mirror of
https://github.com/RPCS3/llvm-mirror.git
synced 2025-01-05 18:49:06 +00:00
Fork of llvm with experimental commits and workarounds for RPCS3
4583103460
Summary: This problem consists of several parts: * Basic sign bit extraction - `trunc? (?shr %x, (bitwidth(x)-1))`. This is trivial, and easy to do, we have a fold for it. * Shift amount reassociation - if we have two identical shifts, and we can simplify-add their shift amounts together, then we likely can just perform them as a single shift. But this is finicky, has one-use restrictions, and shift opcodes must be identical. But there is a super-pattern where both of these work together. to produce sign bit test from two shifts + comparison. We do indeed already handle this in most cases. But since we get that fold transitively, it has one-use restrictions. And what's worse, in this case the right-shifts aren't required to be identical, and we can't handle that transitively: If the total shift amount is bitwidth-1, only a sign bit will remain in the output value. But if we look at this from the perspective of two shifts, we can't fold - we can't possibly know what bit pattern we'd produce via two shifts, it will be *some* kind of a mask produced from original sign bit, but we just can't tell it's shape: https://rise4fun.com/Alive/cM0 https://rise4fun.com/Alive/9IN But it will *only* contain sign bit and zeros. So from the perspective of sign bit test, we're good: https://rise4fun.com/Alive/FRz https://rise4fun.com/Alive/qBU Superb! So the simplest solution is to extend `reassociateShiftAmtsOfTwoSameDirectionShifts()` to also have a sudo-analysis mode that will ignore extra-uses, and will only check whether a) those are two right shifts and b) they end up with bitwidth(x)-1 shift amount and return either the original value that we sign-checking, or null. This does not have any functionality change for the existing `reassociateShiftAmtsOfTwoSameDirectionShifts()`. All that being said, as disscussed in the review, this yet again increases usage of instsimplify in instcombine as utility. Some day that may need to be reevaluated. https://bugs.llvm.org/show_bug.cgi?id=43595 Reviewers: spatel, efriedma, vsk Reviewed By: spatel Subscribers: xbolva00, hiraditya, llvm-commits Tags: #llvm Differential Revision: https://reviews.llvm.org/D68930 llvm-svn: 375371 |
||
---|---|---|
benchmarks | ||
bindings | ||
cmake | ||
docs | ||
examples | ||
include | ||
lib | ||
projects | ||
resources | ||
runtimes | ||
test | ||
tools | ||
unittests | ||
utils | ||
.arcconfig | ||
.clang-format | ||
.clang-tidy | ||
.gitattributes | ||
.gitignore | ||
CMakeLists.txt | ||
CODE_OWNERS.TXT | ||
configure | ||
CREDITS.TXT | ||
LICENSE.TXT | ||
llvm.spec.in | ||
LLVMBuild.txt | ||
README.txt | ||
RELEASE_TESTERS.TXT |
The LLVM Compiler Infrastructure ================================ This directory and its subdirectories contain source code for LLVM, a toolkit for the construction of highly optimized compilers, optimizers, and runtime environments. LLVM is open source software. You may freely distribute it under the terms of the license agreement found in LICENSE.txt. Please see the documentation provided in docs/ for further assistance with LLVM, and in particular docs/GettingStarted.rst for getting started with LLVM and docs/README.txt for an overview of LLVM's documentation setup. If you are writing a package for LLVM, see docs/Packaging.rst for our suggestions.