( raw_ostream &OS
, const binary_le_impl<value_type> &BLE) {
char Buffer[sizeof(BLE.Value)];
support::endian::write<value_type, support::little, support::unaligned>(
Buffer, BLE.Value);
OS.write(Buffer, sizeof(BLE.Value));
return OS;
}
template <typename value_type>
binary_le_impl<value_type> binary_le(value_type V) {
return binary_le_impl<value_type>(V);
}
template <size_t NumBytes>
struct zeros_impl {
zeros_impl() {}
};
template <size_t NumBytes>
raw_ostream &operator<<(raw_ostream &OS, const zeros_impl<NumBytes> &) {
char Buffer[NumBytes];
memset(Buffer, 0, sizeof(Buffer));
OS.write(Buffer, sizeof(Buffer));
return OS;
}
template <typename T>
zeros_impl<sizeof(T)> zeros(const T &) {
return zeros_impl<sizeof(T)>();
}
bool writeCOFF(COFFParser &CP, raw_ostream &OS) {
OS << binary_le(CP.Obj.Header.Machine)
<< binary_le(CP.Obj.Header.NumberOfSections)
<< binary_le(CP.Obj.Header.TimeDateStamp)
<< binary_le(CP.Obj.Header.PointerToSymbolTable)
<< binary_le(CP.Obj.Header.NumberOfSymbols)
<< binary_le(CP.Obj.Header.SizeOfOptionalHeader)
<< binary_le(CP.Obj.Header.Characteristics);
// Output section table.
for (std::vector<COFFYAML::Section>::iterator i = CP.Obj.Sections.begin(),
e = CP.Obj.Sections.end();
i != e; ++i) {
OS.write(i->Header.Name, COFF::NameSize);
OS << binary_le(i->Header.VirtualSize)
<< binary_le(i->Header.VirtualAddress)
<< binary_le(i->Header.SizeOfRawData)
<< binary_le(i->Header.PointerToRawData)
<< binary_le(i->Header.PointerToRelocations)
<< binary_le(i->Header.PointerToLineNumbers)
<< binary_le(i->Header.NumberOfRelocations)
<< binary_le(i->Header.NumberOfLineNumbers)
<< binary_le(i->Header.Characteristics);
}
unsigned CurSymbol = 0;
StringMap<unsigned> SymbolTableIndexMap;
for (std::vector<COFFYAML::Symbol>::iterator I = CP.Obj.Symbols.begin(),
E = CP.Obj.Symbols.end();
I != E; ++I) {
SymbolTableIndexMap[I->Name] = CurSymbol;
CurSymbol += 1 + I->Header.NumberOfAuxSymbols;
}
// Output section data.
for (std::vector<COFFYAML::Section>::iterator i = CP.Obj.Sections.begin(),
e = CP.Obj.Sections.end();
i != e; ++i) {
i->SectionData.writeAsBinary(OS);
for (unsigned I2 = 0, E2 = i->Relocations.size(); I2 != E2; ++I2) {
const COFFYAML::Relocation &R = i->Relocations[I2];
uint32_t SymbolTableIndex = SymbolTableIndexMap[R.SymbolName];
OS << binary_le(R.VirtualAddress)
<< binary_le(SymbolTableIndex)
<< binary_le(R.Type);
}
}
// Output symbol table.
for (std::vector<COFFYAML::Symbol>::const_iterator i = CP.Obj.Symbols.begin(),
e = CP.Obj.Symbols.end();
i != e; ++i) {
OS.write(i->Header.Name, COFF::NameSize);
OS << binary_le(i->Header.Value)
<< binary_le(i->Header.SectionNumber)
<< binary_le(i->Header.Type)
<< binary_le(i->Header.StorageClass)
<< binary_le(i->Header.NumberOfAuxSymbols);
if (i->FunctionDefinition)
OS << binary_le(i->FunctionDefinition->TagIndex)
<< binary_le(i->FunctionDefinition->TotalSize)
<< binary_le(i->FunctionDefinition->PointerToLinenumber)
<< binary_le(i->FunctionDefinition->PointerToNextFunction)
<< zeros(i->FunctionDefinition->unused);
if (i->bfAndefSymbol)
OS << zeros(i->bfAndefSymbol->unused1)
<< binary_le(i->bfAndefSymbol->Linenumber)
<< zeros(i->bfAndefSymbol->unused2)
<< binary_le(i->bfAndefSymbol->PointerToNextFunction)
<< zeros(i->bfAndefSymbol->unused3);
if (i->WeakExternal)
OS << binary_le(i->WeakExternal->TagIndex)
<< binary_le(i->WeakExternal->Characteristics)
<< zeros(i->WeakExternal->unused);
if (!i->File.empty()) {
uint32_t NumberOfAuxRecords =
(i->File.size() + COFF::SymbolSize - 1) / COFF::SymbolSize;
uint32_t NumberOfAuxBytes = NumberOfAuxRecords * COFF::SymbolSize;
uint32_t NumZeros = NumberOfAuxBytes - i->File.size();
OS.write(i->File.data(), i->File.size());
for (uint32_t Padding = 0; Padding < NumZeros; ++Padding)
OS.write(0);
}
if (i->SectionDefinition)
OS << binary_le(i->SectionDefinition->Length)
<< binary_le(i->SectionDefinition->NumberOfRelocations)
<< binary_le(i->SectionDefinition->NumberOfLinenumbers)
<< binary_le(i->SectionDefinition->CheckSum)
<< binary_le(i->SectionDefinition->Number)
<< binary_le(i->SectionDefinition->Selection)
<< zeros(i->SectionDefinition->unused);
if (i->CLRToken)
OS << binary_le(i->CLRToken->AuxType)
<< zeros(i->CLRToken->unused1)
<< binary_le(i->CLRToken->SymbolTableIndex)
<< zeros(i->CLRToken->unused2);
}
// Output string table.
OS.write(&CP.StringTable[0], CP.StringTable.size());
return true;
}
int yaml2coff(llvm::raw_ostream &Out, llvm::MemoryBuffer *Buf) {
yaml::Input YIn(Buf->getBuffer());
COFFYAML::Object Doc;
YIn >> Doc;
if (YIn.error()) {
errs() << "yaml2obj: Failed to parse YAML file!\n";
return 1;
}
COFFParser CP(Doc);
if (!CP.parse()) {
errs() << "yaml2obj: Failed to parse YAML file!\n";
return 1;
}
if (!layoutCOFF(CP)) {
errs() << "yaml2obj: Failed to layout COFF file!\n";
return 1;
}
if (!writeCOFF(CP, Out)) {
errs() << "yaml2obj: Failed to write COFF file!\n";
return 1;
}
return 0;
}