mirror of
https://github.com/RPCS3/llvm-mirror.git
synced 2024-12-28 14:36:34 +00:00
3e86ec7289
a smallvector instead of a DenseMap. This speeds up GVN by 5% on 403.gcc. llvm-svn: 60255
486 lines
19 KiB
C++
486 lines
19 KiB
C++
//===- MemoryDependenceAnalysis.cpp - Mem Deps Implementation --*- C++ -*-===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file implements an analysis that determines, for a given memory
|
|
// operation, what preceding memory operations it depends on. It builds on
|
|
// alias analysis information, and tries to provide a lazy, caching interface to
|
|
// a common kind of alias information query.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#define DEBUG_TYPE "memdep"
|
|
#include "llvm/Analysis/MemoryDependenceAnalysis.h"
|
|
#include "llvm/Constants.h"
|
|
#include "llvm/Instructions.h"
|
|
#include "llvm/Function.h"
|
|
#include "llvm/Analysis/AliasAnalysis.h"
|
|
#include "llvm/ADT/Statistic.h"
|
|
#include "llvm/ADT/STLExtras.h"
|
|
#include "llvm/Support/CFG.h"
|
|
#include "llvm/Support/CommandLine.h"
|
|
#include "llvm/Support/Debug.h"
|
|
#include "llvm/Target/TargetData.h"
|
|
using namespace llvm;
|
|
|
|
STATISTIC(NumCacheNonlocal, "Number of cached non-local responses");
|
|
STATISTIC(NumUncacheNonlocal, "Number of uncached non-local responses");
|
|
|
|
char MemoryDependenceAnalysis::ID = 0;
|
|
|
|
// Register this pass...
|
|
static RegisterPass<MemoryDependenceAnalysis> X("memdep",
|
|
"Memory Dependence Analysis", false, true);
|
|
|
|
/// getAnalysisUsage - Does not modify anything. It uses Alias Analysis.
|
|
///
|
|
void MemoryDependenceAnalysis::getAnalysisUsage(AnalysisUsage &AU) const {
|
|
AU.setPreservesAll();
|
|
AU.addRequiredTransitive<AliasAnalysis>();
|
|
AU.addRequiredTransitive<TargetData>();
|
|
}
|
|
|
|
/// getCallSiteDependency - Private helper for finding the local dependencies
|
|
/// of a call site.
|
|
MemDepResult MemoryDependenceAnalysis::
|
|
getCallSiteDependency(CallSite C, BasicBlock::iterator ScanIt,
|
|
BasicBlock *BB) {
|
|
AliasAnalysis &AA = getAnalysis<AliasAnalysis>();
|
|
TargetData &TD = getAnalysis<TargetData>();
|
|
|
|
// Walk backwards through the block, looking for dependencies
|
|
while (ScanIt != BB->begin()) {
|
|
Instruction *Inst = --ScanIt;
|
|
|
|
// If this inst is a memory op, get the pointer it accessed
|
|
Value *Pointer = 0;
|
|
uint64_t PointerSize = 0;
|
|
if (StoreInst *S = dyn_cast<StoreInst>(Inst)) {
|
|
Pointer = S->getPointerOperand();
|
|
PointerSize = TD.getTypeStoreSize(S->getOperand(0)->getType());
|
|
} else if (AllocationInst *AI = dyn_cast<AllocationInst>(Inst)) {
|
|
Pointer = AI;
|
|
if (ConstantInt *C = dyn_cast<ConstantInt>(AI->getArraySize()))
|
|
// Use ABI size (size between elements), not store size (size of one
|
|
// element without padding).
|
|
PointerSize = C->getZExtValue() *
|
|
TD.getABITypeSize(AI->getAllocatedType());
|
|
else
|
|
PointerSize = ~0UL;
|
|
} else if (VAArgInst *V = dyn_cast<VAArgInst>(Inst)) {
|
|
Pointer = V->getOperand(0);
|
|
PointerSize = TD.getTypeStoreSize(V->getType());
|
|
} else if (FreeInst *F = dyn_cast<FreeInst>(Inst)) {
|
|
Pointer = F->getPointerOperand();
|
|
|
|
// FreeInsts erase the entire structure
|
|
PointerSize = ~0UL;
|
|
} else if (isa<CallInst>(Inst) || isa<InvokeInst>(Inst)) {
|
|
if (AA.getModRefBehavior(CallSite::get(Inst)) ==
|
|
AliasAnalysis::DoesNotAccessMemory)
|
|
continue;
|
|
return MemDepResult::get(Inst);
|
|
} else
|
|
continue;
|
|
|
|
if (AA.getModRefInfo(C, Pointer, PointerSize) != AliasAnalysis::NoModRef)
|
|
return MemDepResult::get(Inst);
|
|
}
|
|
|
|
// No dependence found.
|
|
return MemDepResult::getNonLocal();
|
|
}
|
|
|
|
/// getNonLocalDependency - Perform a full dependency query for the
|
|
/// specified instruction, returning the set of blocks that the value is
|
|
/// potentially live across. The returned set of results will include a
|
|
/// "NonLocal" result for all blocks where the value is live across.
|
|
///
|
|
/// This method assumes the instruction returns a "nonlocal" dependency
|
|
/// within its own block.
|
|
///
|
|
void MemoryDependenceAnalysis::
|
|
getNonLocalDependency(Instruction *QueryInst,
|
|
SmallVectorImpl<std::pair<BasicBlock*,
|
|
MemDepResult> > &Result) {
|
|
assert(getDependency(QueryInst).isNonLocal() &&
|
|
"getNonLocalDependency should only be used on insts with non-local deps!");
|
|
DenseMap<BasicBlock*, DepResultTy> &Cache = NonLocalDeps[QueryInst];
|
|
|
|
/// DirtyBlocks - This is the set of blocks that need to be recomputed. This
|
|
/// can happen due to instructions being deleted etc.
|
|
SmallVector<BasicBlock*, 32> DirtyBlocks;
|
|
|
|
if (!Cache.empty()) {
|
|
// If we already have a partially computed set of results, scan them to
|
|
// determine what is dirty, seeding our initial DirtyBlocks worklist.
|
|
// FIXME: In the "don't need to be updated" case, this is expensive, why not
|
|
// have a per-"cache" flag saying it is undirty?
|
|
for (DenseMap<BasicBlock*, DepResultTy>::iterator I = Cache.begin(),
|
|
E = Cache.end(); I != E; ++I)
|
|
if (I->second.getInt() == Dirty)
|
|
DirtyBlocks.push_back(I->first);
|
|
|
|
NumCacheNonlocal++;
|
|
} else {
|
|
// Seed DirtyBlocks with each of the preds of QueryInst's block.
|
|
BasicBlock *QueryBB = QueryInst->getParent();
|
|
DirtyBlocks.append(pred_begin(QueryBB), pred_end(QueryBB));
|
|
NumUncacheNonlocal++;
|
|
}
|
|
|
|
// Iterate while we still have blocks to update.
|
|
while (!DirtyBlocks.empty()) {
|
|
BasicBlock *DirtyBB = DirtyBlocks.back();
|
|
DirtyBlocks.pop_back();
|
|
|
|
// Get the entry for this block. Note that this relies on DepResultTy
|
|
// default initializing to Dirty.
|
|
DepResultTy &DirtyBBEntry = Cache[DirtyBB];
|
|
|
|
// If DirtyBBEntry isn't dirty, it ended up on the worklist multiple times.
|
|
if (DirtyBBEntry.getInt() != Dirty) continue;
|
|
|
|
// Find out if this block has a local dependency for QueryInst.
|
|
// FIXME: If the dirty entry has an instruction pointer, scan from it!
|
|
// FIXME: Don't convert back and forth for MemDepResult <-> DepResultTy.
|
|
DirtyBBEntry = ConvFromResult(getDependencyFrom(QueryInst, DirtyBB->end(),
|
|
DirtyBB));
|
|
|
|
// If the block has a dependency (i.e. it isn't completely transparent to
|
|
// the value), remember it!
|
|
if (DirtyBBEntry.getInt() != NonLocal) {
|
|
// Keep the ReverseNonLocalDeps map up to date so we can efficiently
|
|
// update this when we remove instructions.
|
|
if (Instruction *Inst = DirtyBBEntry.getPointer())
|
|
ReverseNonLocalDeps[Inst].insert(QueryInst);
|
|
continue;
|
|
}
|
|
|
|
// If the block *is* completely transparent to the load, we need to check
|
|
// the predecessors of this block. Add them to our worklist.
|
|
for (pred_iterator I = pred_begin(DirtyBB), E = pred_end(DirtyBB);
|
|
I != E; ++I)
|
|
DirtyBlocks.push_back(*I);
|
|
}
|
|
|
|
// Copy the result into the output set.
|
|
for (DenseMap<BasicBlock*, DepResultTy>::iterator I = Cache.begin(),
|
|
E = Cache.end(); I != E; ++I)
|
|
Result.push_back(std::make_pair(I->first, ConvToResult(I->second)));
|
|
}
|
|
|
|
/// getDependency - Return the instruction on which a memory operation
|
|
/// depends. The local parameter indicates if the query should only
|
|
/// evaluate dependencies within the same basic block.
|
|
MemDepResult MemoryDependenceAnalysis::
|
|
getDependencyFrom(Instruction *QueryInst, BasicBlock::iterator ScanIt,
|
|
BasicBlock *BB) {
|
|
AliasAnalysis &AA = getAnalysis<AliasAnalysis>();
|
|
TargetData &TD = getAnalysis<TargetData>();
|
|
|
|
// Get the pointer value for which dependence will be determined
|
|
Value *MemPtr = 0;
|
|
uint64_t MemSize = 0;
|
|
bool MemVolatile = false;
|
|
|
|
if (StoreInst* S = dyn_cast<StoreInst>(QueryInst)) {
|
|
MemPtr = S->getPointerOperand();
|
|
MemSize = TD.getTypeStoreSize(S->getOperand(0)->getType());
|
|
MemVolatile = S->isVolatile();
|
|
} else if (LoadInst* L = dyn_cast<LoadInst>(QueryInst)) {
|
|
MemPtr = L->getPointerOperand();
|
|
MemSize = TD.getTypeStoreSize(L->getType());
|
|
MemVolatile = L->isVolatile();
|
|
} else if (VAArgInst* V = dyn_cast<VAArgInst>(QueryInst)) {
|
|
MemPtr = V->getOperand(0);
|
|
MemSize = TD.getTypeStoreSize(V->getType());
|
|
} else if (FreeInst* F = dyn_cast<FreeInst>(QueryInst)) {
|
|
MemPtr = F->getPointerOperand();
|
|
// FreeInsts erase the entire structure, not just a field.
|
|
MemSize = ~0UL;
|
|
} else if (isa<CallInst>(QueryInst) || isa<InvokeInst>(QueryInst))
|
|
return getCallSiteDependency(CallSite::get(QueryInst), ScanIt, BB);
|
|
else // Non-memory instructions depend on nothing.
|
|
return MemDepResult::getNone();
|
|
|
|
// Walk backwards through the basic block, looking for dependencies
|
|
while (ScanIt != BB->begin()) {
|
|
Instruction *Inst = --ScanIt;
|
|
|
|
// If the access is volatile and this is a volatile load/store, return a
|
|
// dependence.
|
|
if (MemVolatile &&
|
|
((isa<LoadInst>(Inst) && cast<LoadInst>(Inst)->isVolatile()) ||
|
|
(isa<StoreInst>(Inst) && cast<StoreInst>(Inst)->isVolatile())))
|
|
return MemDepResult::get(Inst);
|
|
|
|
// MemDep is broken w.r.t. loads: it says that two loads of the same pointer
|
|
// depend on each other. :(
|
|
// FIXME: ELIMINATE THIS!
|
|
if (LoadInst *L = dyn_cast<LoadInst>(Inst)) {
|
|
Value *Pointer = L->getPointerOperand();
|
|
uint64_t PointerSize = TD.getTypeStoreSize(L->getType());
|
|
|
|
// If we found a pointer, check if it could be the same as our pointer
|
|
AliasAnalysis::AliasResult R =
|
|
AA.alias(Pointer, PointerSize, MemPtr, MemSize);
|
|
|
|
if (R == AliasAnalysis::NoAlias)
|
|
continue;
|
|
|
|
// May-alias loads don't depend on each other without a dependence.
|
|
if (isa<LoadInst>(QueryInst) && R == AliasAnalysis::MayAlias)
|
|
continue;
|
|
return MemDepResult::get(Inst);
|
|
}
|
|
|
|
// FIXME: This claims that an access depends on the allocation. This may
|
|
// make sense, but is dubious at best. It would be better to fix GVN to
|
|
// handle a 'None' Query.
|
|
if (AllocationInst *AI = dyn_cast<AllocationInst>(Inst)) {
|
|
Value *Pointer = AI;
|
|
uint64_t PointerSize;
|
|
if (ConstantInt *C = dyn_cast<ConstantInt>(AI->getArraySize()))
|
|
// Use ABI size (size between elements), not store size (size of one
|
|
// element without padding).
|
|
PointerSize = C->getZExtValue() *
|
|
TD.getABITypeSize(AI->getAllocatedType());
|
|
else
|
|
PointerSize = ~0UL;
|
|
|
|
AliasAnalysis::AliasResult R =
|
|
AA.alias(Pointer, PointerSize, MemPtr, MemSize);
|
|
|
|
if (R == AliasAnalysis::NoAlias)
|
|
continue;
|
|
return MemDepResult::get(Inst);
|
|
}
|
|
|
|
|
|
// See if this instruction mod/ref's the pointer.
|
|
AliasAnalysis::ModRefResult MRR = AA.getModRefInfo(Inst, MemPtr, MemSize);
|
|
|
|
if (MRR == AliasAnalysis::NoModRef)
|
|
continue;
|
|
|
|
// Loads don't depend on read-only instructions.
|
|
if (isa<LoadInst>(QueryInst) && MRR == AliasAnalysis::Ref)
|
|
continue;
|
|
|
|
// Otherwise, there is a dependence.
|
|
return MemDepResult::get(Inst);
|
|
}
|
|
|
|
// If we found nothing, return the non-local flag.
|
|
return MemDepResult::getNonLocal();
|
|
}
|
|
|
|
/// getDependency - Return the instruction on which a memory operation
|
|
/// depends.
|
|
MemDepResult MemoryDependenceAnalysis::getDependency(Instruction *QueryInst) {
|
|
Instruction *ScanPos = QueryInst;
|
|
|
|
// Check for a cached result
|
|
DepResultTy &LocalCache = LocalDeps[QueryInst];
|
|
|
|
// If the cached entry is non-dirty, just return it.
|
|
if (LocalCache.getInt() != Dirty)
|
|
return ConvToResult(LocalCache);
|
|
|
|
// Otherwise, if we have a dirty entry, we know we can start the scan at that
|
|
// instruction, which may save us some work.
|
|
if (Instruction *Inst = LocalCache.getPointer())
|
|
ScanPos = Inst;
|
|
|
|
// Do the scan.
|
|
MemDepResult Res =
|
|
getDependencyFrom(QueryInst, ScanPos, QueryInst->getParent());
|
|
|
|
// Remember the result!
|
|
// FIXME: Don't convert back and forth! Make a shared helper function.
|
|
LocalCache = ConvFromResult(Res);
|
|
if (Instruction *I = Res.getInst())
|
|
ReverseLocalDeps[I].insert(QueryInst);
|
|
|
|
return Res;
|
|
}
|
|
|
|
|
|
/// dropInstruction - Remove an instruction from the analysis, making
|
|
/// absolutely conservative assumptions when updating the cache. This is
|
|
/// useful, for example when an instruction is changed rather than removed.
|
|
void MemoryDependenceAnalysis::dropInstruction(Instruction* drop) {
|
|
LocalDepMapType::iterator depGraphEntry = LocalDeps.find(drop);
|
|
if (depGraphEntry != LocalDeps.end())
|
|
if (Instruction *Inst = depGraphEntry->second.getPointer())
|
|
ReverseLocalDeps[Inst].erase(drop);
|
|
|
|
// Drop dependency information for things that depended on this instr
|
|
SmallPtrSet<Instruction*, 4>& set = ReverseLocalDeps[drop];
|
|
for (SmallPtrSet<Instruction*, 4>::iterator I = set.begin(), E = set.end();
|
|
I != E; ++I)
|
|
LocalDeps.erase(*I);
|
|
|
|
LocalDeps.erase(drop);
|
|
ReverseLocalDeps.erase(drop);
|
|
|
|
for (DenseMap<BasicBlock*, DepResultTy>::iterator DI =
|
|
NonLocalDeps[drop].begin(), DE = NonLocalDeps[drop].end();
|
|
DI != DE; ++DI)
|
|
if (Instruction *Inst = DI->second.getPointer())
|
|
ReverseNonLocalDeps[Inst].erase(drop);
|
|
|
|
if (ReverseNonLocalDeps.count(drop)) {
|
|
SmallPtrSet<Instruction*, 4>& set =
|
|
ReverseNonLocalDeps[drop];
|
|
for (SmallPtrSet<Instruction*, 4>::iterator I = set.begin(), E = set.end();
|
|
I != E; ++I)
|
|
for (DenseMap<BasicBlock*, DepResultTy>::iterator DI =
|
|
NonLocalDeps[*I].begin(), DE = NonLocalDeps[*I].end();
|
|
DI != DE; ++DI)
|
|
if (DI->second == DepResultTy(drop, Normal))
|
|
// FIXME: Why not remember the old insertion point??
|
|
DI->second = DepResultTy(0, Dirty);
|
|
}
|
|
|
|
ReverseNonLocalDeps.erase(drop);
|
|
NonLocalDeps.erase(drop);
|
|
}
|
|
|
|
/// removeInstruction - Remove an instruction from the dependence analysis,
|
|
/// updating the dependence of instructions that previously depended on it.
|
|
/// This method attempts to keep the cache coherent using the reverse map.
|
|
void MemoryDependenceAnalysis::removeInstruction(Instruction *RemInst) {
|
|
// Walk through the Non-local dependencies, removing this one as the value
|
|
// for any cached queries.
|
|
for (DenseMap<BasicBlock*, DepResultTy>::iterator DI =
|
|
NonLocalDeps[RemInst].begin(), DE = NonLocalDeps[RemInst].end();
|
|
DI != DE; ++DI)
|
|
if (Instruction *Inst = DI->second.getPointer())
|
|
ReverseNonLocalDeps[Inst].erase(RemInst);
|
|
|
|
// Shortly after this, we will look for things that depend on RemInst. In
|
|
// order to update these, we'll need a new dependency to base them on. We
|
|
// could completely delete any entries that depend on this, but it is better
|
|
// to make a more accurate approximation where possible. Compute that better
|
|
// approximation if we can.
|
|
DepResultTy NewDependency;
|
|
|
|
// If we have a cached local dependence query for this instruction, remove it.
|
|
//
|
|
LocalDepMapType::iterator LocalDepEntry = LocalDeps.find(RemInst);
|
|
if (LocalDepEntry != LocalDeps.end()) {
|
|
DepResultTy LocalDep = LocalDepEntry->second;
|
|
|
|
// Remove this local dependency info.
|
|
LocalDeps.erase(LocalDepEntry);
|
|
|
|
// Remove us from DepInst's reverse set now that the local dep info is gone.
|
|
if (Instruction *Inst = LocalDep.getPointer())
|
|
ReverseLocalDeps[Inst].erase(RemInst);
|
|
|
|
// If we have unconfirmed info, don't trust it.
|
|
if (LocalDep.getInt() != Dirty) {
|
|
// If we have a confirmed non-local flag, use it.
|
|
if (LocalDep.getInt() == NonLocal || LocalDep.getInt() == None) {
|
|
// The only time this dependency is confirmed is if it is non-local.
|
|
NewDependency = LocalDep;
|
|
} else {
|
|
// If we have dep info for RemInst, set them to it.
|
|
Instruction *NDI = next(BasicBlock::iterator(LocalDep.getPointer()));
|
|
if (NDI != RemInst) // Don't use RemInst for the new dependency!
|
|
NewDependency = DepResultTy(NDI, Dirty);
|
|
}
|
|
}
|
|
}
|
|
|
|
// If we don't already have a local dependency answer for this instruction,
|
|
// use the immediate successor of RemInst. We use the successor because
|
|
// getDependence starts by checking the immediate predecessor of what is in
|
|
// the cache.
|
|
if (NewDependency == DepResultTy(0, Dirty))
|
|
NewDependency = DepResultTy(next(BasicBlock::iterator(RemInst)), Dirty);
|
|
|
|
// Loop over all of the things that depend on the instruction we're removing.
|
|
//
|
|
ReverseDepMapType::iterator ReverseDepIt = ReverseLocalDeps.find(RemInst);
|
|
if (ReverseDepIt != ReverseLocalDeps.end()) {
|
|
SmallPtrSet<Instruction*, 4> &ReverseDeps = ReverseDepIt->second;
|
|
for (SmallPtrSet<Instruction*, 4>::iterator I = ReverseDeps.begin(),
|
|
E = ReverseDeps.end(); I != E; ++I) {
|
|
Instruction *InstDependingOnRemInst = *I;
|
|
|
|
// If we thought the instruction depended on itself (possible for
|
|
// unconfirmed dependencies) ignore the update.
|
|
if (InstDependingOnRemInst == RemInst) continue;
|
|
|
|
// Insert the new dependencies.
|
|
LocalDeps[InstDependingOnRemInst] = NewDependency;
|
|
|
|
// If our NewDependency is an instruction, make sure to remember that new
|
|
// things depend on it.
|
|
if (Instruction *Inst = NewDependency.getPointer())
|
|
ReverseLocalDeps[Inst].insert(InstDependingOnRemInst);
|
|
}
|
|
ReverseLocalDeps.erase(RemInst);
|
|
}
|
|
|
|
ReverseDepIt = ReverseNonLocalDeps.find(RemInst);
|
|
if (ReverseDepIt != ReverseNonLocalDeps.end()) {
|
|
SmallPtrSet<Instruction*, 4>& set = ReverseDepIt->second;
|
|
for (SmallPtrSet<Instruction*, 4>::iterator I = set.begin(), E = set.end();
|
|
I != E; ++I)
|
|
for (DenseMap<BasicBlock*, DepResultTy>::iterator
|
|
DI = NonLocalDeps[*I].begin(), DE = NonLocalDeps[*I].end();
|
|
DI != DE; ++DI)
|
|
if (DI->second == DepResultTy(RemInst, Normal))
|
|
// FIXME: Why not remember the old insertion point??
|
|
DI->second = DepResultTy(0, Dirty);
|
|
ReverseNonLocalDeps.erase(ReverseDepIt);
|
|
}
|
|
|
|
NonLocalDeps.erase(RemInst);
|
|
|
|
getAnalysis<AliasAnalysis>().deleteValue(RemInst);
|
|
|
|
DEBUG(verifyRemoved(RemInst));
|
|
}
|
|
|
|
/// verifyRemoved - Verify that the specified instruction does not occur
|
|
/// in our internal data structures.
|
|
void MemoryDependenceAnalysis::verifyRemoved(Instruction *D) const {
|
|
for (LocalDepMapType::const_iterator I = LocalDeps.begin(),
|
|
E = LocalDeps.end(); I != E; ++I) {
|
|
assert(I->first != D && "Inst occurs in data structures");
|
|
assert(I->second.getPointer() != D &&
|
|
"Inst occurs in data structures");
|
|
}
|
|
|
|
for (NonLocalDepMapType::const_iterator I = NonLocalDeps.begin(),
|
|
E = NonLocalDeps.end(); I != E; ++I) {
|
|
assert(I->first != D && "Inst occurs in data structures");
|
|
for (DenseMap<BasicBlock*, DepResultTy>::iterator II = I->second.begin(),
|
|
EE = I->second.end(); II != EE; ++II)
|
|
assert(II->second.getPointer() != D && "Inst occurs in data structures");
|
|
}
|
|
|
|
for (ReverseDepMapType::const_iterator I = ReverseLocalDeps.begin(),
|
|
E = ReverseLocalDeps.end(); I != E; ++I)
|
|
for (SmallPtrSet<Instruction*, 4>::const_iterator II = I->second.begin(),
|
|
EE = I->second.end(); II != EE; ++II)
|
|
assert(*II != D && "Inst occurs in data structures");
|
|
|
|
for (ReverseDepMapType::const_iterator I = ReverseNonLocalDeps.begin(),
|
|
E = ReverseNonLocalDeps.end();
|
|
I != E; ++I)
|
|
for (SmallPtrSet<Instruction*, 4>::const_iterator II = I->second.begin(),
|
|
EE = I->second.end(); II != EE; ++II)
|
|
assert(*II != D && "Inst occurs in data structures");
|
|
}
|