llvm-mirror/lib/Transforms/Utils/LowerSwitch.cpp
Roman Tereshin 47dd2adc8b [LowerSwitch][AMDGPU] Do not handle impossible values
This patch adds LazyValueInfo to LowerSwitch to compute the range of the
value being switched over and reduce the size of the tree LowerSwitch
builds to lower a switch.

Reviewed By: arsenm

Differential Revision: https://reviews.llvm.org/D58096

llvm-svn: 354670
2019-02-22 14:33:46 +00:00

621 lines
24 KiB
C++

//===- LowerSwitch.cpp - Eliminate Switch instructions --------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// The LowerSwitch transformation rewrites switch instructions with a sequence
// of branches, which allows targets to get away with not implementing the
// switch instruction until it is convenient.
//
//===----------------------------------------------------------------------===//
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/Analysis/AssumptionCache.h"
#include "llvm/Analysis/LazyValueInfo.h"
#include "llvm/Analysis/ValueTracking.h"
#include "llvm/IR/BasicBlock.h"
#include "llvm/IR/CFG.h"
#include "llvm/IR/ConstantRange.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/InstrTypes.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/Value.h"
#include "llvm/Pass.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/KnownBits.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Transforms/Utils.h"
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
#include <algorithm>
#include <cassert>
#include <cstdint>
#include <iterator>
#include <limits>
#include <vector>
using namespace llvm;
#define DEBUG_TYPE "lower-switch"
namespace {
struct IntRange {
int64_t Low, High;
};
} // end anonymous namespace
// Return true iff R is covered by Ranges.
static bool IsInRanges(const IntRange &R,
const std::vector<IntRange> &Ranges) {
// Note: Ranges must be sorted, non-overlapping and non-adjacent.
// Find the first range whose High field is >= R.High,
// then check if the Low field is <= R.Low. If so, we
// have a Range that covers R.
auto I = std::lower_bound(
Ranges.begin(), Ranges.end(), R,
[](const IntRange &A, const IntRange &B) { return A.High < B.High; });
return I != Ranges.end() && I->Low <= R.Low;
}
namespace {
/// Replace all SwitchInst instructions with chained branch instructions.
class LowerSwitch : public FunctionPass {
public:
// Pass identification, replacement for typeid
static char ID;
LowerSwitch() : FunctionPass(ID) {
initializeLowerSwitchPass(*PassRegistry::getPassRegistry());
}
bool runOnFunction(Function &F) override;
void getAnalysisUsage(AnalysisUsage &AU) const override {
AU.addRequired<LazyValueInfoWrapperPass>();
}
struct CaseRange {
ConstantInt* Low;
ConstantInt* High;
BasicBlock* BB;
CaseRange(ConstantInt *low, ConstantInt *high, BasicBlock *bb)
: Low(low), High(high), BB(bb) {}
};
using CaseVector = std::vector<CaseRange>;
using CaseItr = std::vector<CaseRange>::iterator;
private:
void processSwitchInst(SwitchInst *SI,
SmallPtrSetImpl<BasicBlock *> &DeleteList,
AssumptionCache *AC, LazyValueInfo *LVI);
BasicBlock *switchConvert(CaseItr Begin, CaseItr End,
ConstantInt *LowerBound, ConstantInt *UpperBound,
Value *Val, BasicBlock *Predecessor,
BasicBlock *OrigBlock, BasicBlock *Default,
const std::vector<IntRange> &UnreachableRanges);
BasicBlock *newLeafBlock(CaseRange &Leaf, Value *Val,
ConstantInt *LowerBound, ConstantInt *UpperBound,
BasicBlock *OrigBlock, BasicBlock *Default);
unsigned Clusterify(CaseVector &Cases, SwitchInst *SI);
};
/// The comparison function for sorting the switch case values in the vector.
/// WARNING: Case ranges should be disjoint!
struct CaseCmp {
bool operator()(const LowerSwitch::CaseRange& C1,
const LowerSwitch::CaseRange& C2) {
const ConstantInt* CI1 = cast<const ConstantInt>(C1.Low);
const ConstantInt* CI2 = cast<const ConstantInt>(C2.High);
return CI1->getValue().slt(CI2->getValue());
}
};
} // end anonymous namespace
char LowerSwitch::ID = 0;
// Publicly exposed interface to pass...
char &llvm::LowerSwitchID = LowerSwitch::ID;
INITIALIZE_PASS_BEGIN(LowerSwitch, "lowerswitch",
"Lower SwitchInst's to branches", false, false)
INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
INITIALIZE_PASS_DEPENDENCY(LazyValueInfoWrapperPass)
INITIALIZE_PASS_END(LowerSwitch, "lowerswitch",
"Lower SwitchInst's to branches", false, false)
// createLowerSwitchPass - Interface to this file...
FunctionPass *llvm::createLowerSwitchPass() {
return new LowerSwitch();
}
bool LowerSwitch::runOnFunction(Function &F) {
LazyValueInfo *LVI = &getAnalysis<LazyValueInfoWrapperPass>().getLVI();
auto *ACT = getAnalysisIfAvailable<AssumptionCacheTracker>();
AssumptionCache *AC = ACT ? &ACT->getAssumptionCache(F) : nullptr;
// Prevent LazyValueInfo from using the DominatorTree as LowerSwitch does not
// preserve it and it becomes stale (when available) pretty much immediately.
// Currently the DominatorTree is only used by LowerSwitch indirectly via LVI
// and computeKnownBits to refine isValidAssumeForContext's results. Given
// that the latter can handle some of the simple cases w/o a DominatorTree,
// it's easier to refrain from using the tree than to keep it up to date.
LVI->disableDT();
bool Changed = false;
SmallPtrSet<BasicBlock*, 8> DeleteList;
for (Function::iterator I = F.begin(), E = F.end(); I != E; ) {
BasicBlock *Cur = &*I++; // Advance over block so we don't traverse new blocks
// If the block is a dead Default block that will be deleted later, don't
// waste time processing it.
if (DeleteList.count(Cur))
continue;
if (SwitchInst *SI = dyn_cast<SwitchInst>(Cur->getTerminator())) {
Changed = true;
processSwitchInst(SI, DeleteList, AC, LVI);
}
}
for (BasicBlock* BB: DeleteList) {
LVI->eraseBlock(BB);
DeleteDeadBlock(BB);
}
return Changed;
}
/// Used for debugging purposes.
LLVM_ATTRIBUTE_USED
static raw_ostream &operator<<(raw_ostream &O,
const LowerSwitch::CaseVector &C) {
O << "[";
for (LowerSwitch::CaseVector::const_iterator B = C.begin(), E = C.end();
B != E;) {
O << "[" << B->Low->getValue() << ", " << B->High->getValue() << "]";
if (++B != E)
O << ", ";
}
return O << "]";
}
/// Update the first occurrence of the "switch statement" BB in the PHI
/// node with the "new" BB. The other occurrences will:
///
/// 1) Be updated by subsequent calls to this function. Switch statements may
/// have more than one outcoming edge into the same BB if they all have the same
/// value. When the switch statement is converted these incoming edges are now
/// coming from multiple BBs.
/// 2) Removed if subsequent incoming values now share the same case, i.e.,
/// multiple outcome edges are condensed into one. This is necessary to keep the
/// number of phi values equal to the number of branches to SuccBB.
static void
fixPhis(BasicBlock *SuccBB, BasicBlock *OrigBB, BasicBlock *NewBB,
const unsigned NumMergedCases = std::numeric_limits<unsigned>::max()) {
for (BasicBlock::iterator I = SuccBB->begin(),
IE = SuccBB->getFirstNonPHI()->getIterator();
I != IE; ++I) {
PHINode *PN = cast<PHINode>(I);
// Only update the first occurrence.
unsigned Idx = 0, E = PN->getNumIncomingValues();
unsigned LocalNumMergedCases = NumMergedCases;
for (; Idx != E; ++Idx) {
if (PN->getIncomingBlock(Idx) == OrigBB) {
PN->setIncomingBlock(Idx, NewBB);
break;
}
}
// Remove additional occurrences coming from condensed cases and keep the
// number of incoming values equal to the number of branches to SuccBB.
SmallVector<unsigned, 8> Indices;
for (++Idx; LocalNumMergedCases > 0 && Idx < E; ++Idx)
if (PN->getIncomingBlock(Idx) == OrigBB) {
Indices.push_back(Idx);
LocalNumMergedCases--;
}
// Remove incoming values in the reverse order to prevent invalidating
// *successive* index.
for (unsigned III : llvm::reverse(Indices))
PN->removeIncomingValue(III);
}
}
/// Convert the switch statement into a binary lookup of the case values.
/// The function recursively builds this tree. LowerBound and UpperBound are
/// used to keep track of the bounds for Val that have already been checked by
/// a block emitted by one of the previous calls to switchConvert in the call
/// stack.
BasicBlock *
LowerSwitch::switchConvert(CaseItr Begin, CaseItr End, ConstantInt *LowerBound,
ConstantInt *UpperBound, Value *Val,
BasicBlock *Predecessor, BasicBlock *OrigBlock,
BasicBlock *Default,
const std::vector<IntRange> &UnreachableRanges) {
assert(LowerBound && UpperBound && "Bounds must be initialized");
unsigned Size = End - Begin;
if (Size == 1) {
// Check if the Case Range is perfectly squeezed in between
// already checked Upper and Lower bounds. If it is then we can avoid
// emitting the code that checks if the value actually falls in the range
// because the bounds already tell us so.
if (Begin->Low == LowerBound && Begin->High == UpperBound) {
unsigned NumMergedCases = 0;
NumMergedCases = UpperBound->getSExtValue() - LowerBound->getSExtValue();
fixPhis(Begin->BB, OrigBlock, Predecessor, NumMergedCases);
return Begin->BB;
}
return newLeafBlock(*Begin, Val, LowerBound, UpperBound, OrigBlock,
Default);
}
unsigned Mid = Size / 2;
std::vector<CaseRange> LHS(Begin, Begin + Mid);
LLVM_DEBUG(dbgs() << "LHS: " << LHS << "\n");
std::vector<CaseRange> RHS(Begin + Mid, End);
LLVM_DEBUG(dbgs() << "RHS: " << RHS << "\n");
CaseRange &Pivot = *(Begin + Mid);
LLVM_DEBUG(dbgs() << "Pivot ==> [" << Pivot.Low->getValue() << ", "
<< Pivot.High->getValue() << "]\n");
// NewLowerBound here should never be the integer minimal value.
// This is because it is computed from a case range that is never
// the smallest, so there is always a case range that has at least
// a smaller value.
ConstantInt *NewLowerBound = Pivot.Low;
// Because NewLowerBound is never the smallest representable integer
// it is safe here to subtract one.
ConstantInt *NewUpperBound = ConstantInt::get(NewLowerBound->getContext(),
NewLowerBound->getValue() - 1);
if (!UnreachableRanges.empty()) {
// Check if the gap between LHS's highest and NewLowerBound is unreachable.
int64_t GapLow = LHS.back().High->getSExtValue() + 1;
int64_t GapHigh = NewLowerBound->getSExtValue() - 1;
IntRange Gap = { GapLow, GapHigh };
if (GapHigh >= GapLow && IsInRanges(Gap, UnreachableRanges))
NewUpperBound = LHS.back().High;
}
LLVM_DEBUG(dbgs() << "LHS Bounds ==> [" << LowerBound->getSExtValue() << ", "
<< NewUpperBound->getSExtValue() << "]\n"
<< "RHS Bounds ==> [" << NewLowerBound->getSExtValue()
<< ", " << UpperBound->getSExtValue() << "]\n");
// Create a new node that checks if the value is < pivot. Go to the
// left branch if it is and right branch if not.
Function* F = OrigBlock->getParent();
BasicBlock* NewNode = BasicBlock::Create(Val->getContext(), "NodeBlock");
ICmpInst* Comp = new ICmpInst(ICmpInst::ICMP_SLT,
Val, Pivot.Low, "Pivot");
BasicBlock *LBranch = switchConvert(LHS.begin(), LHS.end(), LowerBound,
NewUpperBound, Val, NewNode, OrigBlock,
Default, UnreachableRanges);
BasicBlock *RBranch = switchConvert(RHS.begin(), RHS.end(), NewLowerBound,
UpperBound, Val, NewNode, OrigBlock,
Default, UnreachableRanges);
F->getBasicBlockList().insert(++OrigBlock->getIterator(), NewNode);
NewNode->getInstList().push_back(Comp);
BranchInst::Create(LBranch, RBranch, Comp, NewNode);
return NewNode;
}
/// Create a new leaf block for the binary lookup tree. It checks if the
/// switch's value == the case's value. If not, then it jumps to the default
/// branch. At this point in the tree, the value can't be another valid case
/// value, so the jump to the "default" branch is warranted.
BasicBlock *LowerSwitch::newLeafBlock(CaseRange &Leaf, Value *Val,
ConstantInt *LowerBound,
ConstantInt *UpperBound,
BasicBlock *OrigBlock,
BasicBlock *Default) {
Function* F = OrigBlock->getParent();
BasicBlock* NewLeaf = BasicBlock::Create(Val->getContext(), "LeafBlock");
F->getBasicBlockList().insert(++OrigBlock->getIterator(), NewLeaf);
// Emit comparison
ICmpInst* Comp = nullptr;
if (Leaf.Low == Leaf.High) {
// Make the seteq instruction...
Comp = new ICmpInst(*NewLeaf, ICmpInst::ICMP_EQ, Val,
Leaf.Low, "SwitchLeaf");
} else {
// Make range comparison
if (Leaf.Low == LowerBound) {
// Val >= Min && Val <= Hi --> Val <= Hi
Comp = new ICmpInst(*NewLeaf, ICmpInst::ICMP_SLE, Val, Leaf.High,
"SwitchLeaf");
} else if (Leaf.High == UpperBound) {
// Val <= Max && Val >= Lo --> Val >= Lo
Comp = new ICmpInst(*NewLeaf, ICmpInst::ICMP_SGE, Val, Leaf.Low,
"SwitchLeaf");
} else if (Leaf.Low->isZero()) {
// Val >= 0 && Val <= Hi --> Val <=u Hi
Comp = new ICmpInst(*NewLeaf, ICmpInst::ICMP_ULE, Val, Leaf.High,
"SwitchLeaf");
} else {
// Emit V-Lo <=u Hi-Lo
Constant* NegLo = ConstantExpr::getNeg(Leaf.Low);
Instruction* Add = BinaryOperator::CreateAdd(Val, NegLo,
Val->getName()+".off",
NewLeaf);
Constant *UpperBound = ConstantExpr::getAdd(NegLo, Leaf.High);
Comp = new ICmpInst(*NewLeaf, ICmpInst::ICMP_ULE, Add, UpperBound,
"SwitchLeaf");
}
}
// Make the conditional branch...
BasicBlock* Succ = Leaf.BB;
BranchInst::Create(Succ, Default, Comp, NewLeaf);
// If there were any PHI nodes in this successor, rewrite one entry
// from OrigBlock to come from NewLeaf.
for (BasicBlock::iterator I = Succ->begin(); isa<PHINode>(I); ++I) {
PHINode* PN = cast<PHINode>(I);
// Remove all but one incoming entries from the cluster
uint64_t Range = Leaf.High->getSExtValue() -
Leaf.Low->getSExtValue();
for (uint64_t j = 0; j < Range; ++j) {
PN->removeIncomingValue(OrigBlock);
}
int BlockIdx = PN->getBasicBlockIndex(OrigBlock);
assert(BlockIdx != -1 && "Switch didn't go to this successor??");
PN->setIncomingBlock((unsigned)BlockIdx, NewLeaf);
}
return NewLeaf;
}
/// Transform simple list of \p SI's cases into list of CaseRange's \p Cases.
/// \post \p Cases wouldn't contain references to \p SI's default BB.
/// \returns Number of \p SI's cases that do not reference \p SI's default BB.
unsigned LowerSwitch::Clusterify(CaseVector& Cases, SwitchInst *SI) {
unsigned NumSimpleCases = 0;
// Start with "simple" cases
for (auto Case : SI->cases()) {
if (Case.getCaseSuccessor() == SI->getDefaultDest())
continue;
Cases.push_back(CaseRange(Case.getCaseValue(), Case.getCaseValue(),
Case.getCaseSuccessor()));
++NumSimpleCases;
}
llvm::sort(Cases, CaseCmp());
// Merge case into clusters
if (Cases.size() >= 2) {
CaseItr I = Cases.begin();
for (CaseItr J = std::next(I), E = Cases.end(); J != E; ++J) {
int64_t nextValue = J->Low->getSExtValue();
int64_t currentValue = I->High->getSExtValue();
BasicBlock* nextBB = J->BB;
BasicBlock* currentBB = I->BB;
// If the two neighboring cases go to the same destination, merge them
// into a single case.
assert(nextValue > currentValue && "Cases should be strictly ascending");
if ((nextValue == currentValue + 1) && (currentBB == nextBB)) {
I->High = J->High;
// FIXME: Combine branch weights.
} else if (++I != J) {
*I = *J;
}
}
Cases.erase(std::next(I), Cases.end());
}
return NumSimpleCases;
}
static ConstantRange getConstantRangeFromKnownBits(const KnownBits &Known) {
APInt Lower = Known.One;
APInt Upper = ~Known.Zero + 1;
if (Upper == Lower)
return ConstantRange(Known.getBitWidth(), /*isFullSet=*/true);
return ConstantRange(Lower, Upper);
}
/// Replace the specified switch instruction with a sequence of chained if-then
/// insts in a balanced binary search.
void LowerSwitch::processSwitchInst(SwitchInst *SI,
SmallPtrSetImpl<BasicBlock *> &DeleteList,
AssumptionCache *AC, LazyValueInfo *LVI) {
BasicBlock *OrigBlock = SI->getParent();
Function *F = OrigBlock->getParent();
Value *Val = SI->getCondition(); // The value we are switching on...
BasicBlock* Default = SI->getDefaultDest();
// Don't handle unreachable blocks. If there are successors with phis, this
// would leave them behind with missing predecessors.
if ((OrigBlock != &F->getEntryBlock() && pred_empty(OrigBlock)) ||
OrigBlock->getSinglePredecessor() == OrigBlock) {
DeleteList.insert(OrigBlock);
return;
}
// Prepare cases vector.
CaseVector Cases;
const unsigned NumSimpleCases = Clusterify(Cases, SI);
LLVM_DEBUG(dbgs() << "Clusterify finished. Total clusters: " << Cases.size()
<< ". Total non-default cases: " << NumSimpleCases
<< "\nCase clusters: " << Cases << "\n");
// If there is only the default destination, just branch.
if (Cases.empty()) {
BranchInst::Create(Default, OrigBlock);
// Remove all the references from Default's PHIs to OrigBlock, but one.
fixPhis(Default, OrigBlock, OrigBlock);
SI->eraseFromParent();
return;
}
ConstantInt *LowerBound = nullptr;
ConstantInt *UpperBound = nullptr;
bool DefaultIsUnreachableFromSwitch = false;
if (isa<UnreachableInst>(Default->getFirstNonPHIOrDbg())) {
// Make the bounds tightly fitted around the case value range, because we
// know that the value passed to the switch must be exactly one of the case
// values.
LowerBound = Cases.front().Low;
UpperBound = Cases.back().High;
DefaultIsUnreachableFromSwitch = true;
} else {
// Constraining the range of the value being switched over helps eliminating
// unreachable BBs and minimizing the number of `add` instructions
// newLeafBlock ends up emitting. Running CorrelatedValuePropagation after
// LowerSwitch isn't as good, and also much more expensive in terms of
// compile time for the following reasons:
// 1. it processes many kinds of instructions, not just switches;
// 2. even if limited to icmp instructions only, it will have to process
// roughly C icmp's per switch, where C is the number of cases in the
// switch, while LowerSwitch only needs to call LVI once per switch.
const DataLayout &DL = F->getParent()->getDataLayout();
KnownBits Known = computeKnownBits(Val, DL, /*Depth=*/0, AC, SI);
ConstantRange KnownBitsRange = getConstantRangeFromKnownBits(Known);
const ConstantRange LVIRange = LVI->getConstantRange(Val, OrigBlock, SI);
ConstantRange ValRange = KnownBitsRange.intersectWith(LVIRange);
// We delegate removal of unreachable non-default cases to other passes. In
// the unlikely event that some of them survived, we just conservatively
// maintain the invariant that all the cases lie between the bounds. This
// may, however, still render the default case effectively unreachable.
APInt Low = Cases.front().Low->getValue();
APInt High = Cases.back().High->getValue();
APInt Min = APIntOps::smin(ValRange.getSignedMin(), Low);
APInt Max = APIntOps::smax(ValRange.getSignedMax(), High);
LowerBound = ConstantInt::get(SI->getContext(), Min);
UpperBound = ConstantInt::get(SI->getContext(), Max);
DefaultIsUnreachableFromSwitch = (Min + (NumSimpleCases - 1) == Max);
}
std::vector<IntRange> UnreachableRanges;
if (DefaultIsUnreachableFromSwitch) {
DenseMap<BasicBlock *, unsigned> Popularity;
unsigned MaxPop = 0;
BasicBlock *PopSucc = nullptr;
IntRange R = {std::numeric_limits<int64_t>::min(),
std::numeric_limits<int64_t>::max()};
UnreachableRanges.push_back(R);
for (const auto &I : Cases) {
int64_t Low = I.Low->getSExtValue();
int64_t High = I.High->getSExtValue();
IntRange &LastRange = UnreachableRanges.back();
if (LastRange.Low == Low) {
// There is nothing left of the previous range.
UnreachableRanges.pop_back();
} else {
// Terminate the previous range.
assert(Low > LastRange.Low);
LastRange.High = Low - 1;
}
if (High != std::numeric_limits<int64_t>::max()) {
IntRange R = { High + 1, std::numeric_limits<int64_t>::max() };
UnreachableRanges.push_back(R);
}
// Count popularity.
int64_t N = High - Low + 1;
unsigned &Pop = Popularity[I.BB];
if ((Pop += N) > MaxPop) {
MaxPop = Pop;
PopSucc = I.BB;
}
}
#ifndef NDEBUG
/* UnreachableRanges should be sorted and the ranges non-adjacent. */
for (auto I = UnreachableRanges.begin(), E = UnreachableRanges.end();
I != E; ++I) {
assert(I->Low <= I->High);
auto Next = I + 1;
if (Next != E) {
assert(Next->Low > I->High);
}
}
#endif
// As the default block in the switch is unreachable, update the PHI nodes
// (remove all of the references to the default block) to reflect this.
const unsigned NumDefaultEdges = SI->getNumCases() + 1 - NumSimpleCases;
for (unsigned I = 0; I < NumDefaultEdges; ++I)
Default->removePredecessor(OrigBlock);
// Use the most popular block as the new default, reducing the number of
// cases.
assert(MaxPop > 0 && PopSucc);
Default = PopSucc;
Cases.erase(
llvm::remove_if(
Cases, [PopSucc](const CaseRange &R) { return R.BB == PopSucc; }),
Cases.end());
// If there are no cases left, just branch.
if (Cases.empty()) {
BranchInst::Create(Default, OrigBlock);
SI->eraseFromParent();
// As all the cases have been replaced with a single branch, only keep
// one entry in the PHI nodes.
for (unsigned I = 0 ; I < (MaxPop - 1) ; ++I)
PopSucc->removePredecessor(OrigBlock);
return;
}
}
// Create a new, empty default block so that the new hierarchy of
// if-then statements go to this and the PHI nodes are happy.
BasicBlock *NewDefault = BasicBlock::Create(SI->getContext(), "NewDefault");
F->getBasicBlockList().insert(Default->getIterator(), NewDefault);
BranchInst::Create(Default, NewDefault);
BasicBlock *SwitchBlock =
switchConvert(Cases.begin(), Cases.end(), LowerBound, UpperBound, Val,
OrigBlock, OrigBlock, NewDefault, UnreachableRanges);
// If there are entries in any PHI nodes for the default edge, make sure
// to update them as well.
fixPhis(Default, OrigBlock, NewDefault);
// Branch to our shiny new if-then stuff...
BranchInst::Create(SwitchBlock, OrigBlock);
// We are now done with the switch instruction, delete it.
BasicBlock *OldDefault = SI->getDefaultDest();
OrigBlock->getInstList().erase(SI);
// If the Default block has no more predecessors just add it to DeleteList.
if (pred_begin(OldDefault) == pred_end(OldDefault))
DeleteList.insert(OldDefault);
}