llvm-mirror/lib/CodeGen/Spiller.cpp
2010-10-26 00:11:33 +00:00

535 lines
19 KiB
C++

//===-- llvm/CodeGen/Spiller.cpp - Spiller -------------------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "spiller"
#include "Spiller.h"
#include "VirtRegMap.h"
#include "llvm/CodeGen/LiveIntervalAnalysis.h"
#include "llvm/CodeGen/LiveStackAnalysis.h"
#include "llvm/CodeGen/MachineFrameInfo.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineLoopInfo.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/Target/TargetInstrInfo.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/raw_ostream.h"
#include <set>
using namespace llvm;
namespace {
enum SpillerName { trivial, standard, splitting, inline_ };
}
static cl::opt<SpillerName>
spillerOpt("spiller",
cl::desc("Spiller to use: (default: standard)"),
cl::Prefix,
cl::values(clEnumVal(trivial, "trivial spiller"),
clEnumVal(standard, "default spiller"),
clEnumVal(splitting, "splitting spiller"),
clEnumValN(inline_, "inline", "inline spiller"),
clEnumValEnd),
cl::init(standard));
// Spiller virtual destructor implementation.
Spiller::~Spiller() {}
namespace {
/// Utility class for spillers.
class SpillerBase : public Spiller {
protected:
MachineFunctionPass *pass;
MachineFunction *mf;
VirtRegMap *vrm;
LiveIntervals *lis;
MachineFrameInfo *mfi;
MachineRegisterInfo *mri;
const TargetInstrInfo *tii;
const TargetRegisterInfo *tri;
/// Construct a spiller base.
SpillerBase(MachineFunctionPass &pass, MachineFunction &mf, VirtRegMap &vrm)
: pass(&pass), mf(&mf), vrm(&vrm)
{
lis = &pass.getAnalysis<LiveIntervals>();
mfi = mf.getFrameInfo();
mri = &mf.getRegInfo();
tii = mf.getTarget().getInstrInfo();
tri = mf.getTarget().getRegisterInfo();
}
/// Add spill ranges for every use/def of the live interval, inserting loads
/// immediately before each use, and stores after each def. No folding or
/// remat is attempted.
void trivialSpillEverywhere(LiveInterval *li,
SmallVectorImpl<LiveInterval*> &newIntervals) {
DEBUG(dbgs() << "Spilling everywhere " << *li << "\n");
assert(li->weight != HUGE_VALF &&
"Attempting to spill already spilled value.");
assert(!li->isStackSlot() &&
"Trying to spill a stack slot.");
DEBUG(dbgs() << "Trivial spill everywhere of reg" << li->reg << "\n");
const TargetRegisterClass *trc = mri->getRegClass(li->reg);
unsigned ss = vrm->assignVirt2StackSlot(li->reg);
// Iterate over reg uses/defs.
for (MachineRegisterInfo::reg_iterator
regItr = mri->reg_begin(li->reg); regItr != mri->reg_end();) {
// Grab the use/def instr.
MachineInstr *mi = &*regItr;
DEBUG(dbgs() << " Processing " << *mi);
// Step regItr to the next use/def instr.
do {
++regItr;
} while (regItr != mri->reg_end() && (&*regItr == mi));
// Collect uses & defs for this instr.
SmallVector<unsigned, 2> indices;
bool hasUse = false;
bool hasDef = false;
for (unsigned i = 0; i != mi->getNumOperands(); ++i) {
MachineOperand &op = mi->getOperand(i);
if (!op.isReg() || op.getReg() != li->reg)
continue;
hasUse |= mi->getOperand(i).isUse();
hasDef |= mi->getOperand(i).isDef();
indices.push_back(i);
}
// Create a new vreg & interval for this instr.
unsigned newVReg = mri->createVirtualRegister(trc);
vrm->grow();
vrm->assignVirt2StackSlot(newVReg, ss);
LiveInterval *newLI = &lis->getOrCreateInterval(newVReg);
newLI->weight = HUGE_VALF;
// Update the reg operands & kill flags.
for (unsigned i = 0; i < indices.size(); ++i) {
unsigned mopIdx = indices[i];
MachineOperand &mop = mi->getOperand(mopIdx);
mop.setReg(newVReg);
if (mop.isUse() && !mi->isRegTiedToDefOperand(mopIdx)) {
mop.setIsKill(true);
}
}
assert(hasUse || hasDef);
// Insert reload if necessary.
MachineBasicBlock::iterator miItr(mi);
if (hasUse) {
tii->loadRegFromStackSlot(*mi->getParent(), miItr, newVReg, ss, trc,
tri);
MachineInstr *loadInstr(prior(miItr));
SlotIndex loadIndex =
lis->InsertMachineInstrInMaps(loadInstr).getDefIndex();
vrm->addSpillSlotUse(ss, loadInstr);
SlotIndex endIndex = loadIndex.getNextIndex();
VNInfo *loadVNI =
newLI->getNextValue(loadIndex, 0, lis->getVNInfoAllocator());
newLI->addRange(LiveRange(loadIndex, endIndex, loadVNI));
}
// Insert store if necessary.
if (hasDef) {
tii->storeRegToStackSlot(*mi->getParent(), llvm::next(miItr), newVReg,
true, ss, trc, tri);
MachineInstr *storeInstr(llvm::next(miItr));
SlotIndex storeIndex =
lis->InsertMachineInstrInMaps(storeInstr).getDefIndex();
vrm->addSpillSlotUse(ss, storeInstr);
SlotIndex beginIndex = storeIndex.getPrevIndex();
VNInfo *storeVNI =
newLI->getNextValue(beginIndex, 0, lis->getVNInfoAllocator());
newLI->addRange(LiveRange(beginIndex, storeIndex, storeVNI));
}
newIntervals.push_back(newLI);
}
}
};
} // end anonymous namespace
namespace {
/// Spills any live range using the spill-everywhere method with no attempt at
/// folding.
class TrivialSpiller : public SpillerBase {
public:
TrivialSpiller(MachineFunctionPass &pass, MachineFunction &mf,
VirtRegMap &vrm)
: SpillerBase(pass, mf, vrm) {}
void spill(LiveInterval *li,
SmallVectorImpl<LiveInterval*> &newIntervals,
SmallVectorImpl<LiveInterval*> &) {
// Ignore spillIs - we don't use it.
trivialSpillEverywhere(li, newIntervals);
}
};
} // end anonymous namespace
namespace {
/// Falls back on LiveIntervals::addIntervalsForSpills.
class StandardSpiller : public Spiller {
protected:
MachineFunction *mf;
LiveIntervals *lis;
LiveStacks *lss;
MachineLoopInfo *loopInfo;
VirtRegMap *vrm;
public:
StandardSpiller(MachineFunctionPass &pass, MachineFunction &mf,
VirtRegMap &vrm)
: mf(&mf),
lis(&pass.getAnalysis<LiveIntervals>()),
lss(&pass.getAnalysis<LiveStacks>()),
loopInfo(pass.getAnalysisIfAvailable<MachineLoopInfo>()),
vrm(&vrm) {}
/// Falls back on LiveIntervals::addIntervalsForSpills.
void spill(LiveInterval *li,
SmallVectorImpl<LiveInterval*> &newIntervals,
SmallVectorImpl<LiveInterval*> &spillIs) {
std::vector<LiveInterval*> added =
lis->addIntervalsForSpills(*li, spillIs, loopInfo, *vrm);
newIntervals.insert(newIntervals.end(), added.begin(), added.end());
// Update LiveStacks.
int SS = vrm->getStackSlot(li->reg);
if (SS == VirtRegMap::NO_STACK_SLOT)
return;
const TargetRegisterClass *RC = mf->getRegInfo().getRegClass(li->reg);
LiveInterval &SI = lss->getOrCreateInterval(SS, RC);
if (!SI.hasAtLeastOneValue())
SI.getNextValue(SlotIndex(), 0, lss->getVNInfoAllocator());
SI.MergeRangesInAsValue(*li, SI.getValNumInfo(0));
}
};
} // end anonymous namespace
namespace {
/// When a call to spill is placed this spiller will first try to break the
/// interval up into its component values (one new interval per value).
/// If this fails, or if a call is placed to spill a previously split interval
/// then the spiller falls back on the standard spilling mechanism.
class SplittingSpiller : public StandardSpiller {
public:
SplittingSpiller(MachineFunctionPass &pass, MachineFunction &mf,
VirtRegMap &vrm)
: StandardSpiller(pass, mf, vrm) {
mri = &mf.getRegInfo();
tii = mf.getTarget().getInstrInfo();
tri = mf.getTarget().getRegisterInfo();
}
void spill(LiveInterval *li,
SmallVectorImpl<LiveInterval*> &newIntervals,
SmallVectorImpl<LiveInterval*> &spillIs) {
if (worthTryingToSplit(li))
tryVNISplit(li);
else
StandardSpiller::spill(li, newIntervals, spillIs);
}
private:
MachineRegisterInfo *mri;
const TargetInstrInfo *tii;
const TargetRegisterInfo *tri;
DenseSet<LiveInterval*> alreadySplit;
bool worthTryingToSplit(LiveInterval *li) const {
return (!alreadySplit.count(li) && li->getNumValNums() > 1);
}
/// Try to break a LiveInterval into its component values.
std::vector<LiveInterval*> tryVNISplit(LiveInterval *li) {
DEBUG(dbgs() << "Trying VNI split of %reg" << *li << "\n");
std::vector<LiveInterval*> added;
SmallVector<VNInfo*, 4> vnis;
std::copy(li->vni_begin(), li->vni_end(), std::back_inserter(vnis));
for (SmallVectorImpl<VNInfo*>::iterator vniItr = vnis.begin(),
vniEnd = vnis.end(); vniItr != vniEnd; ++vniItr) {
VNInfo *vni = *vniItr;
// Skip unused VNIs.
if (vni->isUnused())
continue;
DEBUG(dbgs() << " Extracted Val #" << vni->id << " as ");
LiveInterval *splitInterval = extractVNI(li, vni);
if (splitInterval != 0) {
DEBUG(dbgs() << *splitInterval << "\n");
added.push_back(splitInterval);
alreadySplit.insert(splitInterval);
} else {
DEBUG(dbgs() << "0\n");
}
}
DEBUG(dbgs() << "Original LI: " << *li << "\n");
// If there original interval still contains some live ranges
// add it to added and alreadySplit.
if (!li->empty()) {
added.push_back(li);
alreadySplit.insert(li);
}
return added;
}
/// Extract the given value number from the interval.
LiveInterval* extractVNI(LiveInterval *li, VNInfo *vni) const {
assert((lis->getInstructionFromIndex(vni->def) != 0 || vni->isPHIDef()) &&
"Def index not sane?");
// Create a new vreg and live interval, copy VNI ranges over.
const TargetRegisterClass *trc = mri->getRegClass(li->reg);
unsigned newVReg = mri->createVirtualRegister(trc);
vrm->grow();
LiveInterval *newLI = &lis->getOrCreateInterval(newVReg);
VNInfo *newVNI = newLI->createValueCopy(vni, lis->getVNInfoAllocator());
// Start by copying all live ranges in the VN to the new interval.
for (LiveInterval::iterator rItr = li->begin(), rEnd = li->end();
rItr != rEnd; ++rItr) {
if (rItr->valno == vni) {
newLI->addRange(LiveRange(rItr->start, rItr->end, newVNI));
}
}
// Erase the old VNI & ranges.
li->removeValNo(vni);
// Collect all current uses of the register belonging to the given VNI.
// We'll use this to rename the register after we've dealt with the def.
std::set<MachineInstr*> uses;
for (MachineRegisterInfo::use_iterator
useItr = mri->use_begin(li->reg), useEnd = mri->use_end();
useItr != useEnd; ++useItr) {
uses.insert(&*useItr);
}
// Process the def instruction for this VNI.
if (newVNI->isPHIDef()) {
// Insert a copy at the start of the MBB. The range proceeding the
// copy will be attached to the original LiveInterval.
MachineBasicBlock *defMBB = lis->getMBBFromIndex(newVNI->def);
MachineInstr *copyMI = BuildMI(*defMBB, defMBB->begin(), DebugLoc(),
tii->get(TargetOpcode::COPY), newVReg)
.addReg(li->reg, RegState::Kill);
SlotIndex copyIdx = lis->InsertMachineInstrInMaps(copyMI);
SlotIndex phiDefIdx = lis->getMBBStartIdx(defMBB);
assert(lis->getInstructionFromIndex(phiDefIdx) == 0 &&
"PHI def index points at actual instruction.");
VNInfo *phiDefVNI = li->getNextValue(phiDefIdx,
0, lis->getVNInfoAllocator());
phiDefVNI->setIsPHIDef(true);
li->addRange(LiveRange(phiDefVNI->def, copyIdx.getDefIndex(), phiDefVNI));
LiveRange *oldPHIDefRange =
newLI->getLiveRangeContaining(lis->getMBBStartIdx(defMBB));
// If the old phi def starts in the middle of the range chop it up.
if (oldPHIDefRange->start < lis->getMBBStartIdx(defMBB)) {
LiveRange oldPHIDefRange2(copyIdx.getDefIndex(), oldPHIDefRange->end,
oldPHIDefRange->valno);
oldPHIDefRange->end = lis->getMBBStartIdx(defMBB);
newLI->addRange(oldPHIDefRange2);
} else if (oldPHIDefRange->start == lis->getMBBStartIdx(defMBB)) {
// Otherwise if it's at the start of the range just trim it.
oldPHIDefRange->start = copyIdx.getDefIndex();
} else {
assert(false && "PHI def range doesn't cover PHI def?");
}
newVNI->def = copyIdx.getDefIndex();
newVNI->setCopy(copyMI);
newVNI->setIsPHIDef(false); // not a PHI def anymore.
} else {
// non-PHI def. Rename the def. If it's two-addr that means renaming the
// use and inserting a new copy too.
MachineInstr *defInst = lis->getInstructionFromIndex(newVNI->def);
// We'll rename this now, so we can remove it from uses.
uses.erase(defInst);
unsigned defOpIdx = defInst->findRegisterDefOperandIdx(li->reg);
bool isTwoAddr = defInst->isRegTiedToUseOperand(defOpIdx),
twoAddrUseIsUndef = false;
for (unsigned i = 0; i < defInst->getNumOperands(); ++i) {
MachineOperand &mo = defInst->getOperand(i);
if (mo.isReg() && (mo.isDef() || isTwoAddr) && (mo.getReg()==li->reg)) {
mo.setReg(newVReg);
if (isTwoAddr && mo.isUse() && mo.isUndef())
twoAddrUseIsUndef = true;
}
}
SlotIndex defIdx = lis->getInstructionIndex(defInst);
newVNI->def = defIdx.getDefIndex();
if (isTwoAddr && !twoAddrUseIsUndef) {
MachineBasicBlock *defMBB = defInst->getParent();
MachineInstr *copyMI = BuildMI(*defMBB, defInst, DebugLoc(),
tii->get(TargetOpcode::COPY), newVReg)
.addReg(li->reg, RegState::Kill);
SlotIndex copyIdx = lis->InsertMachineInstrInMaps(copyMI);
LiveRange *origUseRange =
li->getLiveRangeContaining(newVNI->def.getUseIndex());
origUseRange->end = copyIdx.getDefIndex();
VNInfo *copyVNI = newLI->getNextValue(copyIdx.getDefIndex(), copyMI,
lis->getVNInfoAllocator());
LiveRange copyRange(copyIdx.getDefIndex(),defIdx.getDefIndex(),copyVNI);
newLI->addRange(copyRange);
}
}
for (std::set<MachineInstr*>::iterator
usesItr = uses.begin(), usesEnd = uses.end();
usesItr != usesEnd; ++usesItr) {
MachineInstr *useInst = *usesItr;
SlotIndex useIdx = lis->getInstructionIndex(useInst);
LiveRange *useRange =
newLI->getLiveRangeContaining(useIdx.getUseIndex());
// If this use doesn't belong to the new interval skip it.
if (useRange == 0)
continue;
// This use doesn't belong to the VNI, skip it.
if (useRange->valno != newVNI)
continue;
// Check if this instr is two address.
unsigned useOpIdx = useInst->findRegisterUseOperandIdx(li->reg);
bool isTwoAddress = useInst->isRegTiedToDefOperand(useOpIdx);
// Rename uses (and defs for two-address instrs).
for (unsigned i = 0; i < useInst->getNumOperands(); ++i) {
MachineOperand &mo = useInst->getOperand(i);
if (mo.isReg() && (mo.isUse() || isTwoAddress) &&
(mo.getReg() == li->reg)) {
mo.setReg(newVReg);
}
}
// If this is a two address instruction we've got some extra work to do.
if (isTwoAddress) {
// We modified the def operand, so we need to copy back to the original
// reg.
MachineBasicBlock *useMBB = useInst->getParent();
MachineBasicBlock::iterator useItr(useInst);
MachineInstr *copyMI = BuildMI(*useMBB, llvm::next(useItr), DebugLoc(),
tii->get(TargetOpcode::COPY), newVReg)
.addReg(li->reg, RegState::Kill);
SlotIndex copyIdx = lis->InsertMachineInstrInMaps(copyMI);
// Change the old two-address defined range & vni to start at
// (and be defined by) the copy.
LiveRange *origDefRange =
li->getLiveRangeContaining(useIdx.getDefIndex());
origDefRange->start = copyIdx.getDefIndex();
origDefRange->valno->def = copyIdx.getDefIndex();
origDefRange->valno->setCopy(copyMI);
// Insert a new range & vni for the two-address-to-copy value. This
// will be attached to the new live interval.
VNInfo *copyVNI =
newLI->getNextValue(useIdx.getDefIndex(), 0,
lis->getVNInfoAllocator());
LiveRange copyRange(useIdx.getDefIndex(),copyIdx.getDefIndex(),copyVNI);
newLI->addRange(copyRange);
}
}
// Iterate over any PHI kills - we'll need to insert new copies for them.
for (LiveInterval::iterator LRI = newLI->begin(), LRE = newLI->end();
LRI != LRE; ++LRI) {
if (LRI->valno != newVNI)
continue;
SlotIndex killIdx = LRI->end;
MachineBasicBlock *killMBB = lis->getMBBFromIndex(killIdx);
MachineInstr *copyMI = BuildMI(*killMBB, killMBB->getFirstTerminator(),
DebugLoc(), tii->get(TargetOpcode::COPY),
li->reg)
.addReg(newVReg, RegState::Kill);
SlotIndex copyIdx = lis->InsertMachineInstrInMaps(copyMI);
// Save the current end. We may need it to add a new range if the
// current range runs of the end of the MBB.
SlotIndex newKillRangeEnd = LRI->end;
LRI->end = copyIdx.getDefIndex();
if (newKillRangeEnd != lis->getMBBEndIdx(killMBB)) {
assert(newKillRangeEnd > lis->getMBBEndIdx(killMBB) &&
"PHI kill range doesn't reach kill-block end. Not sane.");
newLI->addRange(LiveRange(lis->getMBBEndIdx(killMBB),
newKillRangeEnd, newVNI));
}
VNInfo *newKillVNI = li->getNextValue(copyIdx.getDefIndex(),
copyMI, lis->getVNInfoAllocator());
newKillVNI->setHasPHIKill(true);
li->addRange(LiveRange(copyIdx.getDefIndex(),
lis->getMBBEndIdx(killMBB),
newKillVNI));
}
newVNI->setHasPHIKill(false);
return newLI;
}
};
} // end anonymous namespace
namespace llvm {
Spiller *createInlineSpiller(MachineFunctionPass &pass,
MachineFunction &mf,
VirtRegMap &vrm);
}
llvm::Spiller* llvm::createSpiller(MachineFunctionPass &pass,
MachineFunction &mf,
VirtRegMap &vrm) {
switch (spillerOpt) {
default: assert(0 && "unknown spiller");
case trivial: return new TrivialSpiller(pass, mf, vrm);
case standard: return new StandardSpiller(pass, mf, vrm);
case splitting: return new SplittingSpiller(pass, mf, vrm);
case inline_: return createInlineSpiller(pass, mf, vrm);
}
}