mirror of
https://github.com/RPCS3/llvm-mirror.git
synced 2025-01-10 05:41:40 +00:00
2d6049baaf
llvm-svn: 7349
256 lines
10 KiB
C++
256 lines
10 KiB
C++
//===-- PhiElimination.cpp - Eliminate PHI nodes by inserting copies ------===//
|
|
//
|
|
// This pass eliminates machine instruction PHI nodes by inserting copy
|
|
// instructions. This destroys SSA information, but is the desired input for
|
|
// some register allocators.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "llvm/CodeGen/MachineFunctionPass.h"
|
|
#include "llvm/CodeGen/MachineInstr.h"
|
|
#include "llvm/CodeGen/SSARegMap.h"
|
|
#include "llvm/CodeGen/LiveVariables.h"
|
|
#include "llvm/Target/TargetInstrInfo.h"
|
|
#include "llvm/Target/TargetMachine.h"
|
|
#include "llvm/Support/CFG.h"
|
|
|
|
namespace {
|
|
struct PNE : public MachineFunctionPass {
|
|
bool runOnMachineFunction(MachineFunction &Fn) {
|
|
bool Changed = false;
|
|
|
|
// Eliminate PHI instructions by inserting copies into predecessor blocks.
|
|
//
|
|
for (MachineFunction::iterator I = Fn.begin(), E = Fn.end(); I != E; ++I)
|
|
Changed |= EliminatePHINodes(Fn, *I);
|
|
|
|
//std::cerr << "AFTER PHI NODE ELIM:\n";
|
|
//Fn.dump();
|
|
return Changed;
|
|
}
|
|
|
|
virtual void getAnalysisUsage(AnalysisUsage &AU) const {
|
|
AU.addPreserved<LiveVariables>();
|
|
MachineFunctionPass::getAnalysisUsage(AU);
|
|
}
|
|
|
|
private:
|
|
/// EliminatePHINodes - Eliminate phi nodes by inserting copy instructions
|
|
/// in predecessor basic blocks.
|
|
///
|
|
bool EliminatePHINodes(MachineFunction &MF, MachineBasicBlock &MBB);
|
|
};
|
|
|
|
RegisterPass<PNE> X("phi-node-elimination",
|
|
"Eliminate PHI nodes for register allocation");
|
|
}
|
|
|
|
const PassInfo *PHIEliminationID = X.getPassInfo();
|
|
|
|
/// EliminatePHINodes - Eliminate phi nodes by inserting copy instructions in
|
|
/// predecessor basic blocks.
|
|
///
|
|
bool PNE::EliminatePHINodes(MachineFunction &MF, MachineBasicBlock &MBB) {
|
|
if (MBB.empty() || MBB.front()->getOpcode() != TargetInstrInfo::PHI)
|
|
return false; // Quick exit for normal case...
|
|
|
|
LiveVariables *LV = getAnalysisToUpdate<LiveVariables>();
|
|
const TargetInstrInfo &MII = MF.getTarget().getInstrInfo();
|
|
const MRegisterInfo *RegInfo = MF.getTarget().getRegisterInfo();
|
|
|
|
while (MBB.front()->getOpcode() == TargetInstrInfo::PHI) {
|
|
MachineInstr *MI = MBB.front();
|
|
// Unlink the PHI node from the basic block... but don't delete the PHI yet
|
|
MBB.erase(MBB.begin());
|
|
|
|
assert(MI->getOperand(0).isVirtualRegister() &&
|
|
"PHI node doesn't write virt reg?");
|
|
|
|
unsigned DestReg = MI->getOperand(0).getAllocatedRegNum();
|
|
|
|
// Create a new register for the incoming PHI arguments
|
|
const TargetRegisterClass *RC = MF.getSSARegMap()->getRegClass(DestReg);
|
|
unsigned IncomingReg = MF.getSSARegMap()->createVirtualRegister(RC);
|
|
|
|
// Insert a register to register copy in the top of the current block (but
|
|
// after any remaining phi nodes) which copies the new incoming register
|
|
// into the phi node destination.
|
|
//
|
|
MachineBasicBlock::iterator AfterPHIsIt = MBB.begin();
|
|
while (AfterPHIsIt != MBB.end() &&
|
|
(*AfterPHIsIt)->getOpcode() == TargetInstrInfo::PHI)
|
|
++AfterPHIsIt; // Skip over all of the PHI nodes...
|
|
RegInfo->copyRegToReg(MBB, AfterPHIsIt, DestReg, IncomingReg, RC);
|
|
|
|
// Update live variable information if there is any...
|
|
if (LV) {
|
|
MachineInstr *PHICopy = *(AfterPHIsIt-1);
|
|
|
|
// Add information to LiveVariables to know that the incoming value is
|
|
// killed. Note that because the value is defined in several places (once
|
|
// each for each incoming block), the "def" block and instruction fields
|
|
// for the VarInfo is not filled in.
|
|
//
|
|
LV->addVirtualRegisterKilled(IncomingReg, &MBB, PHICopy);
|
|
|
|
// Since we are going to be deleting the PHI node, if it is the last use
|
|
// of any registers, or if the value itself is dead, we need to move this
|
|
// information over to the new copy we just inserted...
|
|
//
|
|
std::pair<LiveVariables::killed_iterator, LiveVariables::killed_iterator>
|
|
RKs = LV->killed_range(MI);
|
|
std::vector<std::pair<MachineInstr*, unsigned> > Range;
|
|
if (RKs.first != RKs.second) {
|
|
// Copy the range into a vector...
|
|
Range.assign(RKs.first, RKs.second);
|
|
|
|
// Delete the range...
|
|
LV->removeVirtualRegistersKilled(RKs.first, RKs.second);
|
|
|
|
// Add all of the kills back, which will update the appropriate info...
|
|
for (unsigned i = 0, e = Range.size(); i != e; ++i)
|
|
LV->addVirtualRegisterKilled(Range[i].second, &MBB, PHICopy);
|
|
}
|
|
|
|
RKs = LV->dead_range(MI);
|
|
if (RKs.first != RKs.second) {
|
|
// Works as above...
|
|
Range.assign(RKs.first, RKs.second);
|
|
LV->removeVirtualRegistersDead(RKs.first, RKs.second);
|
|
for (unsigned i = 0, e = Range.size(); i != e; ++i)
|
|
LV->addVirtualRegisterDead(Range[i].second, &MBB, PHICopy);
|
|
}
|
|
}
|
|
|
|
// Now loop over all of the incoming arguments, changing them to copy into
|
|
// the IncomingReg register in the corresponding predecessor basic block.
|
|
//
|
|
for (int i = MI->getNumOperands() - 1; i >= 2; i-=2) {
|
|
MachineOperand &opVal = MI->getOperand(i-1);
|
|
|
|
// Get the MachineBasicBlock equivalent of the BasicBlock that is the
|
|
// source path the PHI.
|
|
MachineBasicBlock &opBlock = *MI->getOperand(i).getMachineBasicBlock();
|
|
|
|
// Figure out where to insert the copy, which is at the end of the
|
|
// predecessor basic block, but before any terminator/branch
|
|
// instructions...
|
|
MachineBasicBlock::iterator I = opBlock.end();
|
|
if (I != opBlock.begin()) { // Handle empty blocks
|
|
--I;
|
|
// must backtrack over ALL the branches in the previous block
|
|
while (MII.isTerminatorInstr((*I)->getOpcode()) &&
|
|
I != opBlock.begin())
|
|
--I;
|
|
|
|
// move back to the first branch instruction so new instructions
|
|
// are inserted right in front of it and not in front of a non-branch
|
|
if (!MII.isTerminatorInstr((*I)->getOpcode()))
|
|
++I;
|
|
}
|
|
|
|
// Check to make sure we haven't already emitted the copy for this block.
|
|
// This can happen because PHI nodes may have multiple entries for the
|
|
// same basic block. It doesn't matter which entry we use though, because
|
|
// all incoming values are guaranteed to be the same for a particular bb.
|
|
//
|
|
// If we emitted a copy for this basic block already, it will be right
|
|
// where we want to insert one now. Just check for a definition of the
|
|
// register we are interested in!
|
|
//
|
|
bool HaveNotEmitted = true;
|
|
|
|
if (I != opBlock.begin()) {
|
|
MachineInstr *PrevInst = *(I-1);
|
|
for (unsigned i = 0, e = PrevInst->getNumOperands(); i != e; ++i) {
|
|
MachineOperand &MO = PrevInst->getOperand(i);
|
|
if (MO.isVirtualRegister() && MO.getReg() == IncomingReg)
|
|
if (MO.opIsDefOnly() || MO.opIsDefAndUse()) {
|
|
HaveNotEmitted = false;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (HaveNotEmitted) { // If the copy has not already been emitted, do it.
|
|
assert(opVal.isVirtualRegister() &&
|
|
"Machine PHI Operands must all be virtual registers!");
|
|
unsigned SrcReg = opVal.getReg();
|
|
RegInfo->copyRegToReg(opBlock, I, IncomingReg, SrcReg, RC);
|
|
|
|
// Now update live variable information if we have it.
|
|
if (LV) {
|
|
// We want to be able to insert a kill of the register if this PHI
|
|
// (aka, the copy we just inserted) is the last use of the source
|
|
// value. Live variable analysis conservatively handles this by
|
|
// saying that the value is live until the end of the block the PHI
|
|
// entry lives in. If the value really is dead at the PHI copy, there
|
|
// will be no successor blocks which have the value live-in.
|
|
//
|
|
// Check to see if the copy is the last use, and if so, update the
|
|
// live variables information so that it knows the copy source
|
|
// instruction kills the incoming value.
|
|
//
|
|
LiveVariables::VarInfo &InRegVI = LV->getVarInfo(SrcReg);
|
|
|
|
// Loop over all of the successors of the basic block, checking to see
|
|
// if the value is either live in the block, or if it is killed in the
|
|
// block. Also check to see if this register is in use by another PHI
|
|
// node which has not yet been eliminated. If so, it will be killed
|
|
// at an appropriate point later.
|
|
//
|
|
bool ValueIsLive = false;
|
|
const BasicBlock *BB = opBlock.getBasicBlock();
|
|
for (succ_const_iterator SI = succ_begin(BB), E = succ_end(BB);
|
|
SI != E && !ValueIsLive; ++SI) {
|
|
const std::pair<MachineBasicBlock*, unsigned> &
|
|
SuccInfo = LV->getBasicBlockInfo(*SI);
|
|
|
|
// Is it alive in this successor?
|
|
unsigned SuccIdx = SuccInfo.second;
|
|
if (SuccIdx < InRegVI.AliveBlocks.size() &&
|
|
InRegVI.AliveBlocks[SuccIdx]) {
|
|
ValueIsLive = true;
|
|
break;
|
|
}
|
|
|
|
// Is it killed in this successor?
|
|
MachineBasicBlock *MBB = SuccInfo.first;
|
|
for (unsigned i = 0, e = InRegVI.Kills.size(); i != e; ++i)
|
|
if (InRegVI.Kills[i].first == MBB) {
|
|
ValueIsLive = true;
|
|
break;
|
|
}
|
|
|
|
// Is it used by any PHI instructions in this block?
|
|
if (ValueIsLive) break;
|
|
|
|
// Loop over all of the PHIs in this successor, checking to see if
|
|
// the register is being used...
|
|
for (MachineBasicBlock::iterator BBI = MBB->begin(), E=MBB->end();
|
|
BBI != E && (*BBI)->getOpcode() == TargetInstrInfo::PHI;
|
|
++BBI)
|
|
for (unsigned i = 1, e = (*BBI)->getNumOperands(); i < e; i += 2)
|
|
if ((*BBI)->getOperand(i).getReg() == SrcReg) {
|
|
ValueIsLive = true;
|
|
break;
|
|
}
|
|
}
|
|
|
|
// Okay, if we now know that the value is not live out of the block,
|
|
// we can add a kill marker to the copy we inserted saying that it
|
|
// kills the incoming value!
|
|
//
|
|
if (!ValueIsLive)
|
|
LV->addVirtualRegisterKilled(SrcReg, &opBlock, *(I-1));
|
|
}
|
|
}
|
|
}
|
|
|
|
// really delete the PHI instruction now!
|
|
delete MI;
|
|
}
|
|
|
|
return true;
|
|
}
|