Hal Finkel b17cb3a5ce [LV] NFC patch for moving VP*Recipe class definitions from LoopVectorize.cpp to VPlan.h
This is a small step forward to move VPlan stuff to where it should belong (i.e., VPlan.*):

  1. VP*Recipe classes in LoopVectorize.cpp are moved to VPlan.h.
  2. Many of VP*Recipe::print() and execute() definitions are still left in
     LoopVectorize.cpp since they refer to things declared in LoopVectorize.cpp. To
     be moved to VPlan.cpp at a later time.
  3. InterleaveGroup class is moved from anonymous namespace to llvm namespace.
     Referencing it in anonymous namespace from VPlan.h ended up in warning.

Patch by Hideki Saito, thanks!

Differential Revision: https://reviews.llvm.org/D41045

llvm-svn: 320900
2017-12-16 01:12:50 +00:00

558 lines
20 KiB
C++

//===- VPlan.cpp - Vectorizer Plan ----------------------------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
///
/// \file
/// This is the LLVM vectorization plan. It represents a candidate for
/// vectorization, allowing to plan and optimize how to vectorize a given loop
/// before generating LLVM-IR.
/// The vectorizer uses vectorization plans to estimate the costs of potential
/// candidates and if profitable to execute the desired plan, generating vector
/// LLVM-IR code.
///
//===----------------------------------------------------------------------===//
#include "VPlan.h"
#include "llvm/ADT/DepthFirstIterator.h"
#include "llvm/ADT/PostOrderIterator.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/Twine.h"
#include "llvm/Analysis/LoopInfo.h"
#include "llvm/IR/BasicBlock.h"
#include "llvm/IR/CFG.h"
#include "llvm/IR/Dominators.h"
#include "llvm/IR/InstrTypes.h"
#include "llvm/IR/Instruction.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/Type.h"
#include "llvm/IR/Value.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/GraphWriter.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
#include <cassert>
#include <iterator>
#include <string>
#include <vector>
using namespace llvm;
#define DEBUG_TYPE "vplan"
raw_ostream &llvm::operator<<(raw_ostream &OS, const VPValue &V) {
if (const VPInstruction *Instr = dyn_cast<VPInstruction>(&V))
Instr->print(OS);
else
V.printAsOperand(OS);
return OS;
}
/// \return the VPBasicBlock that is the entry of Block, possibly indirectly.
const VPBasicBlock *VPBlockBase::getEntryBasicBlock() const {
const VPBlockBase *Block = this;
while (const VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block))
Block = Region->getEntry();
return cast<VPBasicBlock>(Block);
}
VPBasicBlock *VPBlockBase::getEntryBasicBlock() {
VPBlockBase *Block = this;
while (VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block))
Block = Region->getEntry();
return cast<VPBasicBlock>(Block);
}
/// \return the VPBasicBlock that is the exit of Block, possibly indirectly.
const VPBasicBlock *VPBlockBase::getExitBasicBlock() const {
const VPBlockBase *Block = this;
while (const VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block))
Block = Region->getExit();
return cast<VPBasicBlock>(Block);
}
VPBasicBlock *VPBlockBase::getExitBasicBlock() {
VPBlockBase *Block = this;
while (VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block))
Block = Region->getExit();
return cast<VPBasicBlock>(Block);
}
VPBlockBase *VPBlockBase::getEnclosingBlockWithSuccessors() {
if (!Successors.empty() || !Parent)
return this;
assert(Parent->getExit() == this &&
"Block w/o successors not the exit of its parent.");
return Parent->getEnclosingBlockWithSuccessors();
}
VPBlockBase *VPBlockBase::getEnclosingBlockWithPredecessors() {
if (!Predecessors.empty() || !Parent)
return this;
assert(Parent->getEntry() == this &&
"Block w/o predecessors not the entry of its parent.");
return Parent->getEnclosingBlockWithPredecessors();
}
void VPBlockBase::deleteCFG(VPBlockBase *Entry) {
SmallVector<VPBlockBase *, 8> Blocks;
for (VPBlockBase *Block : depth_first(Entry))
Blocks.push_back(Block);
for (VPBlockBase *Block : Blocks)
delete Block;
}
BasicBlock *
VPBasicBlock::createEmptyBasicBlock(VPTransformState::CFGState &CFG) {
// BB stands for IR BasicBlocks. VPBB stands for VPlan VPBasicBlocks.
// Pred stands for Predessor. Prev stands for Previous - last visited/created.
BasicBlock *PrevBB = CFG.PrevBB;
BasicBlock *NewBB = BasicBlock::Create(PrevBB->getContext(), getName(),
PrevBB->getParent(), CFG.LastBB);
DEBUG(dbgs() << "LV: created " << NewBB->getName() << '\n');
// Hook up the new basic block to its predecessors.
for (VPBlockBase *PredVPBlock : getHierarchicalPredecessors()) {
VPBasicBlock *PredVPBB = PredVPBlock->getExitBasicBlock();
auto &PredVPSuccessors = PredVPBB->getSuccessors();
BasicBlock *PredBB = CFG.VPBB2IRBB[PredVPBB];
assert(PredBB && "Predecessor basic-block not found building successor.");
auto *PredBBTerminator = PredBB->getTerminator();
DEBUG(dbgs() << "LV: draw edge from" << PredBB->getName() << '\n');
if (isa<UnreachableInst>(PredBBTerminator)) {
assert(PredVPSuccessors.size() == 1 &&
"Predecessor ending w/o branch must have single successor.");
PredBBTerminator->eraseFromParent();
BranchInst::Create(NewBB, PredBB);
} else {
assert(PredVPSuccessors.size() == 2 &&
"Predecessor ending with branch must have two successors.");
unsigned idx = PredVPSuccessors.front() == this ? 0 : 1;
assert(!PredBBTerminator->getSuccessor(idx) &&
"Trying to reset an existing successor block.");
PredBBTerminator->setSuccessor(idx, NewBB);
}
}
return NewBB;
}
void VPBasicBlock::execute(VPTransformState *State) {
bool Replica = State->Instance &&
!(State->Instance->Part == 0 && State->Instance->Lane == 0);
VPBasicBlock *PrevVPBB = State->CFG.PrevVPBB;
VPBlockBase *SingleHPred = nullptr;
BasicBlock *NewBB = State->CFG.PrevBB; // Reuse it if possible.
// 1. Create an IR basic block, or reuse the last one if possible.
// The last IR basic block is reused, as an optimization, in three cases:
// A. the first VPBB reuses the loop header BB - when PrevVPBB is null;
// B. when the current VPBB has a single (hierarchical) predecessor which
// is PrevVPBB and the latter has a single (hierarchical) successor; and
// C. when the current VPBB is an entry of a region replica - where PrevVPBB
// is the exit of this region from a previous instance, or the predecessor
// of this region.
if (PrevVPBB && /* A */
!((SingleHPred = getSingleHierarchicalPredecessor()) &&
SingleHPred->getExitBasicBlock() == PrevVPBB &&
PrevVPBB->getSingleHierarchicalSuccessor()) && /* B */
!(Replica && getPredecessors().empty())) { /* C */
NewBB = createEmptyBasicBlock(State->CFG);
State->Builder.SetInsertPoint(NewBB);
// Temporarily terminate with unreachable until CFG is rewired.
UnreachableInst *Terminator = State->Builder.CreateUnreachable();
State->Builder.SetInsertPoint(Terminator);
// Register NewBB in its loop. In innermost loops its the same for all BB's.
Loop *L = State->LI->getLoopFor(State->CFG.LastBB);
L->addBasicBlockToLoop(NewBB, *State->LI);
State->CFG.PrevBB = NewBB;
}
// 2. Fill the IR basic block with IR instructions.
DEBUG(dbgs() << "LV: vectorizing VPBB:" << getName()
<< " in BB:" << NewBB->getName() << '\n');
State->CFG.VPBB2IRBB[this] = NewBB;
State->CFG.PrevVPBB = this;
for (VPRecipeBase &Recipe : Recipes)
Recipe.execute(*State);
DEBUG(dbgs() << "LV: filled BB:" << *NewBB);
}
void VPRegionBlock::execute(VPTransformState *State) {
ReversePostOrderTraversal<VPBlockBase *> RPOT(Entry);
if (!isReplicator()) {
// Visit the VPBlocks connected to "this", starting from it.
for (VPBlockBase *Block : RPOT) {
DEBUG(dbgs() << "LV: VPBlock in RPO " << Block->getName() << '\n');
Block->execute(State);
}
return;
}
assert(!State->Instance && "Replicating a Region with non-null instance.");
// Enter replicating mode.
State->Instance = {0, 0};
for (unsigned Part = 0, UF = State->UF; Part < UF; ++Part) {
State->Instance->Part = Part;
for (unsigned Lane = 0, VF = State->VF; Lane < VF; ++Lane) {
State->Instance->Lane = Lane;
// Visit the VPBlocks connected to \p this, starting from it.
for (VPBlockBase *Block : RPOT) {
DEBUG(dbgs() << "LV: VPBlock in RPO " << Block->getName() << '\n');
Block->execute(State);
}
}
}
// Exit replicating mode.
State->Instance.reset();
}
void VPInstruction::generateInstruction(VPTransformState &State,
unsigned Part) {
IRBuilder<> &Builder = State.Builder;
if (Instruction::isBinaryOp(getOpcode())) {
Value *A = State.get(getOperand(0), Part);
Value *B = State.get(getOperand(1), Part);
Value *V = Builder.CreateBinOp((Instruction::BinaryOps)getOpcode(), A, B);
State.set(this, V, Part);
return;
}
switch (getOpcode()) {
case VPInstruction::Not: {
Value *A = State.get(getOperand(0), Part);
Value *V = Builder.CreateNot(A);
State.set(this, V, Part);
break;
}
default:
llvm_unreachable("Unsupported opcode for instruction");
}
}
void VPInstruction::execute(VPTransformState &State) {
assert(!State.Instance && "VPInstruction executing an Instance");
for (unsigned Part = 0; Part < State.UF; ++Part)
generateInstruction(State, Part);
}
void VPInstruction::print(raw_ostream &O, const Twine &Indent) const {
O << " +\n" << Indent << "\"EMIT ";
print(O);
O << "\\l\"";
}
void VPInstruction::print(raw_ostream &O) const {
printAsOperand(O);
O << " = ";
switch (getOpcode()) {
case VPInstruction::Not:
O << "not";
break;
default:
O << Instruction::getOpcodeName(getOpcode());
}
for (const VPValue *Operand : operands()) {
O << " ";
Operand->printAsOperand(O);
}
}
/// Generate the code inside the body of the vectorized loop. Assumes a single
/// LoopVectorBody basic-block was created for this. Introduce additional
/// basic-blocks as needed, and fill them all.
void VPlan::execute(VPTransformState *State) {
// 0. Set the reverse mapping from VPValues to Values for code generation.
for (auto &Entry : Value2VPValue)
State->VPValue2Value[Entry.second] = Entry.first;
BasicBlock *VectorPreHeaderBB = State->CFG.PrevBB;
BasicBlock *VectorHeaderBB = VectorPreHeaderBB->getSingleSuccessor();
assert(VectorHeaderBB && "Loop preheader does not have a single successor.");
BasicBlock *VectorLatchBB = VectorHeaderBB;
// 1. Make room to generate basic-blocks inside loop body if needed.
VectorLatchBB = VectorHeaderBB->splitBasicBlock(
VectorHeaderBB->getFirstInsertionPt(), "vector.body.latch");
Loop *L = State->LI->getLoopFor(VectorHeaderBB);
L->addBasicBlockToLoop(VectorLatchBB, *State->LI);
// Remove the edge between Header and Latch to allow other connections.
// Temporarily terminate with unreachable until CFG is rewired.
// Note: this asserts the generated code's assumption that
// getFirstInsertionPt() can be dereferenced into an Instruction.
VectorHeaderBB->getTerminator()->eraseFromParent();
State->Builder.SetInsertPoint(VectorHeaderBB);
UnreachableInst *Terminator = State->Builder.CreateUnreachable();
State->Builder.SetInsertPoint(Terminator);
// 2. Generate code in loop body.
State->CFG.PrevVPBB = nullptr;
State->CFG.PrevBB = VectorHeaderBB;
State->CFG.LastBB = VectorLatchBB;
for (VPBlockBase *Block : depth_first(Entry))
Block->execute(State);
// 3. Merge the temporary latch created with the last basic-block filled.
BasicBlock *LastBB = State->CFG.PrevBB;
// Connect LastBB to VectorLatchBB to facilitate their merge.
assert(isa<UnreachableInst>(LastBB->getTerminator()) &&
"Expected VPlan CFG to terminate with unreachable");
LastBB->getTerminator()->eraseFromParent();
BranchInst::Create(VectorLatchBB, LastBB);
// Merge LastBB with Latch.
bool Merged = MergeBlockIntoPredecessor(VectorLatchBB, nullptr, State->LI);
(void)Merged;
assert(Merged && "Could not merge last basic block with latch.");
VectorLatchBB = LastBB;
updateDominatorTree(State->DT, VectorPreHeaderBB, VectorLatchBB);
}
void VPlan::updateDominatorTree(DominatorTree *DT, BasicBlock *LoopPreHeaderBB,
BasicBlock *LoopLatchBB) {
BasicBlock *LoopHeaderBB = LoopPreHeaderBB->getSingleSuccessor();
assert(LoopHeaderBB && "Loop preheader does not have a single successor.");
DT->addNewBlock(LoopHeaderBB, LoopPreHeaderBB);
// The vector body may be more than a single basic-block by this point.
// Update the dominator tree information inside the vector body by propagating
// it from header to latch, expecting only triangular control-flow, if any.
BasicBlock *PostDomSucc = nullptr;
for (auto *BB = LoopHeaderBB; BB != LoopLatchBB; BB = PostDomSucc) {
// Get the list of successors of this block.
std::vector<BasicBlock *> Succs(succ_begin(BB), succ_end(BB));
assert(Succs.size() <= 2 &&
"Basic block in vector loop has more than 2 successors.");
PostDomSucc = Succs[0];
if (Succs.size() == 1) {
assert(PostDomSucc->getSinglePredecessor() &&
"PostDom successor has more than one predecessor.");
DT->addNewBlock(PostDomSucc, BB);
continue;
}
BasicBlock *InterimSucc = Succs[1];
if (PostDomSucc->getSingleSuccessor() == InterimSucc) {
PostDomSucc = Succs[1];
InterimSucc = Succs[0];
}
assert(InterimSucc->getSingleSuccessor() == PostDomSucc &&
"One successor of a basic block does not lead to the other.");
assert(InterimSucc->getSinglePredecessor() &&
"Interim successor has more than one predecessor.");
assert(std::distance(pred_begin(PostDomSucc), pred_end(PostDomSucc)) == 2 &&
"PostDom successor has more than two predecessors.");
DT->addNewBlock(InterimSucc, BB);
DT->addNewBlock(PostDomSucc, BB);
}
}
const Twine VPlanPrinter::getUID(const VPBlockBase *Block) {
return (isa<VPRegionBlock>(Block) ? "cluster_N" : "N") +
Twine(getOrCreateBID(Block));
}
const Twine VPlanPrinter::getOrCreateName(const VPBlockBase *Block) {
const std::string &Name = Block->getName();
if (!Name.empty())
return Name;
return "VPB" + Twine(getOrCreateBID(Block));
}
void VPlanPrinter::dump() {
Depth = 1;
bumpIndent(0);
OS << "digraph VPlan {\n";
OS << "graph [labelloc=t, fontsize=30; label=\"Vectorization Plan";
if (!Plan.getName().empty())
OS << "\\n" << DOT::EscapeString(Plan.getName());
if (!Plan.Value2VPValue.empty()) {
OS << ", where:";
for (auto Entry : Plan.Value2VPValue) {
OS << "\\n" << *Entry.second;
OS << DOT::EscapeString(" := ");
Entry.first->printAsOperand(OS, false);
}
}
OS << "\"]\n";
OS << "node [shape=rect, fontname=Courier, fontsize=30]\n";
OS << "edge [fontname=Courier, fontsize=30]\n";
OS << "compound=true\n";
for (VPBlockBase *Block : depth_first(Plan.getEntry()))
dumpBlock(Block);
OS << "}\n";
}
void VPlanPrinter::dumpBlock(const VPBlockBase *Block) {
if (const VPBasicBlock *BasicBlock = dyn_cast<VPBasicBlock>(Block))
dumpBasicBlock(BasicBlock);
else if (const VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block))
dumpRegion(Region);
else
llvm_unreachable("Unsupported kind of VPBlock.");
}
void VPlanPrinter::drawEdge(const VPBlockBase *From, const VPBlockBase *To,
bool Hidden, const Twine &Label) {
// Due to "dot" we print an edge between two regions as an edge between the
// exit basic block and the entry basic of the respective regions.
const VPBlockBase *Tail = From->getExitBasicBlock();
const VPBlockBase *Head = To->getEntryBasicBlock();
OS << Indent << getUID(Tail) << " -> " << getUID(Head);
OS << " [ label=\"" << Label << '\"';
if (Tail != From)
OS << " ltail=" << getUID(From);
if (Head != To)
OS << " lhead=" << getUID(To);
if (Hidden)
OS << "; splines=none";
OS << "]\n";
}
void VPlanPrinter::dumpEdges(const VPBlockBase *Block) {
auto &Successors = Block->getSuccessors();
if (Successors.size() == 1)
drawEdge(Block, Successors.front(), false, "");
else if (Successors.size() == 2) {
drawEdge(Block, Successors.front(), false, "T");
drawEdge(Block, Successors.back(), false, "F");
} else {
unsigned SuccessorNumber = 0;
for (auto *Successor : Successors)
drawEdge(Block, Successor, false, Twine(SuccessorNumber++));
}
}
void VPlanPrinter::dumpBasicBlock(const VPBasicBlock *BasicBlock) {
OS << Indent << getUID(BasicBlock) << " [label =\n";
bumpIndent(1);
OS << Indent << "\"" << DOT::EscapeString(BasicBlock->getName()) << ":\\n\"";
bumpIndent(1);
for (const VPRecipeBase &Recipe : *BasicBlock)
Recipe.print(OS, Indent);
bumpIndent(-2);
OS << "\n" << Indent << "]\n";
dumpEdges(BasicBlock);
}
void VPlanPrinter::dumpRegion(const VPRegionBlock *Region) {
OS << Indent << "subgraph " << getUID(Region) << " {\n";
bumpIndent(1);
OS << Indent << "fontname=Courier\n"
<< Indent << "label=\""
<< DOT::EscapeString(Region->isReplicator() ? "<xVFxUF> " : "<x1> ")
<< DOT::EscapeString(Region->getName()) << "\"\n";
// Dump the blocks of the region.
assert(Region->getEntry() && "Region contains no inner blocks.");
for (const VPBlockBase *Block : depth_first(Region->getEntry()))
dumpBlock(Block);
bumpIndent(-1);
OS << Indent << "}\n";
dumpEdges(Region);
}
void VPlanPrinter::printAsIngredient(raw_ostream &O, Value *V) {
std::string IngredientString;
raw_string_ostream RSO(IngredientString);
if (auto *Inst = dyn_cast<Instruction>(V)) {
if (!Inst->getType()->isVoidTy()) {
Inst->printAsOperand(RSO, false);
RSO << " = ";
}
RSO << Inst->getOpcodeName() << " ";
unsigned E = Inst->getNumOperands();
if (E > 0) {
Inst->getOperand(0)->printAsOperand(RSO, false);
for (unsigned I = 1; I < E; ++I)
Inst->getOperand(I)->printAsOperand(RSO << ", ", false);
}
} else // !Inst
V->printAsOperand(RSO, false);
RSO.flush();
O << DOT::EscapeString(IngredientString);
}
void VPWidenRecipe::print(raw_ostream &O, const Twine &Indent) const {
O << " +\n" << Indent << "\"WIDEN\\l\"";
for (auto &Instr : make_range(Begin, End))
O << " +\n" << Indent << "\" " << VPlanIngredient(&Instr) << "\\l\"";
}
void VPWidenIntOrFpInductionRecipe::print(raw_ostream &O,
const Twine &Indent) const {
O << " +\n" << Indent << "\"WIDEN-INDUCTION";
if (Trunc) {
O << "\\l\"";
O << " +\n" << Indent << "\" " << VPlanIngredient(IV) << "\\l\"";
O << " +\n" << Indent << "\" " << VPlanIngredient(Trunc) << "\\l\"";
} else
O << " " << VPlanIngredient(IV) << "\\l\"";
}
void VPWidenPHIRecipe::print(raw_ostream &O, const Twine &Indent) const {
O << " +\n" << Indent << "\"WIDEN-PHI " << VPlanIngredient(Phi) << "\\l\"";
}
void VPBlendRecipe::print(raw_ostream &O, const Twine &Indent) const {
O << " +\n" << Indent << "\"BLEND ";
Phi->printAsOperand(O, false);
O << " =";
if (!User) {
// Not a User of any mask: not really blending, this is a
// single-predecessor phi.
O << " ";
Phi->getIncomingValue(0)->printAsOperand(O, false);
} else {
for (unsigned I = 0, E = User->getNumOperands(); I < E; ++I) {
O << " ";
Phi->getIncomingValue(I)->printAsOperand(O, false);
O << "/";
User->getOperand(I)->printAsOperand(O);
}
}
O << "\\l\"";
}
void VPReplicateRecipe::print(raw_ostream &O, const Twine &Indent) const {
O << " +\n"
<< Indent << "\"" << (IsUniform ? "CLONE " : "REPLICATE ")
<< VPlanIngredient(Ingredient);
if (AlsoPack)
O << " (S->V)";
O << "\\l\"";
}
void VPPredInstPHIRecipe::print(raw_ostream &O, const Twine &Indent) const {
O << " +\n"
<< Indent << "\"PHI-PREDICATED-INSTRUCTION " << VPlanIngredient(PredInst)
<< "\\l\"";
}
void VPWidenMemoryInstructionRecipe::print(raw_ostream &O,
const Twine &Indent) const {
O << " +\n" << Indent << "\"WIDEN " << VPlanIngredient(&Instr);
if (User) {
O << ", ";
User->getOperand(0)->printAsOperand(O);
}
O << "\\l\"";
}