llvm-mirror/lib/VMCore/LLVMContext.cpp
Owen Anderson 476adb2e49 Privatize the MDString uniquing table.
llvm-svn: 76113
2009-07-16 22:11:26 +00:00

643 lines
21 KiB
C++

//===-- LLVMContext.cpp - Implement LLVMContext -----------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements LLVMContext, as a wrapper around the opaque
// class LLVMContextImpl.
//
//===----------------------------------------------------------------------===//
#include "llvm/LLVMContext.h"
#include "llvm/Constants.h"
#include "llvm/DerivedTypes.h"
#include "llvm/Instruction.h"
#include "llvm/MDNode.h"
#include "llvm/Support/ManagedStatic.h"
#include "LLVMContextImpl.h"
#include <cstdarg>
using namespace llvm;
static ManagedStatic<LLVMContext> GlobalContext;
LLVMContext& llvm::getGlobalContext() {
return *GlobalContext;
}
LLVMContext::LLVMContext() : pImpl(new LLVMContextImpl(*this)) { }
LLVMContext::~LLVMContext() { delete pImpl; }
// Constant accessors
// Constructor to create a '0' constant of arbitrary type...
static const uint64_t zero[2] = {0, 0};
Constant* LLVMContext::getNullValue(const Type* Ty) {
switch (Ty->getTypeID()) {
case Type::IntegerTyID:
return getConstantInt(Ty, 0);
case Type::FloatTyID:
return getConstantFP(APFloat(APInt(32, 0)));
case Type::DoubleTyID:
return getConstantFP(APFloat(APInt(64, 0)));
case Type::X86_FP80TyID:
return getConstantFP(APFloat(APInt(80, 2, zero)));
case Type::FP128TyID:
return getConstantFP(APFloat(APInt(128, 2, zero), true));
case Type::PPC_FP128TyID:
return getConstantFP(APFloat(APInt(128, 2, zero)));
case Type::PointerTyID:
return getConstantPointerNull(cast<PointerType>(Ty));
case Type::StructTyID:
case Type::ArrayTyID:
case Type::VectorTyID:
return getConstantAggregateZero(Ty);
default:
// Function, Label, or Opaque type?
assert(!"Cannot create a null constant of that type!");
return 0;
}
}
Constant* LLVMContext::getAllOnesValue(const Type* Ty) {
if (const IntegerType* ITy = dyn_cast<IntegerType>(Ty))
return getConstantInt(APInt::getAllOnesValue(ITy->getBitWidth()));
std::vector<Constant*> Elts;
const VectorType* VTy = cast<VectorType>(Ty);
Elts.resize(VTy->getNumElements(), getAllOnesValue(VTy->getElementType()));
assert(Elts[0] && "Not a vector integer type!");
return cast<ConstantVector>(getConstantVector(Elts));
}
// UndefValue accessors.
UndefValue* LLVMContext::getUndef(const Type* Ty) {
return UndefValue::get(Ty);
}
// ConstantInt accessors.
ConstantInt* LLVMContext::getConstantIntTrue() {
return ConstantInt::getTrue();
}
ConstantInt* LLVMContext::getConstantIntFalse() {
return ConstantInt::getFalse();
}
Constant* LLVMContext::getConstantInt(const Type* Ty, uint64_t V,
bool isSigned) {
Constant *C = getConstantInt(cast<IntegerType>(Ty->getScalarType()),
V, isSigned);
// For vectors, broadcast the value.
if (const VectorType *VTy = dyn_cast<VectorType>(Ty))
return
getConstantVector(std::vector<Constant *>(VTy->getNumElements(), C));
return C;
}
ConstantInt* LLVMContext::getConstantInt(const IntegerType* Ty, uint64_t V,
bool isSigned) {
return getConstantInt(APInt(Ty->getBitWidth(), V, isSigned));
}
ConstantInt* LLVMContext::getConstantIntSigned(const IntegerType* Ty,
int64_t V) {
return getConstantInt(Ty, V, true);
}
Constant *LLVMContext::getConstantIntSigned(const Type *Ty, int64_t V) {
return getConstantInt(Ty, V, true);
}
ConstantInt* LLVMContext::getConstantInt(const APInt& V) {
return pImpl->getConstantInt(V);
}
Constant* LLVMContext::getConstantInt(const Type* Ty, const APInt& V) {
ConstantInt *C = getConstantInt(V);
assert(C->getType() == Ty->getScalarType() &&
"ConstantInt type doesn't match the type implied by its value!");
// For vectors, broadcast the value.
if (const VectorType *VTy = dyn_cast<VectorType>(Ty))
return
getConstantVector(std::vector<Constant *>(VTy->getNumElements(), C));
return C;
}
// ConstantPointerNull accessors.
ConstantPointerNull* LLVMContext::getConstantPointerNull(const PointerType* T) {
return ConstantPointerNull::get(T);
}
// ConstantStruct accessors.
Constant* LLVMContext::getConstantStruct(const StructType* T,
const std::vector<Constant*>& V) {
return ConstantStruct::get(T, V);
}
Constant* LLVMContext::getConstantStruct(const std::vector<Constant*>& V,
bool packed) {
std::vector<const Type*> StructEls;
StructEls.reserve(V.size());
for (unsigned i = 0, e = V.size(); i != e; ++i)
StructEls.push_back(V[i]->getType());
return getConstantStruct(getStructType(StructEls, packed), V);
}
Constant* LLVMContext::getConstantStruct(Constant* const *Vals,
unsigned NumVals, bool Packed) {
// FIXME: make this the primary ctor method.
return getConstantStruct(std::vector<Constant*>(Vals, Vals+NumVals), Packed);
}
// ConstantAggregateZero accessors.
ConstantAggregateZero* LLVMContext::getConstantAggregateZero(const Type* Ty) {
return ConstantAggregateZero::get(Ty);
}
// ConstantArray accessors.
Constant* LLVMContext::getConstantArray(const ArrayType* T,
const std::vector<Constant*>& V) {
return ConstantArray::get(T, V);
}
Constant* LLVMContext::getConstantArray(const ArrayType* T,
Constant* const* Vals,
unsigned NumVals) {
// FIXME: make this the primary ctor method.
return getConstantArray(T, std::vector<Constant*>(Vals, Vals+NumVals));
}
/// ConstantArray::get(const string&) - Return an array that is initialized to
/// contain the specified string. If length is zero then a null terminator is
/// added to the specified string so that it may be used in a natural way.
/// Otherwise, the length parameter specifies how much of the string to use
/// and it won't be null terminated.
///
Constant* LLVMContext::getConstantArray(const std::string& Str,
bool AddNull) {
std::vector<Constant*> ElementVals;
for (unsigned i = 0; i < Str.length(); ++i)
ElementVals.push_back(getConstantInt(Type::Int8Ty, Str[i]));
// Add a null terminator to the string...
if (AddNull) {
ElementVals.push_back(getConstantInt(Type::Int8Ty, 0));
}
ArrayType *ATy = getArrayType(Type::Int8Ty, ElementVals.size());
return getConstantArray(ATy, ElementVals);
}
// ConstantExpr accessors.
Constant* LLVMContext::getConstantExpr(unsigned Opcode, Constant* C1,
Constant* C2) {
return ConstantExpr::get(Opcode, C1, C2);
}
Constant* LLVMContext::getConstantExprTrunc(Constant* C, const Type* Ty) {
return ConstantExpr::getTrunc(C, Ty);
}
Constant* LLVMContext::getConstantExprSExt(Constant* C, const Type* Ty) {
return ConstantExpr::getSExt(C, Ty);
}
Constant* LLVMContext::getConstantExprZExt(Constant* C, const Type* Ty) {
return ConstantExpr::getZExt(C, Ty);
}
Constant* LLVMContext::getConstantExprFPTrunc(Constant* C, const Type* Ty) {
return ConstantExpr::getFPTrunc(C, Ty);
}
Constant* LLVMContext::getConstantExprFPExtend(Constant* C, const Type* Ty) {
return ConstantExpr::getFPExtend(C, Ty);
}
Constant* LLVMContext::getConstantExprUIToFP(Constant* C, const Type* Ty) {
return ConstantExpr::getUIToFP(C, Ty);
}
Constant* LLVMContext::getConstantExprSIToFP(Constant* C, const Type* Ty) {
return ConstantExpr::getSIToFP(C, Ty);
}
Constant* LLVMContext::getConstantExprFPToUI(Constant* C, const Type* Ty) {
return ConstantExpr::getFPToUI(C, Ty);
}
Constant* LLVMContext::getConstantExprFPToSI(Constant* C, const Type* Ty) {
return ConstantExpr::getFPToSI(C, Ty);
}
Constant* LLVMContext::getConstantExprPtrToInt(Constant* C, const Type* Ty) {
return ConstantExpr::getPtrToInt(C, Ty);
}
Constant* LLVMContext::getConstantExprIntToPtr(Constant* C, const Type* Ty) {
return ConstantExpr::getIntToPtr(C, Ty);
}
Constant* LLVMContext::getConstantExprBitCast(Constant* C, const Type* Ty) {
return ConstantExpr::getBitCast(C, Ty);
}
Constant* LLVMContext::getConstantExprCast(unsigned ops, Constant* C,
const Type* Ty) {
return ConstantExpr::getCast(ops, C, Ty);
}
Constant* LLVMContext::getConstantExprZExtOrBitCast(Constant* C,
const Type* Ty) {
return ConstantExpr::getZExtOrBitCast(C, Ty);
}
Constant* LLVMContext::getConstantExprSExtOrBitCast(Constant* C,
const Type* Ty) {
return ConstantExpr::getSExtOrBitCast(C, Ty);
}
Constant* LLVMContext::getConstantExprTruncOrBitCast(Constant* C,
const Type* Ty) {
return ConstantExpr::getTruncOrBitCast(C, Ty);
}
Constant* LLVMContext::getConstantExprPointerCast(Constant* C, const Type* Ty) {
return ConstantExpr::getPointerCast(C, Ty);
}
Constant* LLVMContext::getConstantExprIntegerCast(Constant* C, const Type* Ty,
bool isSigned) {
return ConstantExpr::getIntegerCast(C, Ty, isSigned);
}
Constant* LLVMContext::getConstantExprFPCast(Constant* C, const Type* Ty) {
return ConstantExpr::getFPCast(C, Ty);
}
Constant* LLVMContext::getConstantExprSelect(Constant* C, Constant* V1,
Constant* V2) {
return ConstantExpr::getSelect(C, V1, V2);
}
Constant* LLVMContext::getConstantExprAlignOf(const Type* Ty) {
// alignof is implemented as: (i64) gep ({i8,Ty}*)null, 0, 1
const Type *AligningTy = getStructType(Type::Int8Ty, Ty, NULL);
Constant *NullPtr = getNullValue(AligningTy->getPointerTo());
Constant *Zero = getConstantInt(Type::Int32Ty, 0);
Constant *One = getConstantInt(Type::Int32Ty, 1);
Constant *Indices[2] = { Zero, One };
Constant *GEP = getConstantExprGetElementPtr(NullPtr, Indices, 2);
return getConstantExprCast(Instruction::PtrToInt, GEP, Type::Int32Ty);
}
Constant* LLVMContext::getConstantExprCompare(unsigned short pred,
Constant* C1, Constant* C2) {
return ConstantExpr::getCompare(pred, C1, C2);
}
Constant* LLVMContext::getConstantExprNeg(Constant* C) {
// API compatibility: Adjust integer opcodes to floating-point opcodes.
if (C->getType()->isFPOrFPVector())
return getConstantExprFNeg(C);
assert(C->getType()->isIntOrIntVector() &&
"Cannot NEG a nonintegral value!");
return getConstantExpr(Instruction::Sub,
getZeroValueForNegation(C->getType()),
C);
}
Constant* LLVMContext::getConstantExprFNeg(Constant* C) {
assert(C->getType()->isFPOrFPVector() &&
"Cannot FNEG a non-floating-point value!");
return getConstantExpr(Instruction::FSub,
getZeroValueForNegation(C->getType()),
C);
}
Constant* LLVMContext::getConstantExprNot(Constant* C) {
assert(C->getType()->isIntOrIntVector() &&
"Cannot NOT a nonintegral value!");
return getConstantExpr(Instruction::Xor, C, getAllOnesValue(C->getType()));
}
Constant* LLVMContext::getConstantExprAdd(Constant* C1, Constant* C2) {
return getConstantExpr(Instruction::Add, C1, C2);
}
Constant* LLVMContext::getConstantExprFAdd(Constant* C1, Constant* C2) {
return getConstantExpr(Instruction::FAdd, C1, C2);
}
Constant* LLVMContext::getConstantExprSub(Constant* C1, Constant* C2) {
return getConstantExpr(Instruction::Sub, C1, C2);
}
Constant* LLVMContext::getConstantExprFSub(Constant* C1, Constant* C2) {
return getConstantExpr(Instruction::FSub, C1, C2);
}
Constant* LLVMContext::getConstantExprMul(Constant* C1, Constant* C2) {
return getConstantExpr(Instruction::Mul, C1, C2);
}
Constant* LLVMContext::getConstantExprFMul(Constant* C1, Constant* C2) {
return getConstantExpr(Instruction::FMul, C1, C2);
}
Constant* LLVMContext::getConstantExprUDiv(Constant* C1, Constant* C2) {
return getConstantExpr(Instruction::UDiv, C1, C2);
}
Constant* LLVMContext::getConstantExprSDiv(Constant* C1, Constant* C2) {
return getConstantExpr(Instruction::SDiv, C1, C2);
}
Constant* LLVMContext::getConstantExprFDiv(Constant* C1, Constant* C2) {
return getConstantExpr(Instruction::FDiv, C1, C2);
}
Constant* LLVMContext::getConstantExprURem(Constant* C1, Constant* C2) {
return getConstantExpr(Instruction::URem, C1, C2);
}
Constant* LLVMContext::getConstantExprSRem(Constant* C1, Constant* C2) {
return getConstantExpr(Instruction::SRem, C1, C2);
}
Constant* LLVMContext::getConstantExprFRem(Constant* C1, Constant* C2) {
return getConstantExpr(Instruction::FRem, C1, C2);
}
Constant* LLVMContext::getConstantExprAnd(Constant* C1, Constant* C2) {
return getConstantExpr(Instruction::And, C1, C2);
}
Constant* LLVMContext::getConstantExprOr(Constant* C1, Constant* C2) {
return getConstantExpr(Instruction::Or, C1, C2);
}
Constant* LLVMContext::getConstantExprXor(Constant* C1, Constant* C2) {
return getConstantExpr(Instruction::Xor, C1, C2);
}
Constant* LLVMContext::getConstantExprICmp(unsigned short pred, Constant* LHS,
Constant* RHS) {
return ConstantExpr::getICmp(pred, LHS, RHS);
}
Constant* LLVMContext::getConstantExprFCmp(unsigned short pred, Constant* LHS,
Constant* RHS) {
return ConstantExpr::getFCmp(pred, LHS, RHS);
}
Constant* LLVMContext::getConstantExprShl(Constant* C1, Constant* C2) {
return getConstantExpr(Instruction::Shl, C1, C2);
}
Constant* LLVMContext::getConstantExprLShr(Constant* C1, Constant* C2) {
return getConstantExpr(Instruction::LShr, C1, C2);
}
Constant* LLVMContext::getConstantExprAShr(Constant* C1, Constant* C2) {
return getConstantExpr(Instruction::AShr, C1, C2);
}
Constant* LLVMContext::getConstantExprGetElementPtr(Constant* C,
Constant* const* IdxList,
unsigned NumIdx) {
return ConstantExpr::getGetElementPtr(C, IdxList, NumIdx);
}
Constant* LLVMContext::getConstantExprGetElementPtr(Constant* C,
Value* const* IdxList,
unsigned NumIdx) {
return ConstantExpr::getGetElementPtr(C, IdxList, NumIdx);
}
Constant* LLVMContext::getConstantExprExtractElement(Constant* Vec,
Constant* Idx) {
return ConstantExpr::getExtractElement(Vec, Idx);
}
Constant* LLVMContext::getConstantExprInsertElement(Constant* Vec,
Constant* Elt,
Constant* Idx) {
return ConstantExpr::getInsertElement(Vec, Elt, Idx);
}
Constant* LLVMContext::getConstantExprShuffleVector(Constant* V1, Constant* V2,
Constant* Mask) {
return ConstantExpr::getShuffleVector(V1, V2, Mask);
}
Constant* LLVMContext::getConstantExprExtractValue(Constant* Agg,
const unsigned* IdxList,
unsigned NumIdx) {
return ConstantExpr::getExtractValue(Agg, IdxList, NumIdx);
}
Constant* LLVMContext::getConstantExprInsertValue(Constant* Agg, Constant* Val,
const unsigned* IdxList,
unsigned NumIdx) {
return ConstantExpr::getInsertValue(Agg, Val, IdxList, NumIdx);
}
Constant* LLVMContext::getConstantExprSizeOf(const Type* Ty) {
// sizeof is implemented as: (i64) gep (Ty*)null, 1
Constant *GEPIdx = getConstantInt(Type::Int32Ty, 1);
Constant *GEP = getConstantExprGetElementPtr(
getNullValue(getPointerTypeUnqual(Ty)), &GEPIdx, 1);
return getConstantExprCast(Instruction::PtrToInt, GEP, Type::Int64Ty);
}
Constant* LLVMContext::getZeroValueForNegation(const Type* Ty) {
if (const VectorType *PTy = dyn_cast<VectorType>(Ty))
if (PTy->getElementType()->isFloatingPoint()) {
std::vector<Constant*> zeros(PTy->getNumElements(),
getConstantFPNegativeZero(PTy->getElementType()));
return getConstantVector(PTy, zeros);
}
if (Ty->isFloatingPoint())
return getConstantFPNegativeZero(Ty);
return getNullValue(Ty);
}
// ConstantFP accessors.
ConstantFP* LLVMContext::getConstantFP(const APFloat& V) {
return pImpl->getConstantFP(V);
}
static const fltSemantics *TypeToFloatSemantics(const Type *Ty) {
if (Ty == Type::FloatTy)
return &APFloat::IEEEsingle;
if (Ty == Type::DoubleTy)
return &APFloat::IEEEdouble;
if (Ty == Type::X86_FP80Ty)
return &APFloat::x87DoubleExtended;
else if (Ty == Type::FP128Ty)
return &APFloat::IEEEquad;
assert(Ty == Type::PPC_FP128Ty && "Unknown FP format");
return &APFloat::PPCDoubleDouble;
}
/// get() - This returns a constant fp for the specified value in the
/// specified type. This should only be used for simple constant values like
/// 2.0/1.0 etc, that are known-valid both as double and as the target format.
Constant* LLVMContext::getConstantFP(const Type* Ty, double V) {
APFloat FV(V);
bool ignored;
FV.convert(*TypeToFloatSemantics(Ty->getScalarType()),
APFloat::rmNearestTiesToEven, &ignored);
Constant *C = getConstantFP(FV);
// For vectors, broadcast the value.
if (const VectorType *VTy = dyn_cast<VectorType>(Ty))
return
getConstantVector(std::vector<Constant *>(VTy->getNumElements(), C));
return C;
}
ConstantFP* LLVMContext::getConstantFPNegativeZero(const Type* Ty) {
APFloat apf = cast <ConstantFP>(getNullValue(Ty))->getValueAPF();
apf.changeSign();
return getConstantFP(apf);
}
// ConstantVector accessors.
Constant* LLVMContext::getConstantVector(const VectorType* T,
const std::vector<Constant*>& V) {
return ConstantVector::get(T, V);
}
Constant* LLVMContext::getConstantVector(const std::vector<Constant*>& V) {
assert(!V.empty() && "Cannot infer type if V is empty");
return getConstantVector(getVectorType(V.front()->getType(),V.size()), V);
}
Constant* LLVMContext::getConstantVector(Constant* const* Vals,
unsigned NumVals) {
// FIXME: make this the primary ctor method.
return getConstantVector(std::vector<Constant*>(Vals, Vals+NumVals));
}
// MDNode accessors
MDNode* LLVMContext::getMDNode(Value* const* Vals, unsigned NumVals) {
return MDNode::get(Vals, NumVals);
}
// MDString accessors
MDString* LLVMContext::getMDString(const char *StrBegin, const char *StrEnd) {
return pImpl->getMDString(StrBegin, StrEnd);
}
MDString* LLVMContext::getMDString(const std::string &Str) {
return getMDString(Str.data(), Str.data()+Str.size());
}
// FunctionType accessors
FunctionType* LLVMContext::getFunctionType(const Type* Result, bool isVarArg) {
return FunctionType::get(Result, isVarArg);
}
FunctionType* LLVMContext::getFunctionType(const Type* Result,
const std::vector<const Type*>& Params,
bool isVarArg) {
return FunctionType::get(Result, Params, isVarArg);
}
// IntegerType accessors
const IntegerType* LLVMContext::getIntegerType(unsigned NumBits) {
return IntegerType::get(NumBits);
}
// OpaqueType accessors
OpaqueType* LLVMContext::getOpaqueType() {
return OpaqueType::get();
}
// StructType accessors
StructType* LLVMContext::getStructType(bool isPacked) {
return StructType::get(isPacked);
}
StructType* LLVMContext::getStructType(const std::vector<const Type*>& Params,
bool isPacked) {
return StructType::get(Params, isPacked);
}
StructType *LLVMContext::getStructType(const Type *type, ...) {
va_list ap;
std::vector<const llvm::Type*> StructFields;
va_start(ap, type);
while (type) {
StructFields.push_back(type);
type = va_arg(ap, llvm::Type*);
}
return StructType::get(StructFields);
}
// ArrayType accessors
ArrayType* LLVMContext::getArrayType(const Type* ElementType,
uint64_t NumElements) {
return ArrayType::get(ElementType, NumElements);
}
// PointerType accessors
PointerType* LLVMContext::getPointerType(const Type* ElementType,
unsigned AddressSpace) {
return PointerType::get(ElementType, AddressSpace);
}
PointerType* LLVMContext::getPointerTypeUnqual(const Type* ElementType) {
return PointerType::getUnqual(ElementType);
}
// VectorType accessors
VectorType* LLVMContext::getVectorType(const Type* ElementType,
unsigned NumElements) {
return VectorType::get(ElementType, NumElements);
}
VectorType* LLVMContext::getVectorTypeInteger(const VectorType* VTy) {
return VectorType::getInteger(VTy);
}
VectorType* LLVMContext::getVectorTypeExtendedElement(const VectorType* VTy) {
return VectorType::getExtendedElementVectorType(VTy);
}
VectorType* LLVMContext::getVectorTypeTruncatedElement(const VectorType* VTy) {
return VectorType::getTruncatedElementVectorType(VTy);
}
const Type* LLVMContext::makeCmpResultType(const Type* opnd_type) {
if (const VectorType* vt = dyn_cast<const VectorType>(opnd_type)) {
return getVectorType(Type::Int1Ty, vt->getNumElements());
}
return Type::Int1Ty;
}
void LLVMContext::erase(MDString *M) {
pImpl->erase(M);
}